Soil Quality Variation under Different Land Use Types and Its Driving Factors in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analyses
2.3. Soil Quality Evaluation Methods
2.3.1. Identification of the Minimum Data Set (MDS)
2.3.2. Calculation of Membership Degrees
2.3.3. Determination of Indicator Weights
2.3.4. Calculation of the SQI
2.4. PLS-PM Method
2.5. Statistical Analysis
3. Results
3.1. Changes in Measured Soil Indicators
3.2. Selecting MDS Indicators
3.3. Soil Quality Index under Different Land Uses
3.4. Analysis of Driving Factors of Soil Quality under Different Land Uses
4. Discussion
4.1. Soil Indicators under Different Land Use Types
4.2. Soil Quality Indexes and Effects of Land Use Types on Soil Quality
4.3. The Dominant Factor Analysis of Soil Quality Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romeo, F.; Settineri, G.; Sidari, M.; Mallamaci, C.; Muscolo, A. Responses of soil quality indicators to innovative and traditional thinning in a beech (Fagus sylvatica L.) forest. For. Ecol. Manag. 2020, 465, 118106. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, definition, and framework for evaluation (A guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Guo, L.; Sun, Z.; Ouyang, Z.; Han, D.; Li, F. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena 2017, 152, 135–143. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Z.; Lin, J.; Wang, H.; Zheng, S.; Yang, S. Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2023, 12, 298–312. [Google Scholar] [CrossRef]
- Yu, J.; Fang, L.; Cang, D.; Zhu, L.; Bian, Z. Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 260–266. [Google Scholar]
- Tang, B.; He, B.; Yan, J. Gray correlation analysis of the impact of land use type on soil physical and chemical properties in the hilly area of central Sichuan, China. Chin. J. Appl. Ecol. 2016, 27, 1445–1452. [Google Scholar]
- Nortcliff, S. Standardisation of soil quality attributes. Agric. Ecosyst. Environ. 2002, 88, 161–168. [Google Scholar] [CrossRef]
- Qiu, X.; Peng, D.; Wang, H.; Wang, Z.; Cheng, S. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecol. Indic. 2019, 103, 236–247. [Google Scholar] [CrossRef]
- Gao, R.; Ai, N.; Liu, G.; Liu, C.; Zhang, Z. Soil C:N:P stoichiometric characteristics and soil quality evaluation under different restoration modes in the loess region of northern Shaanxi Province. Forests 2022, 13, 913. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G. Formation, characteristics, and eco-environmental implications of urban soils—A review. Soil Sci. Plant Nutr. 2015, 61, 30–46. [Google Scholar] [CrossRef]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 604. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Liu, C.; Zhao, Z.; Li, Y.; Yu, S. Heavy metals in plants and substrate from simulated extensive green roofs. Ecol. Eng. 2013, 55, 29–34. [Google Scholar] [CrossRef]
- Wang, H.; Luo, H.; Zhang, W.; Cai, B.; Yang, M.; Qin, T.; Yang, Q.; Jing, Z.; He, B. Research progress on heavy metal leaching characteristics and environmental pollution risk of construction waste. Appl. Chem. Ind. 2023, 52, 2408–2413. [Google Scholar]
- lUSS Working Group WRB. World Reference Base for Soil Resource 2014. International Soil Classification System for Naming Soil and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 154. [Google Scholar]
- Institute of Soil Science Chinese Academy of Sciences. Soil Physical Properties Determination Method; Science Press: Beijing, China, 1978; pp. 2,4,6. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000; pp. 2–10. [Google Scholar]
- United States Environmental Protection Agency (U.S. EPA). Acid Digestion of Sediments, Sludges, and Soils; Method 3050B.; United States Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 1996. [Google Scholar]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Karlen, D.L.; Hartz, T.K.; Horwath, W.R.; Munk, D.S. On-farm assessment of soil quality in California’s Central Valley. Agron. J. 2002, 94, 12–23. [Google Scholar]
- Ye, C.; Cheng, X.; Zhang, Q. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: Implications for revegetation. Environ. Sci. Pollut. Res. 2014, 21, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 2018, 616, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ai, N.; Liu, G.; Liu, C.; Qiang, F. Soil quality evaluation of various microtopography types at different restoration modes in the loess area of Northern Shaanxi. Catena 2021, 207, 105633. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares: The better approach to structural equation modeling? Long Range Plan. 2012, 45, 312–319. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Ringle, C.M.; Thiele, K.O.; Gudergan, S.P. Estimation issues with PLS and CBSEM: Where the bias lies! J. Bus. Res. 2016, 69, 3998–4010. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F., Jr.; Cheah, J.H.; Becker, J.M.; Ringle, C.M. How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Turner, G. Organisation in the school dental service. Br. Dent. J. 1971, 131, 33–36. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, P.M.; Cirillo, M.Â. Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions. Commun. Stat.-Simul. Comput. 2023, 52, 1639–1650. [Google Scholar] [CrossRef]
- Liu, M.; Chang, Q.; Qi, Y.; Liu, J.; Chen, T. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 2014, 115, 19–28. [Google Scholar] [CrossRef]
- Wu, W.; Chen, G.; Meng, T.; Li, C.; Feng, H.; Si, B.; Siddique, K.H. Effect of different vegetation restoration on soil properties in the semi-arid Loess Plateau of China. Catena 2023, 220, 106630. [Google Scholar] [CrossRef]
- Nave, L.E.; Swanston, C.W.; Mishra, U.; Nadelhoffer, K.J. Afforestation effects on soil carbon storage in the United States: A synthesis. Soil Sci. Soc. Am. J. 2013, 77, 1035–1047. [Google Scholar] [CrossRef]
- Gao, L.; Wang, B.; Li, S.; Han, Y.; Zhang, X.; Gong, D.; Degré, A. Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil Tillage Res. 2019, 194, 104321. [Google Scholar] [CrossRef]
- Du, Z.; Dong, H.; Jing, D.; Ma, B.; Liu, F. Effects of long-term plantations on soil organic carbon pool in Yellow River delta. Bull. Soil Water Conserv. 2016, 36, 056–061. [Google Scholar]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in soil carbon following afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Guan, J.; Chen, S.; Li, S.; Zhang, Y.; Zhang, X.; Lu, Y.; Yan, Z. Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China. Chin. J. Eco-Agric. 2019, 27, 1663–1672. [Google Scholar]
- Huang, Y.; Li, Y.; Liu, Y. Effects of soil-layer compounding schemes on the soil fertility of newly-constructed cultivated land. Trans. Chin. Soc. Agric. Eng. 2021, 37, 64–72. [Google Scholar]
- Wu, X.; Wang, R.; Gao, C.; Gao, S.; Du, L.; Asif, K.; Sheng, L. Variations of soil properties effect on microbial community structure and functional structure under land uses. Acta Ecol. Sin. 2021, 41, 7989–8002. [Google Scholar]
- Wang, M.; Huang, L.; Chen, C. Difference in soil water holding capacity and the influencing factors under different land use types in the alpine region of Tibet, China. J. Appl. Ecol. 2022, 33, 3287–3293. [Google Scholar]
- Yang, F.; Zhang, G.; Yang, J.; Li, D.; Zhao, Y.; Liu, F.; Yang, F. Organic matter controls of soilwater retention in an alpine grassland and its significance for hydrological processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
- Kan, X.; Cheng, J.; Hu, X.; Zhu, F.; Li, M. Effects of Grass and Forests and the Infiltration Amount on Preferential Flow in Karst Regions of China. Water 2019, 11, 1634. [Google Scholar] [CrossRef]
- Belon, E.; Boisson, M.; Deportes, I.Z.; Eglin, T.K.; Feix, I.; Bispo, A.O.; Guellier, C.R. An inventory of trace elements inputs to French agricultural soils. Sci. Total Environ. 2012, 439, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Esposito, F.; Vitale, L.; Di Natale, G.; Maisto, G. Impact of Anthropic activities on soil quality under different land uses. Int. J. Environ. Res. Public Health 2021, 18, 8423. [Google Scholar] [CrossRef] [PubMed]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Gao, P.; Wang, B.; Lin, W.; Jiang, N.; Cai, K. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef]
- Si, L.; Peng, X.; Zhou, J. The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: A new method for urban sludge disposal. Environ. Sci. Pollut. Res. 2019, 26, 1379–1393. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: A Review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Gong, L.; Ran, Q.; He, G.; Tiyip, T. A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil Tillage Res. 2015, 146, 223–229. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Wang, J.; Wang, Z. Evaluation of Soil Quality for Different Types of Land Use Based on Minimum Dataset in the Typical Desert Steppe in Ningxia, China. J. Adv. Transp. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Li, R.; Xi, B.; Li, M.; Hao, Y.; Meng, F.; Gao, S.; Chen, L. Soil Pollution Prevention Strategies and Typical Engineering Cases of Agricultural Products Producing Areas in Beijing–Tianjin–Hebei Region. Strateg. Study Chin. Acad. Eng. 2018, 20, 142–147. [Google Scholar] [CrossRef]
- Joimel, S.; Cortet, J.; Jolivet, C.C.; Saby, N.P.A.; Chenot, E.D.; Branchu, P.; Schwartz, C. Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Sci. Total Environ. 2016, 545, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Yang, J.; Yao, R.; Liu, G. Soil quality in east coastal region of China as related to different land use types. J. Soils Sediments 2013, 13, 664–676. [Google Scholar] [CrossRef]
- Jackson, P.C.; Meinzer, F.C.; Bustamante, M.; Goldstein, G.; Franco, A.; Rundel, P.W.; Causin, F. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem. Tree Physiol. 1999, 19, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zhang, G.; Wang, C.; Chen, S.; Wan, Y. Variation in soil infiltration properties under different land use/cover in the black soil region of Northeast China. Int. Soil Water Conserv. Res. 2024, 12, 379–387. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, T.; Chen, H. Lead accumulation in soils under different land use types in Beijing City. Acta Geogr. Sin. 2005, 60, 791–797. [Google Scholar]
- Li, L.; Zeng, X.; Bai, L.; Li, S. Characteristics of Lead Accumulation in Soils Under Different Agricultural Utilization Pattern in Shouguang of Shandong Province, China. J. Agro-Environ. Sci. 2010, 29, 1960–1965. [Google Scholar]
- Zou, X.; Zhu, X.; Zhu, P.; Singh, A.K.; Zakari, S.; Yang, B.; Liu, W. Soil quality assessment of different Hevea brasiliensis plantations in tropical China. J. Environ. Manag. 2021, 285, 112147. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.; Hoffland, E.; Li, L.; Six, J.; Sun, J.; Bao, X.; Van Der Werf, W. Intercropping enhances soil carbon and nitrogen. Glob. Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Lan, G.; Yang, C.; Wu, Z.; Chen, B.; Fraedrich, K. Soil quality variation and its driving factors within tropical forests on Hainan Island, China. Land Degrad. Dev. 2023, 34, 3418–3432. [Google Scholar] [CrossRef]
Land Use Types | Slope/(°) | Elevation/(m) | Main Plant Species | Coverage/(%) |
---|---|---|---|---|
Newly cultivated land (NCL) | 0–5 | 40 | Eleusine indica (L.) Gaertn., Setaria viridis (L.) Beauv., Artemisia caruifolia Buch.-Ham. ex Roxb. | 10 |
Cropland (CL) | 0–5 | 100 | Helianthus annuus L., Ipomoea batatas (L.) Lam., Artemisia argyi H. Lév. & Vaniot, Setaria viridis (L.) Beauv., Xanthium strumarium L. | 50 |
Arbor forest (AF) | 0–5 | 50 | Populus tomentosa Carrière, Larix gmelinii (Rupr.) Kuzen. | 80 |
Shrubland (SL) | 0–5 | 50 | Prunus mume ‘Meiren’ | 60 |
Arbor–shrub mixed forest (ASF) | 0–5 | 90 | Populus tomentosa Carrière, Larix gmelinii (Rupr.) Kuzen., Vitex negundo var. heterophylla (Franch.) Rehd. | 90 |
Soil Indicators | Measurement Methods |
---|---|
Soil water content (SWC) | The drying method (oven-drying method (105 °C, 12 h)) |
Soil bulk density (BD) Maximum water-holding capacity (MWHC), capillary water-holding capacity (CWHC), capillary porosity (CP), non-capillary porosity (NCP) | The ring knife method |
Soil organic carbon content (SOC) | The potassium dichromate oxidation method |
Soil total nitrogen (TN) | Kjeldahl method |
Soil total phosphorus (TP) | NaOH melting-molybdenum antimony colorimetric method |
pH | The PHS-3E meter (INESA, Shanghai, China) (the water–soil ratio was 2.5:1) |
The metal elements (Cd, Cu, Pb, Fe, Zn) | Inductively coupled plasma–optical emission spectrometry (PRODIGY-XP, Leeman Labs, Hudson, USA) (RF power: 1150 W; cooling air flow: 1.0 L/min; injection cleaning time: 30 s; integration time: 30 s; flushing pump speed: 45 r/min; analyzing pump speed: 45 r/min) |
Soil Index | Land Use Types | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NCL | CL | AF | SL | ASF | |||||||||||
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
SOC (g∙kg−1) | 0.45 ± 0.09b | 0.10 | 0.96 | 1.18 ± 0.32ab | 0.33 | 2.98 | 0.91 ± 0.23b | 0.32 | 2.18 | 0.62 ± 0.13b | 0.25 | 1.37 | 1.79 ± 0.42a | 0.33 | 3.38 |
pH | 8.04 ± 0.03a | 7.86 | 8.17 | 7.26 ± 0.09c | 6.90 | 7.74 | 7.90 ± 0.04a | 7.71 | 8.09 | 7.61 ± 0.09b | 7.08 | 7.90 | 7.34 ± 0.15c | 6.78 | 8.09 |
TN (g∙kg−1) | 0.05 ± 0.02b | 0.01 | 0.19 | 0.20 ± 0.04a | 0.08 | 0.42 | 0.15 ± 0.03a | 0.04 | 0.32 | 0.15 ± 0.02a | 0.09 | 0.25 | 0.23 ± 0.05a | 0.08 | 0.50 |
TP (g∙kg−1) | 0.18 ± 0.06b | 0.02 | 0.52 | 1.52 ± 0.52a | 0.14 | 4.62 | 0.37 ± 0.06b | 0.18 | 0.69 | 0.72 ± 0.03b | 0.56 | 0.83 | 0.79 ± 0.10b | 0.36 | 1.23 |
SWC (%) | 14.93 ± 0.42a | 12.84 | 18.59 | 11.67 ± 0.34b | 10.42 | 13.96 | 8.46 ± 0.69c | 4.62 | 12.28 | 8.16 ± 0.67c | 4.92 | 12.67 | 15.69 ± 0.37a | 12.89 | 17.00 |
BD (g∙cm−3) | 1.05 ± 0.02d | 0.97 | 1.16 | 1.51 ± 0.05a | 1.27 | 1.78 | 1.36 ± 0.02b | 1.23 | 1.46 | 1.26 ± 0.02c | 1.18 | 1.38 | 1.24 ± 0.03c | 1.10 | 1.41 |
MWHC (%) | 38.98 ± 0.32a | 37.14 | 40.91 | 26.17 ± 1.65c | 18.71 | 36.25 | 31.82 ± 0.87b | 27.37 | 37.22 | 33.60 ± 1.03b | 28.76 | 38.86 | 33.19 ± 1.16b | 26.39 | 40.62 |
CWHC (%) | 31.29 ± 0.35a | 29.12 | 33.72 | 21.60 ± 1.44c | 16.34 | 32.68 | 27.00 ± 0.74b | 24.01 | 31.50 | 28.63 ± 1.39ab | 22.03 | 37.70 | 27.37 ± 1.01b | 20.99 | 34.55 |
CP (%) | 32.71 ± 0.64bc | 28.29 | 36.20 | 32.13 ± 1.46c | 24.75 | 44.69 | 36.55 ± 0.93a | 32.64 | 42.70 | 36.01 ± 1.49ab | 27.77 | 44.52 | 33.63 ± 0.92abc | 28.17 | 38.18 |
NCP (%) | 8.05 ± 0.36a | 5.08 | 9.53 | 6.65 ± 1.12a | 1.47 | 13.30 | 6.43 ± 1.04a | 1.34 | 11.69 | 6.30 ± 0.93a | 1.36 | 11.59 | 7.07 ± 1.04a | 0.88 | 13.96 |
Cd (mg∙kg−1) | 0.01 ± 0.00b | 0.01 | 0.01 | 0.05 ± 0.02a | 0.01 | 0.15 | 0.01 ± 0.00b | 0.01 | 0.02 | 0.01 ± 0.00b | 0.01 | 0.02 | 0.01 ± 0.00b | 0.01 | 0.02 |
Cu (mg∙kg−1) | 10.90 ± 1.07b | 5.33 | 14.88 | 23.61 ± 1.68a | 15.65 | 30.20 | 8.15 ± 0.23b | 6.88 | 8.88 | 8.20 ± 0.49b | 6.63 | 10.60 | 25.78 ± 0.55a | 22.90 | 27.90 |
Fe (mg∙kg−1) | 13.32 ± 0.29c | 12.04 | 14.77 | 24.68 ± 2.00a | 19.64 | 36.05 | 16.90 ± 0.79b | 12.48 | 19.25 | 17.22 ± 0.19b | 16.56 | 18.28 | 26.70 ± 0.47a | 24.10 | 28.25 |
Pb (mg∙kg−1) | 10.95 ± 0.12d | 10.35 | 11.28 | 19.53 ± 1.09a | 16.18 | 25.63 | 10.87 ± 0.08d | 10.58 | 11.30 | 12.60 ± 0.56c | 11.20 | 15.75 | 16.80 ± 0.38b | 14.68 | 17.85 |
Zn (mg∙kg−1) | 94.32 ± 3.11a | 83.10 | 110.58 | 106.28 ± 9.49a | 66.00 | 152.33 | 59.46 ± 2.32b | 47.70 | 69.00 | 63.02 ± 3.06b | 55.15 | 80.38 | 104.73 ± 3.82a | 89.70 | 134.68 |
Soil Indicators | PC1 | PC2 | PC3 | PC4 | Communalities |
---|---|---|---|---|---|
SOC | 0.47 | 0.75 | −0.06 | −0.29 | 0.92 |
pH | −0.70 | −0.39 | 0.14 | 0.38 | 0.87 |
TN | 0.47 | 0.71 | −0.26 | −0.30 | 0.93 |
TP | 0.44 | 0.48 | −0.47 | 0.57 | 0.97 |
SWC | 0.27 | 0.42 | 0.78 | 0.11 | 0.89 |
BD | 0.54 | −0.60 | −0.51 | −0.14 | 0.95 |
MWHC | −0.55 | 0.72 | 0.34 | 0.08 | 0.94 |
CP | −0.27 | 0.50 | −0.46 | −0.31 | 0.98 |
CWHC | −0.56 | 0.74 | 0.14 | −0.13 | 0.98 |
Cd | 0.35 | 0.53 | −0.47 | 0.59 | 0.97 |
Cu | 0.90 | 0.10 | 0.29 | 0.12 | 0.96 |
Fe | 0.83 | −0.27 | 0.13 | −0.08 | 0.88 |
Pb | 0.93 | −0.11 | 0.09 | −0.11 | 0.92 |
Zn | 0.63 | 0.04 | 0.59 | 0.13 | 0.77 |
Eigenvalue | 5.09 | 3.66 | 2.19 | 1.19 | |
Variance (%) | 36.39 | 26.15 | 15.62 | 8.50 | |
Cumulative variance (%) | 36.39 | 62.53 | 78.15 | 86.65 |
SOC | pH | TN | TP | SWC | BD | MWHC | CWHC | CP | Cd | Cu | Fe | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 1 | |||||||||||||
pH | −0.66 ** | 1 | ||||||||||||
TN | 0.84 ** | −0.74 ** | 1 | |||||||||||
TP | 0.15 | −0.31 * | 0.38** | 1 | ||||||||||
SWC | 0.25 | −0.07 | 0.08 | −0.12 | 1 | |||||||||
BD | −0.07 | −0.30 * | 0.05 | 0.26 * | −0.52 ** | 1 | ||||||||
MWHC | 0.13 | 0.27 * | 0.00 | −0.26 * | 0.46 ** | −0.91 ** | 1 | |||||||
CWHC | 0.16 | 0.20 | 0.08 | −0.26 * | 0.33 * | −0.75 ** | 0.84 ** | 1 | ||||||
CP | 0.19 | −0.05 | 0.29 * | 0.14 | −0.16 | −0.01 | 0.23 | 0.59 ** | 1 | |||||
Cd | 0.27 * | −0.02 | 0.23 | 0.48 ** | −0.18 | 0.06 | 0.05 | −0.04 | 0.09 | 1 | ||||
Cu | 0.48 ** | −0.50 ** | 0.34 ** | 0.13 | 0.56 ** | 0.16 | −0.20 | −0.26 * | −0.28 * | 0.11 | 1 | |||
Fe | 0.29 * | −0.50 ** | 0.30 * | 0.35 ** | 0.20 | 0.50 ** | −0.52 ** | −0.52 ** | −0.18 | 0.09 | 0.78 ** | 1 | ||
Pb | 0.40 ** | −0.77 ** | 0.47 ** | 0.28 * | 0.23 | 0.33 ** | −0.37 ** | −0.35 ** | −0.21 | 0.00 | 0.79 ** | 0.81 ** | 1 | |
Zn | 0.22 | −0.21 | 0.04 | 0.02 | 0.69 ** | −0.09 | −0.04 | −0.12 | −0.36 ** | −0.23 | 0.72 ** | 0.48 ** | 0.51 ** | 1 |
Indicators | Mean | Slope | Weight 1 | Weight 2 |
---|---|---|---|---|
SOC | 0.99 | −2.50 | 0.072 | 0.170 |
pH | 7.63 | 2.50 | 0.067 | |
TN | 0.16 | −2.50 | 0.072 | |
TP | 0.72 | −2.50 | 0.080 | |
SWC | 10.89 | −2.50 | 0.071 | 0.168 |
BD | 0.12 | 2.50 | 0.077 | |
MWHC | 1.28 | −2.50 | 0.077 | 0.159 |
CP | 0.33 | −2.50 | 0.052 | |
CWHC | 0.34 | −2.50 | 0.073 | 0.166 |
Cd | 0.07 | 2.50 | 0.080 | 0.169 |
Cu | 0.41 | −2.50 | 0.076 | |
Fe | 0.27 | −2.50 | 0.065 | |
Pb | 0.02 | 2.50 | 0.075 | 0.168 |
Zn | 15.32 | −2.50 | 0.063 |
Restoration Pattern | TDS | MDS |
---|---|---|
NCL | 0.466 | 0.485 |
CL | 0.485 | 0.510 |
AF | 0.493 | 0.519 |
SL | 0.488 | 0.515 |
ASF | 0.503 | 0.527 |
Parameters | Meanings |
---|---|
Variance inflation factor (VIF) | Measure the severity of multicollinearity |
Reliability and validity | Validate the accuracy of the PLS-PM results |
Composite reliability (CR, not <0.6) | Evaluate the reliability of internal coherence |
Extracted average variance (AVE > 0.5) | Verify the convergence validity |
Driving Factors | Soil Indicators | Variance Inflation Factor (VIF) | Outer Loadings | Cronbach’s Alpha | Composite Reliability (CR) | Average Variance Extracted (AVE) |
---|---|---|---|---|---|---|
Chemical indicators | SOC | 1.19 | 0.93 | 0.57 | 0.73 | 0.69 |
TP | 1.19 | 0.71 | ||||
Physical indicators | CP | 1.46 | 0.81 | 0.72 | 0.85 | 0.77 |
MWHC | 1.46 | 0.94 | ||||
Pb | 1 | 1 | / | / | / | |
Land use types | 1 | 1 | / | / | / | |
SQI | 1 | 1 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, F.; Sheng, C.; Zhang, J.; Jiang, L.; Zhou, J. Soil Quality Variation under Different Land Use Types and Its Driving Factors in Beijing. Forests 2024, 15, 993. https://doi.org/10.3390/f15060993
Qiang F, Sheng C, Zhang J, Jiang L, Zhou J. Soil Quality Variation under Different Land Use Types and Its Driving Factors in Beijing. Forests. 2024; 15(6):993. https://doi.org/10.3390/f15060993
Chicago/Turabian StyleQiang, Fangfang, Changchang Sheng, Jiaqi Zhang, Liwei Jiang, and Jinxing Zhou. 2024. "Soil Quality Variation under Different Land Use Types and Its Driving Factors in Beijing" Forests 15, no. 6: 993. https://doi.org/10.3390/f15060993
APA StyleQiang, F., Sheng, C., Zhang, J., Jiang, L., & Zhou, J. (2024). Soil Quality Variation under Different Land Use Types and Its Driving Factors in Beijing. Forests, 15(6), 993. https://doi.org/10.3390/f15060993