Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Analysis Procedure
2.4. Methods
2.4.1. Theil-Sen Trend Analysis Method
2.4.2. Geographical Detector Model
2.4.3. Pearson Correlation Coefficient
2.4.4. Multiscale Geographically Weighted Regression
3. Results
3.1. Variation Characteristics of Extreme Climate Indices in the YRB
3.1.1. Temporal Dynamics of the Extreme Precipitation Indices
3.1.2. Spatial Evolution in Extreme Precipitation Indices
3.1.3. Temporal Dynamics of the Extreme Temperature Indices
3.1.4. Spatial Evolution in Extreme Temperature Indices
3.2. Spatiotemporal Changes in NDVI
3.3. Uncovering the Major Factors Driving the NDVI Spatial Distribution
3.4. NDVI Response to Extreme Climate
3.4.1. Correlation between Extreme Precipitation and NDVI
3.4.2. Correlation between Extreme Temperature and NDVI
3.4.3. The Impacts of ECCs on NDVI for Various Vegetation Classes
4. Discussion
4.1. Model Fitting and Illustrations
4.2. The Impact of Extreme Climate Change on Vegetation
4.3. Limitations and Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stott, P. How climate change affects extreme weather events Research can increasingly determine the contribution of climate change to extreme events such as droughts. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef] [PubMed]
- Ning, G.C.; Luo, M.; Zhang, W.; Liu, Z.; Wang, S.G.; Gao, T. Rising risks of compound extreme heat-precipitation events in China. Int. J. Climatol. 2022, 42, 5785–5795. [Google Scholar] [CrossRef]
- Otto, C.; Piontek, F.; Kalkuhl, M.; Frieler, K. Event-based models to understand the scale of the impact of extremes. Nat. Energy 2020, 5, 111–114. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Nangombe, S.S.; Zhou, T.; Zhang, W.; Zou, L.; Li, D. High-Temperature Extreme Events over Africa under 1.5 and 2 °C of Global Warming. J. Geophys. Res. 2019, 124, 4413–4428. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate Extremes and Compound Hazards in a Warming World. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, L.C.; Niu, Z.G.; Zhang, M.; Li, C.A.; Li, J.R. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. 2020, 282, 107867. [Google Scholar] [CrossRef]
- Costa, A.A.; Guimarães, S.O.; Sales, D.C.; das Chagas Vasconcelos Junior, F.; Marinho, M.W.S.; Pereira, J.M.R.; Martins, E.S.P.R.; da Silva, E.M. Precipitation extremes over the tropical Americas under RCP4.5 and RCP8.5 climate change scenarios: Results from dynamical downscaling simulations. Int. J. Climatol. 2022, 43, 787–803. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, S.Y.; Wen, X.H.; Ji, Z.M.; Lin, L.; Wei, Z.G.; Zheng, Z.Y.; Xu, D.Y.; Dong, W.J. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Clim. Dyn. 2021, 57, 1187–1205. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 CLIMATE MODEL ANALYSES Climate Extremes in the United States. Bull. Am. Meteorol. Soc. 2014, 95, 571–583. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. NPJ Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Wu, J.; Han, Z.Y.; Xu, Y.; Zhou, B.T.; Gao, X.J. Changes in Extreme Climate Events in China Under 1.5 degrees C-4 degrees C Global Warming Targets: Projections Using an Ensemble of Regional Climate Model Simulations. J. Geophys. Res. 2020, 125, e2019JD031057. [Google Scholar] [CrossRef]
- Meng, X.Y.; Gao, X.; Li, S.Y.; Lei, J.Q. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982-2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.N.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101984. [Google Scholar] [CrossRef]
- Shah, I.A.; Muhammad, Z.; Khan, H. Impact of climate change on spatiotemporal variations in the vegetation cover and hydrology of district Nowshera. J. Water Clim. Chang. 2022, 13, 3867–3882. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, F.M.; Garcia-Garcia, A.; Zhang, J.H.; Li, J.; Ma, S.Y.; Li, S.J.; Peng, J. The response and sensitivity of global vegetation to water stress: A comparison of different satellite-based NDVI products. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103341. [Google Scholar] [CrossRef]
- Meng, N.; Wang, N.A.; Cheng, H.Y.; Liu, X.; Niu, Z.M. Impacts of climate change and anthropogenic activities on the normalized difference vegetation index of desertified areas in northern China. J. Geogr. 2023, 33, 483–507. [Google Scholar] [CrossRef]
- Wang, H.F.; Kang, C.Y.; Tian, Z.X.; Zhang, A.B.; Cao, Y. Vegetation periodic changes and relationships with climate in Inner Mongolia Based on the VMD method. Ecol. Indic. 2023, 146, 109764. [Google Scholar] [CrossRef]
- Luo, M.; Sa, C.L.; Meng, F.H.; Duan, Y.C.; Liu, T.; Bao, Y.H. Assessing extreme climatic changes on a monthly scale and their implications for vegetation in Central Asia. J. Clean. Prod. 2020, 271, 122396. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, L.J.; Zhang, Z.Q.; Li, X.Y.; Wang, H.Y.; Xi, X. Spatiotemporal Variation and Influence Factors of Vegetation Cover in the Yellow River Basin (1982–2021) Based on GIMMS NDVI and MOD13A1. Water 2022, 14, 3274. [Google Scholar] [CrossRef]
- Yang, T.; Wang, X.Y.; Yu, Z.B.; Krysanova, V.; Chen, X.; Schwartz, F.W.; Sudicky, E.A. Climate change and probabilistic scenario of streamflow extremes in an alpine region. J. Geophys. Res. 2014, 119, 8535–8551. [Google Scholar] [CrossRef]
- Liu, K.; Yang, S.W.; Zhou, Q.; Qiao, Y.R. Spatiotemporal Evolution and Spatial Network Analysis of the Urban Ecological Carrying Capacity in the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 229. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Lue, Y.H.; Fu, B.H. Relations between physical and ecosystem service flows of freshwater are critical for water resource security in large dryland river basin. Sci. Total Environ. 2023, 857, 159549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.J.; Tian, P.; Mu, X.M.; Jiao, J.Y.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Niu, Z.G.; Feng, L.; Chen, X.X.; Yi, X.P. Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data. Int. J. Environ. Res. Public Health 2021, 18, 6029. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xi, M.F.; Pan, Z.W.; Liu, Z.Z.; He, Z.L.; Qin, F. Response of NDVI and SIF to Meteorological Drought in the Yellow River Basin from 2001 to 2020. Water 2022, 14, 2978. [Google Scholar] [CrossRef]
- Narasimhan, R.; Stow, D. Daily MODIS products for analyzing early season vegetation dynamics across the North Slope of Alaska. Remote Sens. Environ. 2010, 114, 1251–1262. [Google Scholar] [CrossRef]
- Tian, J.Q.; Zhu, X.L.; Chen, J.; Wang, C.; Shen, M.G.; Yang, W.; Tan, X.Y.; Xu, S.; Li, Z.L. Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency. ISPRS J. Photogramm. Remote Sens. 2021, 180, 29–44. [Google Scholar] [CrossRef]
- Sharma, S.; Saha, A.K. Statistical analysis of rainfall trends over Damodar River basin, India. Arab. J. Geosci. 2017, 10, 319. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W. Comment on “Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test” by Sheng Yue and Chun Yuan Wang. Water Resour. Res. 2004, 40, W03805. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Kisi, O. Trend Analysis of Maximum Hydrologic Drought Variables Using Mann-Kendall and Sen’s Innovative Trend Method. River Res. Appl. 2017, 33, 597–610. [Google Scholar] [CrossRef]
- Rusciano, E.; Belbéoch, M.; Turpin, V.; Kramp, M.; Jiang, L.; Lizé, A.; Krieger, M. Odyssey Project: Contributing Actively to the Implementation of the Global Ocean Observing System. Mar. Technol. Soc. J. 2022, 56, 132–133. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geol. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Cui, L.F.; Wang, L.C.; Qu, S.; Singh, R.P.; Lai, Z.P.; Yao, R. Spatiotemporal extremes of temperature and precipitation during 1960–2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theor. Appl. Climatol. 2019, 136, 675–692. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.B.; Jiao, C.C.; Xu, C.D.; Liu, Y.; Wu, G.N. Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Sci. Total Environ. 2021, 767, 144669. [Google Scholar] [CrossRef] [PubMed]
- Li, M.L.; Yan, Q.W.; Li, G.E.; Yi, M.H.; Li, J. Spatio-Temporal Changes of Vegetation Cover and Its Influencing Factors in Northeast China from 2000 to 2021. Remote Sens. 2022, 14, 5720. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Sawut, R.; Li, Y.; Kasimu, A.; Ablat, X. Examining the spatially varying effects of climatic and environmental pollution factors on the NDVI based on their spatially heterogeneous relationships in Bohai Rim, China. J. Hydrol. 2023, 617, 128815. [Google Scholar] [CrossRef]
- Liu, H.M.; Huang, B.; Gao, S.H.; Wang, J.; Yang, C.; Li, R.R. Impacts of the evolving urban development on intra-urban surface thermal environment: Evidence from 323 Chinese cities. Sci. Total Environ. 2021, 771, 144810. [Google Scholar] [CrossRef]
- Rong, Y.J.; Li, K.; Guo, J.W.; Zheng, L.F.; Luo, Y.; Yan, Y.; Wang, C.X.; Zhao, C.L.; Shang, X.; Wang, Z.T. Multi-scale spatio-temporal analysis of soil conservation service based on MGWR model: A case of Beijing-Tianjin-Hebei, China. Ecol. Indic. 2022, 139, 108946. [Google Scholar] [CrossRef]
- He, L.; Guo, J.B.; Jiang, Q.O.; Zhang, Z.Y.; Yu, S.P. How did the Chinese Loess Plateau turn green from 2001 to 2020? An explanation using satellite data. Catena 2022, 214, 106246. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Mansour, S.; Al Kindi, A.; Al-Said, A.; Al-Said, A.; Atkinson, P. Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustain. Cities Soc. 2021, 65, 102627. [Google Scholar] [CrossRef]
- Lu, C.P.; Hou, M.C.; Liu, Z.L.; Li, H.J.; Lu, C.Y. Variation Characteristic of NDVI and its Response to Climate Change in the Middle and Upper Reaches of Yellow River Basin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8484–8496. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.H.; Zheng, Z.P.; Du, J.L. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Sci. Total Environ. 2023, 905, 167366. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.Y.; Liu, R.H.; Ding, L.Q. Influences of Climate Change and Human Activities on NDVI Changes in China. Remote Sens. 2021, 13, 4326. [Google Scholar] [CrossRef]
- Lin, X.N.; Niu, J.Z.; Berndtsson, R.; Yu, X.X.; Zhang, L.; Chen, X.W. NDVI Dynamics and Its Response to Climate Change and Reforestation in Northern China. Remote Sens. 2020, 12, 4138. [Google Scholar] [CrossRef]
- Hussain, A.; Hussain, I.; Ali, S.; Ullah, W.; Khan, F.; Rezaei, A.; Ullah, S.; Abbas, H.; Manzoom, A.; Cao, J.; et al. Assessment of precipitation extremes and their association with NDVI, monsoon and oceanic indices over Pakistan. Atmos. Res. 2023, 292, 106873. [Google Scholar] [CrossRef]
- He, L.; Guo, J.B.; Yang, W.B.; Jiang, Q.O.; Chen, L.; Tang, K.X. Multifaceted responses of vegetation to average and extreme climate change over global drylands. Sci. Total Environ. 2023, 858, 159942. [Google Scholar] [CrossRef] [PubMed]
- Nishant, N.; Sherwood, S.C. How Strongly Are Mean and Extreme Precipitation Coupled? Geophys. Res. Lett. 2021, 48, e2020GL092075. [Google Scholar] [CrossRef]
- Bador, M.; Alexander, L.V. Future Seasonal Changes in Extreme Precipitation Scale with Changes in the Mean. Earths Future 2022, 10, e2022EF002979. [Google Scholar] [CrossRef]
- Xu, J.X. Precipitation-vegetation coupling and its influence on erosion on the Loess Plateau, China. Catena 2005, 64, 103–116. [Google Scholar]
- Holzman, M.E.; Carmona, F.; Rivas, R.; Niclòs, R. Early assessment of crop yield from remotely sensed water stress and solar radiation data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 297–308. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ. 2012, 121, 472–487. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Song, Y.Z.; Wu, P. Robust geographical detector. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102782. [Google Scholar] [CrossRef]
- Cremonese, E.; Filippa, G.; Galvagno, M.; Siniscalco, C.; Oddi, L.; di Cella, U.M.; Migliavacca, M. Heat wave hinders green wave: The impact of climate extreme on the phenology of a mountain grassland. Agric. For. Meteorol. 2017, 247, 320–330. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, H.Y.; Zhao, J.J.; Shan, Y.; Zhang, Z.X.; Guo, X.Y.; Wu, R.H.; Deng, G.R. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecol. Indic. 2020, 111, 105974. [Google Scholar] [CrossRef]
- Su, R.H.; Guo, E.L.; Wang, Y.F.; Yin, S.; Bao, Y.L.; Sun, Z.Y.; Mandula, N.; Bao, Y.H. Vegetation Dynamics and Its Response to Extreme Climate on the Inner Mongolian Plateau during 1982–2020. Remote Sens. 2023, 15, 3891. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Furze, M.E.; Seyednasrollah, B.; Krassovski, M.B.; Latimer, J.M.; Nettles, W.R.; Heiderman, R.R.; et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 2018, 560, 368–371. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T. Change Detection within Remotely Sensed Satellite Image Time Series via Spectral Analysis. Remote Sens. 2020, 12, 4001. [Google Scholar] [CrossRef]
- Jing, W.L.; Yang, Y.P.; Yue, X.F.; Zhao, X.D. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef]
- Gao, S.; Dong, G.; Jiang, X.; Nie, T.; Yin, H.; Guo, X. Quantification of Natural and Anthropogenic Driving Forces of Vegetation Changes in the Three-River Headwater Region during 1982–2015 Based on Geographical Detector Model. Remote Sens. 2021, 13, 4175. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; Van der Zaag, P. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Sci. Total Environ. 2019, 660, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Amini, A. The role of climate parameters variation in the intensification of dust phenomenon. Nat. Hazards 2020, 102, 445–468. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, R.; Wang, H.L.; Yang, B.; Fan, J.W.; Yan, H.P.; Yang, X.Q.; Liu, D.Q. Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmos. Chem. Phys. 2017, 17, 5439–5457. [Google Scholar] [CrossRef]
- Lin, L.J.; Gao, T.; Luo, M.; Ge, E.J.; Yang, Y.J.; Liu, Z.; Zhao, Y.Q.; Ning, G.C. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Sci. Total Environ. 2020, 744, 140264. [Google Scholar] [CrossRef]
- Georgescu, M.; Broadbent, A.M.; Wang, M.; Krayenhoff, E.S.; Moustaoui, M. Precipitation response to climate change and urban development over the continental United States. Environ. Res. Lett. 2021, 16, 044001. [Google Scholar] [CrossRef]
- Deng, Z.F.; Wang, Z.L.; Wu, X.S.; Lai, C.G.; Liu, W.Q. Effect difference of climate change and urbanization on extreme precipitation over the Guangdong-Hong Kong-Macao Greater Bay Area. Atmos. Res. 2023, 282, 106514. [Google Scholar] [CrossRef]
Classification | Extreme Climate Indices | Description | Unit |
---|---|---|---|
Precipitation intensity index | Rx1day | Maximum 1-day precipitation | mm |
Rx5day | Maximum 5-day precipitation | mm | |
PRCPTOT | Annual total precipitation on wet days | mm | |
SDII | Simple daily precipitation intensity index | mm/d | |
R95p | Annual contribution from very wet days (daily precipitation is greater than the 95th percentile of precipitation) | mm | |
R99p | Annual contribution from extremely wet days (daily precipitation is greater than the 99th percentile of precipitation) | mm | |
Precipitation persistence index | CDD | Maximum length of dry spell, maximum number of consecutive days with daily precipitation less than 1 mm | Days |
CWD | Maximum length of wet spell; maximum number of consecutive days with daily precipitation greater than 1 mm | Days | |
Precipitation frequency index | R10mm | Annual count of days when daily precipitation is greater or equal to 10 mm | Days |
R20mm | Annual count of days when daily precipitation is greater or equal to 20 mm | Days | |
R25mm | Annual count of days when daily precipitation is greater or equal to 25 mm | Days | |
Cold extreme temperature | TX10p | Percentage of days when the daily maximum temperature is less than that of the 10th percentile | % |
TN10p | Percentage of days when the daily minimum temperature is less than that of the 10th percentile | % | |
TNn | The minimum value of the daily minimum temperature | °C | |
TXn | Minimum value of daily maximum temperature | °C | |
FD | Number of frost days | Days | |
Warm extreme temperature | TX90p | Percentage of days when the daily maximum temperature is greater than the 90th percentile | % |
TN90p | Percentage of days when the daily minimum temperature is greater than the 90th percentile | % | |
TNx | The maximum value of the daily minimum temperature | °C | |
TXx | Maximum value of daily maximum temperature | °C | |
SU | Number of summer days | Days | |
Temperature intensity index | DTR | Daily temperature range | °C |
Temperature persistence index | GSL | Growing season length | Days |
WSDI | Warm spell duration index | Days | |
CSDI | Cold spell duration index | Days |
2000 | VIF Value | 2005 | VIF Value | 2010 | VIF Value | 2015 | VIF Value | 2020 | VIF Value |
---|---|---|---|---|---|---|---|---|---|
PRCPTOT | 4.494 | PRCPTOT | 8.911 | PRCPTOT | 9.156 | PRCPTOT | 8.857 | PRCPTOT | 7.706 |
R10mm | 5.439 | R10mm | 5.216 | R10mm | 6.348 | R10mm | 6.741 | R99p | 3.566 |
FD | 3.883 | R95p | 5.074 | R95p | 8.291 | R95p | 2.872 | R95p | 9.112 |
DTR | 4.009 | Rx5day | 3.880 | Rx5day | 2.4 |
Year | 2000 | 2005 | 2010 | 2015 | 2020 | Average of 21 Years |
---|---|---|---|---|---|---|
Dominant factors | PRCPTOT | PRCPTOT R10mm CWD | PRCPTOT TXn R10mm | PRCPTOT | PRCPTOT R10mm | PRCPTOT R10mm |
Secondary factors | CWD R10mm | R95p Rx5day | R95p R99p CWD | CWD CDD | R99p CDD R95p CWD | CWD R95p CDD |
Year | Rank of Interactive Explanatory Power (Top Five) |
---|---|
2000 | PRCPTOT ∩ R20mm = 0.5969 ** > PRCPTOT ∩ TNx = 0.5962 ** > PRCPTOT ∩ SU = 0.5856 ** > PRCPTOT ∩ SDII = 0.5852 ** > PRCPTOT ∩ GSL = 0.5781 ** |
2005 | PRCPTOT ∩ TNn = 0.6362 ** > PRCPTOT ∩ TN10p =0.6336 ** > PRCPTOT ∩TXx = 0.6259 ** > PRCPTOT ∩ TX90p = 0.6236 ** > PRCPTOT ∩ SDII = 0.6219 ** |
2010 | PRCPTOT ∩ TXn = 0.6083 ** > PRCPTOT ∩ TX10p = 0.6052 ** > R95p ∩ TXn = 0.6025 ** > PRCPTOT ∩ R25mm = 0.6012 ** > Rx5day ∩ TXn = 0.5990 ** |
2015 | PRCPTOT ∩ SU = 0.5930 ** > PRCPTOT ∩ TNx = 0.5877 ** > R95p ∩ TXx = 0.5868 ** > CWD∩ R20mm = 0.5857 ** > PRCPTOT ∩ TX90p = 0.5828 * |
2020 | PRCPTOT ∩ TNx = 0.5781 ** > PRCPTOT ∩ TXx = 0.5736 ** > PRCPTOT ∩ GSL = 0.5712 ** > PRCPTOT ∩ TX10p = 0.5678 ** > PRCPTOT ∩ FD = 0.5662 ** |
Year | OLS | GWR | MGWR | |||
---|---|---|---|---|---|---|
Adj.R2 | AICc | Adj.R2 | AICc | Adj.R2 | AICc | |
2000 | 0.485 | 9404.078 | 0.705 | 7610.028 | 0.761 | 5441.652 |
2005 | 0.535 | 9487.666 | 0.776 | 7298.727 | 0.740 | 5726.879 |
2010 | 0.495 | 9819.916 | 0.755 | 7588.276 | 0.765 | 5361.018 |
2015 | 0.478 | 9776.743 | 0.737 | 7707.585 | 0.767 | 5346.585 |
2020 | 0.493 | 9119.293 | 0.704 | 7610.028 | 0.725 | 5954.629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Xue, H.; Dong, G.; Liu, X.; Lian, Y. Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage. Forests 2024, 15, 307. https://doi.org/10.3390/f15020307
Li Z, Xue H, Dong G, Liu X, Lian Y. Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage. Forests. 2024; 15(2):307. https://doi.org/10.3390/f15020307
Chicago/Turabian StyleLi, Zichuang, Huazhu Xue, Guotao Dong, Xiaomin Liu, and Yaokang Lian. 2024. "Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage" Forests 15, no. 2: 307. https://doi.org/10.3390/f15020307
APA StyleLi, Z., Xue, H., Dong, G., Liu, X., & Lian, Y. (2024). Spatiotemporal Variation in Extreme Climate in the Yellow River Basin and its Impacts on Vegetation Coverage. Forests, 15(2), 307. https://doi.org/10.3390/f15020307