Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Classification of Forest Landscape
2.4. Construction of the Landscape Ecological Risk Index
2.4.1. Landscape Disturbance Index
2.4.2. Landscape Vulnerability Index
- (1)
- Selection of vulnerability indicators
- (2)
- Calculation of vulnerability index
2.4.3. Landscape Ecological Risk Index
2.5. Spatial Autocorrelation
2.6. Geodetector
3. Results
3.1. Ecological Risk Characteristics of the Whole Area and Functional Zones in the Nature Reserve
3.2. Ecological Risk Characteristics of Different Forest Landscape Types
3.3. The Spatial Correlation of Landscape Ecological Risk
3.4. Analysis of Driving Factors of Landscape Ecological Risk
4. Discussion
4.1. Ecological Risk of the Nature Reserve
4.2. Ecological Risk of Different Types of Forest Landscapes
4.3. Driving Forces of Ecological Risk
4.4. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Y.; Zhao, C.Y.; Liu, X.M.; Chang, Y.P.; Wang, H.; Yang, J.H.; Yang, X.G.; Wei, Y. The multi-dimensional perspective of ecological security evaluation and drive mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Chen, N.; Qin, F.; Zhai, Y.X.; Cao, H.P.; Zhang, R.; Cao, F.P. Evaluation of coordinated development of forestry management efficiency and forest ecological security: A spatiotemporal empirical study based on China’s provinces. J. Clean. Prod. 2020, 260, 121042. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Landscape analysis of runoff and sedimentation based on land use/cover change in two typical watersheds on the Loess Plateau, China. Life 2022, 12, 1688. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Fu, J.; Wang, W.R.; Li, J. Development of China’s nature reserves over the past 60 years: An overview. Land Use Policy 2019, 80, 224–232. [Google Scholar] [CrossRef]
- Wade, C.M.; Austin, K.G.; Cajka, J.; Lapidus, D.; Everett, K.H.; Galperin, D.; Maynard, R.; Sobel, A. What is threatening forests in protected areas? A global assessment of deforestation in protected areas, 2001–2018. Forests 2020, 11, 539. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.J.; Wu, Y.M.; Wang, Y.; Li, C.; Wu, Y.; Gao, B.P.; Wang, M. Study on the spatial heterogeneity of the impact of forest land change on landscape ecological risk: A case study of Erhai rim region in China. Forests 2023, 14, 1427. [Google Scholar] [CrossRef]
- Thakur, S.; Dhyani, R.; Negi, V.S.; Patley, M.K.; Rawal, R.S.; Bhatt, I.D.; Yadava, A.K. Spatial forest vulnerability profile of major forest types in Indian Western Himalaya. For. Ecol. Manag. 2021, 497, 119527. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.P.; Wang, L.J.; Zhang, J.C. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Chen, X.Q.; Ding, Z.Y.; Yang, J.; Chen, X.D.; Chen, M.N. Ecological risk assessment and driving force analysis of landscape in the compound mine-urban area of the northern Peixian County. Chin. J. Ecol. 2022, 41, 1796–1803. [Google Scholar]
- Lin, Y.Y.; Hu, X.S.; Zheng, X.X.; Hou, X.Y.; Zhang, Z.X.; Zhou, X.N.; Qiu, R.Z.; Lin, J.G. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Levine, S.L.; Giddings, J.; Valenti, T.; Cobb, G.P.; Carley, D.S.; McConnell, L.L. Overcoming challenges of incorporating higher tier data in ecological risk assessments and risk management of pesticides in the United States: Findings and recommendations from the 2017 Workshop on Regulation and Innovation in Agriculture. Integr. Environ. Assess. 2019, 15, 714–725. [Google Scholar] [CrossRef]
- Wang, B.B.; Ding, M.J.; Li, S.C.; Liu, L.S.; Ai, J.H. Assessment of landscape ecological risk for a cross-border basin: A case study of the Koshi River Basin, central Himalayas. Ecol. Indic. 2020, 117, 106621. [Google Scholar] [CrossRef]
- Peng, J.; Dang, W.X.; Liu, Y.X.; Zong, M.L.; Hu, X.X. Review on landscape ecological risk assessment. Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar]
- Wu, J.S.; Qiao, N.; Peng, J.; Huang, X.L.; Liu, J.Z.; Pan, Y.J. Spatial variation of landscape eco-risk in open mine area. Acta Ecol. Sin. 2013, 33, 3816–3824. [Google Scholar]
- Malekmohammadi, B.; Rahimi Blouchi, L. Ecological risk assessment of wetland ecosystems using Multi Criteria Decision Making and Geographic Information System. Ecol. Indic. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Wu, P.H.; Zhan, W.F.; Cheng, N.; Yang, H.; Wu, Y.L. A framework to calculate annual landscape ecological risk index based on land use/land cover changes: A case study on Shengjin Lake wetland. IEEE J. Stars. 2021, 14, 11926–11935. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, Y.H.; Liu, J.C.; Han, L.; Ao, Y.; Yin, S. Landscape ecological risk assessment in Qinling Mountain. Geol. J. 2018, 53, 342–351. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Hou, M.J.; Ge, J.; Gao, J.L.; Meng, B.P.; Li, Y.C.; Yin, J.P.; Liu, J.; Feng, Q.S.; Liang, T.G. Ecological risk assessment and impact factor analysis of alpine wetland ecosystem based on LUCC and boosted regression tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef]
- Li, J.L.; Pu, R.L.; Gong, H.B.; Luo, X.; Ye, M.Y.; Feng, B.X. Evolution characteristics of landscape ecological risk patterns in coastal zones in Zhejiang Province, China. Sustainability 2017, 9, 584. [Google Scholar] [CrossRef]
- Yan, J.X.; Li, G.; Qi, G.P.; Qiao, H.Q.; Nie, Z.G.; Huang, C.X.; Kang, Y.X.; Sun, D.Y.; Zhang, M.H.; Kang, X.; et al. Landscape ecological risk assessment of farming-pastoral ecotone in China based on terrain gradients. Hum. Ecol. Risk Assess. 2021, 27, 2124–2141. [Google Scholar] [CrossRef]
- Liu, X.Z.; Wang, L. Scientific Survey and Study of Biodiversity on the Lushan Nature Reserve in Jiangxi Province; Science Press: Beijing, China, 2009; pp. 443–515. [Google Scholar]
- Mo, W.B.; Wang, Y.; Zhang, Y.X.; Zhuang, D.F. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.X.; Bai, Z.K.; Hui, J.W. Landscape ecological risk assessment based on LUCC—A case study of Chaoyang County, China. Forests 2021, 12, 1157. [Google Scholar] [CrossRef]
- Xue, L.Q.; Zhu, B.L.; Wu, Y.P.; Wei, G.H.; Liao, S.M.; Yang, C.B.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total. Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Wang, Y.; Xie, S.Y.; Sun, R.H.; Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 2020, 117, 106681. [Google Scholar] [CrossRef]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest health and global change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Kleine, M.; Cobbinah, J.; Yang, Z.Q. Forest Health Indicators for Measuring Forest Degradation-FAO. Available online: https://www.fao.org/forestry/25751-064de189f784bdcc0eb7948ea4dcee92.doc (accessed on 10 August 2010).
- Thakur, S.; Negi, V.S.; Pathak, R.; Dhyani, R.; Durgapal, K.; Rawal, R.S. Indicator based integrated vulnerability assessment of community forests in Indian west Himalaya. For. Ecol. Manag. 2020, 457, 117674. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.L.; Bao, A.M.; Chang, C. Spatial-temporal variations of ecological vulnerability in the Tarim River Basin, Northwest China. J. Arid. Land 2021, 13, 814–834. [Google Scholar] [CrossRef]
- Tai, X.L.; Xiao, W.; Tang, Y.X. A quantitative assessment of vulnerability using social-economic-natural compound ecosystem framework in coal mining cities. J. Clean. Prod. 2020, 258, 120969. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.W.; Liu, S.L.; Wei, X.Q.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, Q.; Zhang, Z.L.; Deng, L.; Dong, S.K. Landscape ecological risk and driving force analysis in Red river basin. Acta Ecol. Sin. 2014, 34, 3728–3734. [Google Scholar]
- Wu, J.; Zhang, Z.J.; He, Q.J.; Ma, G.R. Spatio-temporal analysis of ecological vulnerability and driving factor analysis in the Dongjiang River Basin, China, in the recent 20 Years. Remote Sens. 2021, 13, 4636. [Google Scholar] [CrossRef]
- Gao, B.P.; Li, C.; Wu, Y.M.; Zheng, K.J.; Wu, Y. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan Provinces, China. Chin. J. Appl. Ecol. 2021, 32, 1603–1613. [Google Scholar]
- Dai, X.A.; Gao, Y.; He, X.W.; Liu, T.; Jiang, B.H.; Shao, H.Y.; Yao, Y.Z. Spatial-temporal pattern evolution and driving force analysis of ecological environment vulnerability in Panzhihua City. Environ. Sci. Pollut. Res. 2021, 28, 7151–7166. [Google Scholar] [CrossRef]
- Tang, X.H.; Wu, Y.P.; Ye, J.; Lv, H.Y.; Sun, F.X.; Huang, Q.F. Ecotourism risk assessment in Yaoluoping Nature Reserve, Anhui, China based on GIS. Environ. Earth Sci. 2022, 81, 204. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.M.; Zhao, C.Y.; Chang, Y.P.; Liu, Y.Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National Nature Reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Tang, X.L.; Ma, K.; Ren, Y.J. Study on overlapping characteristics and optimization of national natural protected areas in the middle of YangZe River basin. J. Nanjing For. Univ. Natl. Sci. Ed. 2022, 46, 12–20. [Google Scholar]
- Mann, D.; Anees, M.M.; Rankavat, S.; Joshi, P.K. Spatio-temporal variations in landscape ecological risk related to road network in the central Himalaya. Hum. Ecol. Risk Assess. 2021, 27, 289–306. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Sun, X.Q.; Zhang, H.J.; Li, N.X.; Liu, J. Tourism industry-driven changes in land use and ecological risk assessment at Jiuzhaigou UNESCO World Heritage Site. J. Spat. Sci. 2018, 63, 341–358. [Google Scholar] [CrossRef]
- Brandt, J.S.; Radeloff, V.; Allendorf, T.; Butsic, V.; Roopsind, A. Effects of ecotourism on forest loss in the Himalayan biodiversity hotspot based on counterfactual analyses. Conserv. Biol. 2019, 33, 1318–1328. [Google Scholar] [CrossRef]
- Gong, J.J.; Yang, H.; Deng, H.F. Assessment of ecological risks of landscape along the Ming Great Wall in Beijing. J. Beijing For. Univ. 2015, 37, 60–68. [Google Scholar]
- You, W.B.; He, D.J.; Wu, L.Y.; Hong, W.; Zhan, S.H.; Qin, D.H.; You, H.M. Temporal-spatial differentiation and its change in the landscape ecological security of Wuyishan Scenery District. Acta Ecol. Sin. 2011, 31, 6317–6327. [Google Scholar]
- Hu, M.J.; Hou, G.L.; Zhou, N.X.; Li, Z.J.; Qi, X.Y.; Fang, Y.L. Spatial distribution patterns and multi-scale features of the Lushan forest landscape. Acta Ecol. Sin. 2015, 35, 5294–5305. [Google Scholar]
- Bai, T.J.; Deng, W.P.; Kuang, Y.W.; Liu, Y.Q.; Ye, Q.; Niu, J.H.; Wen, L.S.; Huang, R. Response of tree ring width in Cryptomeria japonica to climatic factors at different elevations in Lushan Mountain. Chin. J. Ecol. 2020, 39, 57–66. [Google Scholar]
- Liu, C.Y.; Zhang, K.; Liu, J.P. A long-term site study for the ecological risk migration of landscapes and its driving forces in the Sanjiang Plain from 1976 to 2013. Acta Ecol. Sin. 2018, 38, 3729–3740. [Google Scholar]
- Lin, X.; Wang, Z.T. Landscape ecological risk assessment and its driving factors of multi-mountainous city. Ecol. Indic. 2023, 146, 109823. [Google Scholar] [CrossRef]
- Huang, L.Y.; Yuan, L.C.; Xia, Y.Y.; Yang, Z.Y.; Luo, Z.Y.; Yan, Z.; Li, M.Y.; Yuan, J.G. Landscape ecological risk analysis of subtropical vulnerable mountainous areas from a spatiotemporal perspective: Insights from the Nanling Mountains of China. Ecol. Indic. 2023, 154, 110883. [Google Scholar] [CrossRef]
- Zheng, L.J.; Li, C.; Wu, Y.M.; Gao, B.P.; Li, C.; Wu, Y. Temporal and spatial variation of landscape ecological risk and influential factors in Yunnan border mountainous area. Acta Ecol. Sin. 2022, 42, 7458–7469. [Google Scholar]
- Karimian, H.; Zou, W.M.; Chen, Y.L.; Xia, J.Q.; Wang, Z.R. Landscape ecological risk assessment and driving factor analysis in Dongjiang river watershed. Chemosphere 2022, 307, 135835. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Su, F.L.; Guo, C.J.; Dong, L.L.; Song, F.; Wei, C.; Zheng, Y.L. Landscape ecological risk assessment and driving mechanism of coastal estuarine tidal flats—A case study of the liaohe estuary wetlands. Front. Environ. Sci. 2022, 10, 2417. [Google Scholar] [CrossRef]
- Osman, R.W. Intermediate disturbance hypothesis. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 1986–1994. [Google Scholar]
- Osman, R.W. The intermediate disturbance hypothesis. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Oxford, UK, 2015; pp. 441–450. [Google Scholar]
- Sasaki, T.; Okubo, S.; Okayasu, T.; Jamsran, U.; Ohkuro, T.; Takeuchi, K. Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems. Ecol. Appl. 2009, 19, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Liu, X.F.; Wu, L.; Tian, Z.X. Diversity in phytoplankton communities: A field test of the intermediate disturbance hypothesis. Ecol. Eng. 2019, 129, 54–60. [Google Scholar] [CrossRef]
- Liu, M.Z.; Li, G.X.; Xing, L.Y.; Sun, J.X. Analysis of Land Use Change and Landscape Risk in Laoshan District, Qingdao City. Period. Ocean Univ. China 2022, 52, 90–102. [Google Scholar]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.L.; Zhao, T.M.; Zhang, M.Y.; Nian, L.L.; Li, X.D. Landscape ecological risk assessment of Qilian Mountain National Park based on landscape pattern. Ecol. Sci. 2022, 41, 99–107. [Google Scholar]
Name of Data | Data Production Unit | Data Source Website | Resolution |
---|---|---|---|
DEM | Geospatial Data Cloud | https://www.gscloud.cn/ (accessed on 7 March 2023) | 30 m |
Meteorological data | National Earth System Science Data Center | http://www.geodata.cn/ (accessed on 21 March 2023) | 1 km |
Proximity to settlements | National Catalogue Service for Geographic Information | https://www.webmap.cn/ (accessed on 31 August 2023) | 1:250,000 |
Proximity to roads | National Catalogue Service for Geographic Information | https://www.webmap.cn/ (accessed on 31 August 2023) | 1:250,000 |
Proximity to rivers | National Catalogue Service for Geographic Information | https://www.webmap.cn/ (accessed on 31 August 2023) | 1:250,000 |
Nighttime light | The Harvard Dataverse | https://dataverse.harvard.edu/ (accessed on 9 March 2023) | 1 km |
Population density | WorldPop Dataset | http://www.worldpop.org/ (accessed on 13 March 2023) | 1 km |
Landscape Index | Formula | Description |
---|---|---|
Landscape fragmentation index | Ci represents the degree of patch fragmentation in a certain landscape type, ni represents the number of patches in landscape type i, and Ai is the total area of landscape type i [26]. | |
Landscape splitting index | Si indicates the degree of patch separation in a certain landscape type; A represents the total area of the study area; and ni and Ai are the same as above [27]. | |
Landscape dominance index | Di indicates the importance of patches in a certain landscape type; Qi is the ratio of the number of patches in landscape type i to the total number of patches; Mi is the ratio of the number of samples that appeared in landscape type i to the total number of samples; and Li is the ratio of the area of landscape type i to the total study area [27]. | |
Landscape disturbance index | LDIi represents the intensity of the interference to landscape type i. a + b + c = 1, a is 0.5, b is 0.3, and c is 0.2 [26]. |
Primary Indicators | Secondary Indicators | Description | Type of Relationship | Weight |
---|---|---|---|---|
Topography factors | Elevation | Given the climate characteristics of the study area, the higher the elevation, the more susceptible it is to ice and snow hazards, and the greater the fragility of the vegetation. | Positive | 0.0454 |
Slope | The larger the slope, the more likely it is to cause soil erosion and landslides, and the greater the vulnerability. | Positive | 0.0696 | |
Soil factors | Soil thickness | The thicker the soil, the better the water and fertilizer availability and resistance to erosion, and the less fragile the vegetation. | Negative | 0.0572 |
Intensity of soil erosion | The greater the intensity of soil erosion, the greater the degree of damage and the greater the fragility of the vegetation. | Positive | 0.0119 | |
Vegetation factors | Community structure | A complete community structure with three levels, including a tree layer, understory layer, and ground cover layer, has a stronger ability to resist interference; a community with only a single vegetation layer has poor stability. The simpler the community structure, the greater the vulnerability. | Negative | 0.5321 |
Vegetation coverage | The greater the vegetation coverage, the less vulnerable it is. | Negative | 0.0648 | |
Forest naturalness | Forest naturalness refers to the degree of difference between the current status of the forest community types and zonal climax communities (or native plant communities). Primitive forests with a high naturalness or vegetation that is relatively primitive due to minimal human influence have a low vulnerability. Therefore, the lower the naturalness of forests, the greater their vulnerability. | Negative | 0.0983 | |
Disaster factors | Fire level | The more severe the fire damage to vegetation, the higher the fire level, and the greater the vulnerability. | Positive | 0.0534 |
Pest level | The more severe the harm caused by pests and diseases to vegetation, the higher the level of pests and diseases and the greater the vulnerability. | Positive | 0.0673 |
Criterion | Interaction Type |
---|---|
q (X1∩X2) < min (q (X1), q (X2)) | Non-linear weakening |
min (q (X1), q (X2)) < q (X1∩X2) < max (q (X1), q (X2)) | Single-factor non-linear attenuation |
q (X1∩X2) > max (q (X1), (X2)) | Two-factor enhancement |
q (X1∩X2) = q (X1) + q (X2) | Independent |
q (X1∩X2) > q (X1) + q (X2) | Non-linear enhancement |
Ecological Risk Level | Area (hm2) | Percentage (%) | Core Zone | Buffer Zone | Experimental Zone | |||
---|---|---|---|---|---|---|---|---|
Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | Area (hm2) | Percentage (%) | |||
Lowest risk | 5115.98 | 26.30 | 2391.75 | 33.34 | 947.90 | 24.43 | 1776.33 | 21.15 |
Lower risk | 6063.50 | 31.17 | 2007.75 | 27.98 | 1308.64 | 33.72 | 2747.11 | 32.71 |
Medium risk | 6528.19 | 33.56 | 2078.56 | 28.97 | 1324.87 | 34.14 | 3124.76 | 37.20 |
Higher risk | 1730.65 | 8.89 | 696.53 | 9.71 | 298.28 | 7.69 | 735.84 | 8.76 |
Highest risk | 15.98 | 0.08 | 0 | 0 | 0.63 | 0.02 | 15.35 | 0.18 |
Total | 19,454.30 | 100.00 | 7174.59 | 100.00 | 3880.32 | 100.00 | 15.35 | 100.00 |
Landscape Type | Area (hm2) | Percentage (%) | Disturbance Index | Vulnerability Index | Loss Index | Ecological Risk Index |
---|---|---|---|---|---|---|
Pinus massoniana forest | 1609.82 | 8.27 | 0.6527 | 0.3905 | 0.5048 | 0.0414 |
Cunninghamia lanceolata forest | 3728.84 | 19.17 | 0.5314 | 0.4652 | 0.4972 | 0.0908 |
Pinus taiwanensis forest | 1111.35 | 5.71 | 0.6823 | 0.5267 | 0.5995 | 0.0326 |
Cryptomeria japonica plantation | 155.92 | 0.80 | 1.5661 | 0.5833 | 0.9558 | 0.0068 |
Other coniferous pure forests | 200.01 | 1.03 | 1.4650 | 0.7108 | 1.0205 | 0.0102 |
Broad-leaved pure forest | 1050.76 | 5.40 | 0.7499 | 0.6015 | 0.6843 | 0.0330 |
Coniferous mixed forest | 2698.77 | 13.87 | 0.4827 | 0.3806 | 0.4318 | 0.0599 |
Coniferous and broad-leaved mixed forest | 2133.31 | 10.97 | 0.5200 | 0.4522 | 0.4849 | 0.0572 |
Broad-leaved mixed forest | 2122.38 | 10.91 | 0.5301 | 0.5075 | 0.5187 | 0.0556 |
Phyllostachys edulis forest | 1816.89 | 9.34 | 0.7533 | 0.6057 | 0.6755 | 0.0621 |
Shrub economic forest | 339.13 | 1.74 | 1.9147 | 0.7489 | 1.1974 | 0.0208 |
Other shrub forests | 2378.30 | 12.23 | 0.4489 | 0.6459 | 0.5385 | 0.0662 |
Other forestry land | 108.82 | 0.56 | 2.8347 | 0.5650 | 1.2656 | 0.0063 |
Total | 19,454.30 | 100.00 | - | - | - | 0.5429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, J.; Ouyang, X.; Pan, P.; Huang, C.; Li, J.; Ye, Q. Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China. Forests 2024, 15, 484. https://doi.org/10.3390/f15030484
Rao J, Ouyang X, Pan P, Huang C, Li J, Ye Q. Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China. Forests. 2024; 15(3):484. https://doi.org/10.3390/f15030484
Chicago/Turabian StyleRao, Jinfeng, Xunzhi Ouyang, Ping Pan, Cheng Huang, Jianfeng Li, and Qinglong Ye. 2024. "Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China" Forests 15, no. 3: 484. https://doi.org/10.3390/f15030484
APA StyleRao, J., Ouyang, X., Pan, P., Huang, C., Li, J., & Ye, Q. (2024). Ecological Risk Assessment of Forest Landscapes in Lushan National Nature Reserve in Jiangxi Province, China. Forests, 15(3), 484. https://doi.org/10.3390/f15030484