Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method
Abstract
:1. Introduction
- (1)
- To propose a novel variable screening method that visualizes the shape changes and significance of each factor to reduce uncertainty by visualizing the shape changes of each factor and their significance.
- (2)
- To investigate the potential of the quantile regression neural network (QRNN) and quantile random forest (QRF) models for enhancing the accuracy of aboveground biomass (AGB) estimation.
2. Materials and Methods
2.1. Study Area
2.2. Data Resources
2.2.1. The Inventory Data
2.2.2. Remote Sensing Data
2.2.3. Extraction of Vegetation Indices
2.3. Models
2.3.1. Quantile Regression
2.3.2. Quantile Regression Neural Network
2.3.3. Quantile Regression Forests
2.4. Model Evaluation
3. Results
3.1. Variable Selection
3.2. Model Performance
4. Discussion
4.1. Variable Selection
4.2. Fitting Performance
4.3. Limitations and Future Research
5. Conclusions
- (1)
- The blue, green, red, SWIR 1, and SWIR 2 bands demonstrated a substantial association with AGB within the quantiles ranging from 0.05 to 0.6; meanwhile, the NIR displayed significance with AGB within the quantiles ranging from 0.35 to 0.95.
- (2)
- NDVI and its analogous complex vegetation index calculated from the green, red, and NIR bands were found to be unsuitable for estimating the AGB in the regions characterized by high heterogeneity; instead, the VIs utilizing blue and SWIR bands proved to be more suitable for the Pinus densata estimation.
- (3)
- The QRNN and QRF models exhibited the highest fitting accuracy for the AGB in the 0.5 quantiles, with R2 values of 0.68 and 0.71, respectively. While both models demonstrated promising performance, the QRNN model was deemed more suitable for this study due to its ability to effectively address the overestimation of lower values and underestimation of higher values compared to the QRF model, which tended to overestimate the biomass across all the quantiles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, L.; Zhang, X. Above-Ground Biomass Estimation of Plantation with Complex Forest Stand Structure Using Multiple Features from Airborne Laser Scanning Point Cloud Data. Forests 2021, 12, 1713. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China. Remote Sens. 2021, 14, 176. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Deng, L.; Tang, Z.; Wang, K.; Sun, W.; Shangguan, Z. Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm. Sci. Rep. 2017, 7, 6940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, H.; Huang, T.; Wu, Y.; Guo, B.; Liu, Z.; Luo, H.; Tang, J.; Zhou, H.; Wang, L.; et al. Improved random forest algorithms for increasing the accuracy of forest aboveground biomass estimation using Sentinel-2 imagery. Ecol. Indic. 2024, 159, 111752. [Google Scholar] [CrossRef]
- Feng, H.; Chen, Q.; Hu, Y.; Du, Z.; Lin, G.; Wang, C.; Huang, Y. Estimation of forest aboveground biomass by using mixed-effects model. Int. J. Remote Sens. 2021, 42, 8675–8690. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Song, Z.; Chen, C.; Zhang, Y.; Chen, X.; Chen, W.; Yuan, W.; Wu, X.; Ran, X.; et al. Modelling Aboveground Biomass Carbon Stock of the Bohai Rim Coastal Wetlands by Integrating Remote Sensing, Terrain, and Climate Data. Remote Sens. 2021, 13, 4321. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Rev. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Listopad, C.M.C.S.; Drake, J.B.; Masters, R.E.; Weishampel, J.F. Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots. Remote Sens. 2011, 3, 1284–1307. [Google Scholar] [CrossRef]
- Mahlangu, P.; Mathieu, R.; Wessels, K.; Naidoo, L.; Verstraete, M.; Asner, G.; Main, R. Indirect Estimation of Structural Parameters in South African Forests Using MISR-HR and LiDAR Remote Sensing Data. Remote Sens. 2018, 10, 1537. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. LiDAR Applications to Estimate Forest Biomass at Individual Tree Scale: Opportunities, Challenges and Future Perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation Using Remote Sensing Data. IEEE Access 2020, 8, 128124–128139. [Google Scholar] [CrossRef]
- López-Serrano, P.; Corral-Rivas, J.; Díaz-Varela, R.; Álvarez-González, J.; López-Sánchez, C. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sens. 2016, 8, 369. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Zeilinger, J.; Homeier, J.; Paladines-Benitez, J.; Bendix, J. Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sens. 2018, 10, 660. [Google Scholar] [CrossRef]
- Sagang, L.B.T.; Ploton, P.; Sonké, B.; Poilvé, H.; Couteron, P.; Barbier, N. Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions from Multispectral Images in Forest-Savanna Landscapes. Remote Sens. 2020, 12, 1637. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L.; et al. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric. For. Meteorol. 2018, 256–257, 445–457. [Google Scholar] [CrossRef]
- Niu, X.; Zeng, Q.; Luo, X.; Chen, L. FCAU-Net for the Semantic Segmentation of Fine-Resolution Remotely Sensed Images. Remote Sens. 2022, 14, 215. [Google Scholar] [CrossRef]
- Lourenço, P.; Godinho, S.; Sousa, A.; Gonçalves, A.C. Estimating tree aboveground biomass using multispectral satellite-based data in Mediterranean agroforestry system using random forest algorithm. Remote Sens. Appl. Soc. Environ. 2021, 23, 100560. [Google Scholar] [CrossRef]
- Ou, G.; Lv, Y.; Xu, H.; Wang, G. Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of Southwest China by Spatial Regression using Landsat 8 Images. Remote Sens. 2019, 11, 2750. [Google Scholar] [CrossRef]
- Alizadeh, M.; Zabihi, H.; Rezaie, F.; Asadzadeh, A.; Wolf, I.D.; Langat, P.K.; Khosravi, I.; Beiranvand Pour, A.; Mohammad Nataj, M.; Pradhan, B. Earthquake Vulnerability Assessment for Urban Areas Using an ANN and Hybrid SWOT-QSPM Model. Remote Sens. 2021, 13, 4519. [Google Scholar] [CrossRef]
- Axelsson, C.; Skidmore, A.K.; Schlerf, M.; Fauzi, A.; Verhoef, W. Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. Int. J. Remote Sens. 2012, 34, 1724–1743. [Google Scholar] [CrossRef]
- Beaudoin, A.; Hall, R.J.; Castilla, G.; Filiatrault, M.; Villemaire, P.; Skakun, R.; Guindon, L. Improved k-NN Mapping of Forest Attributes in Northern Canada Using Spaceborne L-Band SAR, Multispectral and LiDAR Data. Remote Sens. 2022, 14, 1181. [Google Scholar] [CrossRef]
- Ou, G.; Li, C.; Lv, Y.; Wei, A.; Xiong, H.; Xu, H.; Wang, G. Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sens. 2019, 11, 738. [Google Scholar] [CrossRef]
- Yadav, S.; Padalia, H.; Sinha, S.K.; Srinet, R.; Chauhan, P. Above-ground biomass estimation of Indian tropical forests using X band Pol-InSAR and Random Forest. Remote Sens. Appl. Soc. Environ. 2021, 21, 100462. [Google Scholar] [CrossRef]
- de Almeida, C.T.; Galvão, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.; de Jesus Silva, C.V.; Ferreira-Ferreira, J.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.-H.; Ergün, T. The instability of the Pearson correlation coefficient in the presence of coincidental outliers. Financ. Res. Lett. 2015, 13, 243–257. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S.Q. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. J. Econo. Soci. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Das, K.; Krzywinski, M.; Altman, N. Quantile regression. Nat. Methods 2019, 16, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Bi, H.; Jin, X.; Li, F. Stochastic frontiers or regression quantiles for estimating the self-thinning surface in higher dimensions? J. For. Res. 2020, 32, 1515–1533. [Google Scholar] [CrossRef]
- Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Liang, Z.; Xu, Y.; Qiu, Q.; Liu, Y.; Lu, W.; Tyler, W. A framework to develop joint nutrient criteria for lake eutrophication management in eutrophic lakes. J. Hydrol. 2021, 594, 125883. [Google Scholar] [CrossRef]
- Simkin, S.M.; Allen, E.B.; Bowman, W.D.; Clark, C.M.; Belnap, J.; Brooks, M.L.; Cade, B.S.; Collins, S.L.; Geiser, L.H.; Gilliam, F.S.; et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA 2016, 113, 4086–4091. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, S.M.; Scotto, M.G.; Alonso, A.M. Summarising changes in air temperature over Central Europe by quantile regression and clustering. Nat. Hazards Earth Syst. Sci. 2011, 11, 3227–3233. [Google Scholar] [CrossRef]
- Jagger, T.H.; Elsner, J.B. Modeling tropical cyclone intensity with quantile regression. Int. J. Climatol. 2009, 29, 1351–1361. [Google Scholar] [CrossRef]
- Timofeev, A.A.; Sterin, A.M. Using the quantile regression method to analyze changes in climate characteristics. Russ. Meteorol. Hydrol. 2010, 35, 310–319. [Google Scholar] [CrossRef]
- Gao, M.; Franzke, C.L.E. Quantile Regression–Based Spatiotemporal Analysis of Extreme Temperature Change in China. J. Clim. 2017, 30, 9897–9914. [Google Scholar] [CrossRef]
- Mazvimavi, D. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci. 2010, 14, 2671–2679. [Google Scholar] [CrossRef]
- Tan, X.; Gan, T.; Chen, S.; Liu, B. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections. Clim. Dyn. 2018, 52, 2105–2124. [Google Scholar] [CrossRef]
- Chang, Y.; Bourque, C.P.A. Relating modelled habitat suitability for Abies balsamea to on-the-ground species structural characteristics in naturally growing forests. Ecol. Indic. 2020, 111, 105981. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Lv, G.; Xu, J.; Cui, G. Integrating Multi-Source Remote Sensing to Assess Forest Aboveground Biomass in the Khingan Mountains of North-Eastern China Using Machine-Learning Algorithms. Remote Sens. 2022, 14, 1039. [Google Scholar] [CrossRef]
- Taylor, J.W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J. Forecast. 2000, 19, 299–311. [Google Scholar] [CrossRef]
- Li, L.; Zhou, B.; Liu, Y.; Wu, Y.; Tang, J.; Xu, W.; Wang, L.; Ou, G. Reduction in Uncertainty in Forest Aboveground Biomass Estimation Using Sentinel-2 Images: A Case Study of Pinus densata Forests in Shangri-La City, China. Remote Sens. 2023, 15, 559. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Chen, L. Development of a Vegetation Index for Estimation of Leaf Area Index Based on Simulation Modeling. J. Plant Nutr. 2010, 33, 328–338. [Google Scholar] [CrossRef]
- Naji, T.A.H. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. J. Phys. Conf. Ser. 2018, 1003, 012083. [Google Scholar] [CrossRef]
- Jackson, R.D.; Slater, P.N.; Pinter, P.J. Discrimination of Growth and Water Stress in Wheat by Various Vegetation Indices through Clear and Turbid Atmospheres. Remote Sens. Environ. 1983, 13, 187–208. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vege tation systems in the great plains with ERTS. Third Earth Resour. Technol. Satell. Symp. 1973, 1, 309–317. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 53, 375–384. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Yoram, J.K.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of global vegetation form EOD-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Miura, T.; Huete, A.R.; Yoshioka, H. Evaluation of Sensor Calibration Uncertainties on vegetation indices for MODIS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- Mondejar, J.P.; Tongco, A.F. Near infrared band of Landsat 8 as water index: A case study around Cordova and Lapu-Lapu City, Cebu, Philippines. Sustain. Environ. Res. 2019, 29, 16. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Bognár, P.; Kern, A.; Pásztor, S.; Steinbach, P.; Lichtenberger, J. Testing the Robust Yield Estimation Method for Winter Wheat, Corn, Rapeseed, and Sunflower with Different Vegetation Indices and Meteorological Data. Remote Sens. 2022, 14, 2860. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mello, M.C.S.; Cruz, C.B.M. Relationships between forest structure and vegetation indices in Atlantic Rainforest. For. Ecol. Manag. 2005, 218, 353–362. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M. The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: A simulation study. Remote Sens. Lett. 2016, 7, 427–436. [Google Scholar] [CrossRef]
- Jurgens, C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G. An Application of Quantile Random Forests for Predictive Mapping of Forest Attributes. In Proceedings of the New Directions in Inventory Techniques & Applications Forest Inventory & Analysis (FIA) Symposium, Portland, Oregon, 8–10 December 2015; p. 362. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quageo 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 34, 5–32. [Google Scholar] [CrossRef]
- Pham, T.D.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; To, T.T.; Trinh, H.X.; Kieu, L.Q.; Takeuchi, W. Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 777. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondίzio, E.; Moran, E. Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For. Ecol. Manag. 2004, 198, 149–167. [Google Scholar] [CrossRef]
- Hall, F.G.; Shimabukuro, E.; Huemmrichughes, K.F. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecol. Appl. 1995, 5, 993–1013. [Google Scholar] [CrossRef]
- Sader, S.A.; Waide, R.B.; Lawrence, W.T.; Joyce, A.T. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data. Remote Sens. Environ. 1989, 28, 143–156. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Li, L.; Liu, Y.; Wu, Y.; Xu, H.; Ou, G. Enhancing Aboveground Biomass Estimation for Three Pinus Forests in Yunnan, SW China, Using Landsat 8. Remote Sens. 2022, 14, 4589. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Xu, H.; Wang, G. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data. J. For. Res. 2018, 30, 1689–1706. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Liu, Y.; Wu, Y.; Tang, J.; Xu, W.; Wang, L.; Ou, G. Improving the accuracy of forest aboveground biomass using Landsat 8 OLI images by quantile regression neural network for Pinus densata forests in southwestern China. Front. For. Glob. Chang. 2023, 6, 1162291. [Google Scholar] [CrossRef]
- Huang, X.; Ziniti, B.; Torbick, N.; Ducey, M. Assessment of Forest above Ground Biomass Estimation Using Multi-Temporal C-band Sentinel-1 and Polarimetric L-band PALSAR-2 Data. Remote Sens. 2018, 10, 1424. [Google Scholar] [CrossRef]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M.; Pettorelli, N.; Disney, M. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sens. Ecol. Conserv. 2018, 5, 87–106. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef]
Variables | Mean DBH (cm) | Mean H (m) | Density (Stocking·hm−2) |
---|---|---|---|
Max. | 41.27 | 24.30 | 8500 |
Min. | 5.35 | 2.93 | 489 |
Mean | 15.14 | 10.34 | 2657 |
Standard deviation | 3.88 | 3.42 | 1326 |
Image ID | Strip No. | Average Cloud Cover (%) | Data |
---|---|---|---|
LC81310412016325LGN00 | 131 | 0.4 | 20 November 2016 |
LC81320402016348LGN00 | 132 | 0.73 | 13 December 2016 |
LC81320412016348LGN00 | 132 | 0.76 | 13 December 2016 |
Variables | Formula | Description | Reference |
---|---|---|---|
Single band | Band 2–7 | Blue, Green, Red, NIR, SWIR1, SWIR2 | [62] |
NDVI | (NIR − Red)/(NIR + Red) | Normalized Difference Vegetation Index detects vegetation coverage and growth state | [50] |
ARVI | (NIR − Red + Blue)/(NIR + Red + Blue) | Atmospherically resistant vegetation index is mainly used in areas with high atmospheric aerosol. | [59] |
VARI | (Green − Red)/(Green + Red − Blue) | Visible atmospherically resistant index. It is used to measure the amount of green vegetation | [58] |
W | Blue × (0.1511) + Green × (0.1973) + Red × (0.3283) + NIR × (0.3407) + SWIR1 × (−0.7117) + SWIR2 × (−0.4559) | Tasseled cap wetness Reflects the moisture of soil and vegetation | [63] |
DVI | NIR − Red | Difference vegetation index It is used to reflect the growth of vegetation | [48] |
PVI | ((Redsoil − Redveg) + (IRsoil − IRveg)2)0.5 | It is better to eliminate the influence of soil background, insensitive to the atmosphere. | [48] |
EVI | 2.5 × (NIR − Red)/((NIR + 6 × Red − 7.5 × Blue) + 1) | Enhanced vegetation index It increases rapidly with the increase in vegetation quantity when the vegetation coverage is 15%–25%, and it will decrease when the vegetation coverage reaches 80%. | [60] |
RDVI | (NIR − Red)/(NIR − Red)0.5 | Renormalized difference vegetation index It can monitor plant water status effectively | [51] |
G | Blue × (−0.2941) + Green × (−0.243) + Red × (−0.5424) + NIR × (0.7276) + SWIR1 × (0.0713) + SWIR × (−0.1608) | Tasseled cap greenness Reflects the greenness of the ground vegetation | [63] |
MSR | (NIR/Red − 1)/((NIR/Red)0.5 + 1) | Modified simple ratio. Its purpose is to linearize the relationships between the index and biophysical parameters | [53] |
SLAVI | NIR/(Red + SWIR) | Specific leaf vegetation index Its links with plant ecophysiology and leaf biochemistry | [64] |
MVI5 | (Red + NIR − Blue)/(Red + NIR + Blue) | Moisture vegetation index Sensitivity index of soil moisture and canopy moisture | [65] |
RVI | Red/NIR | Ratio vegetation index Sensitive to vegetation coverage | [47] |
WDRVI | ((0.1 × NIR) − Red)/((0.1 × NIR) + Red) | Wide-dynamic-range vegetation index a more robust characterization of crop physiological and phenological characteristics. | [54] |
GARI | (NIR − (Green − (Blue − Red)))/(NIR − (Green + (Blue − Red))) | Green atmospherically resistant vegetation index GARI shows a much higher sensitivity to chlorophyll concentration than NDVI and a smaller sensitivity to atmospheric effects. | [55] |
SARVI | (1 + L) × (NIR−Blue)/(NIR + Blue + L) | Soil-adjusted and atmospherically resistant vegetation index | [59] |
MSAVI | (2 × NIR + 1 − ((2 × NIR + 1)2 − 8 × (NIR − Red))0.5)/2 | Modified soil-adjusted vegetation index. It aims to address some limitations of NDVI when applied to areas with high soil surface exposure. | [66] |
GNDVI | (NIR − Green)/(NIR + Green) | Green normalized vegetation index Monitor the plant with a dense canopy or in the mature stage | [55] |
TVI | (NDVI + 0.5)0.5 | Transformed vegetation index. monitoring vegetation health and vigor is also useful for monitoring vegetation stress where the NDVI is saturated. | [50] |
IPVI | NIR/(NIR + Red) | Infrared percentage vegetation index sensitive to the amount of green vegetation | [67] |
OSAVI | (NIR − Red)/(NIR + Red + 0.16) | Optimized soil-adjusted vegetation index monitors bare soil area of low-density vegetation through the tree canopy | [57] |
NIR | NIR/(NIR + Red + Green) | Normalized NIR reduced the influence of soil background | [68] |
MNDVI | (NIR − SWIR2)/(NIR + SWIR2) | Modified normalized difference vegetation index. Monitor forest health and canopy changes | [69] |
ND67 | (SWIR1 − SWIR2)/(SWIR1 + SWIR2) | Monitor the soil moisture capacity | [46] |
B | Blue × 0.3029 + Green × 0.2786 + Red × 0.4733 + NIR × 0.5599 + SWIR1 × 0.508 + SWIR2 × 0.1872 | Tasseled cap brightness a weighted sum of all bands and is related to the principal variation in soil reflectance | [63] |
VIs | Formula | The Significance at Quantile |
---|---|---|
NDVI | (NIR − Red)/(NIR + Red) | 0.7 |
DVI | NIR − Red | 0.65–0.95 |
RDVI | (NIR − Red)/(NIR − Red)0.5 | 0.6–0.95 |
RVI | IR/Red | 0.65 |
MSR | (NIR/Red − 1)/((NIR/Red)0.5 + 1) | 0.7, 0.75, 0.8 |
TVI | (NDVI + 0.5)0.5 | 0.7, 0.8 |
NIR | NIR/(NIR + Red + Green) | 0.65, 0.7, 0.75 |
WDRVI | ((0.1 × NIR) − Red)/((0.1 × NIR) + Red) | 0.65, 0.7, 0.8 |
IPVI | (NIR − Red)/(NIR + Red + 0.16) | 0.7, 0.8 |
OSAVI | (NIR − Red)/(NIR + Red + 0.16) | 0.65, 0.7, 0.8 |
MSAVI | (NIR − Green)/(NIR + Green) | 0.7, 0.8 |
GNDVI | (NIR − Green)/(NIR + Green) | 0.65–0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, X.; Shen, S.; Zhu, G. Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method. Forests 2024, 15, 782. https://doi.org/10.3390/f15050782
Xu X, Zhang X, Shen S, Zhu G. Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method. Forests. 2024; 15(5):782. https://doi.org/10.3390/f15050782
Chicago/Turabian StyleXu, Xiao, Xiaoli Zhang, Shouyun Shen, and Guangyu Zhu. 2024. "Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method" Forests 15, no. 5: 782. https://doi.org/10.3390/f15050782
APA StyleXu, X., Zhang, X., Shen, S., & Zhu, G. (2024). Comparison of QRNN and QRF Models in Forest Biomass Estimation Based on the Screening of VIs Using an Equidistant Quantile Method. Forests, 15(5), 782. https://doi.org/10.3390/f15050782