Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Pretreatment
2.2. Mesocosm Design and Setup
2.3. Experimental Sampling, Determination of Litter Mass Loss, Soil Extracellular Enzyme Activity, Soil Aggregates and Earthworms Weight Growth Rate
2.4. Litter DNA Extraction and ITS rDNA Sequencing
2.5. Statistical Analysis
3. Results
3.1. Litter Mass Loss
3.2. Litter Fungal α- and β-Diversities
3.3. Differences in Soil Extracellular Enzyme Activities
3.4. Earthworm Weight Growth Rate and Soil Aggregate Structure
3.5. Litter Fungal Community Composition
3.6. Biomarkers Idification
3.7. Cooccurrence Network Structures of Fungal Communities under Different Decomposition Conditions
3.8. Functional Comparations
4. Discussion
4.1. Soil Animals Regulate the Litter Fungal Community
4.2. HDPE−MPs Changes the Soil Animals’ Influences in Determining the Decomposition Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Condron, L.; Stark, C.; O’Callaghan, M.; Clinton, P.; Huang, Z. The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. In Soil Microbiology and Sustainable Crop Production; Dixon, G.R., Tilston, E.L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 81–118. ISBN 978-90-481-9478-0. [Google Scholar]
- Berg, B.; Laskowski, R. Decomposers: Soil Microorganisms and Animals. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2005; Volume 38, pp. 73–100. ISBN 978-0-12-013938-5. [Google Scholar]
- Wardle, D.A. The Influence of Biotic Interactions on Soil Biodiversity. Ecol. Lett. 2006, 9, 870–886. [Google Scholar] [CrossRef]
- Bradford, M.A.; Jones, T.H.; Bardgett, R.D.; Black, H.I.J.; Boag, B.; Bonkowski, M.; Cook, R.; Eggers, T.; Gange, A.C.; Grayston, S.J.; et al. Impacts of Soil Faunal Community Composition on Model Grassland Ecosystems. Science 2002, 298, 615–618. [Google Scholar] [CrossRef]
- Handa, I.T.; Aerts, R.; Berendse, F.; Berg, M.P.; Bruder, A.; Butenschoen, O.; Chauvet, E.; Gessner, M.O.; Jabiol, J.; Makkonen, M.; et al. Consequences of Biodiversity Loss for Litter Decomposition across Biomes. Nature 2014, 509, 218–221. [Google Scholar] [CrossRef]
- Maraun, M.; Martens, H.; Migge, S.; Theenhaus, A.; Scheu, S. Adding to ‘the Enigma of Soil Animal Diversity’: Fungal Feeders and Saprophagous Soil Invertebrates Prefer Similar Food Substrates. Eur. J. Soil Biol. 2003, 39, 85–95. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z.; Warren, M.W.; Chen, J. Mechanical Fragmentation Enhances the Contribution of Collembola to Leaf Litter Decomposition. Eur. J. Soil Biol. 2012, 53, 23–31. [Google Scholar] [CrossRef]
- Bradford, M.A.; Tordoff, G.M.; Eggers, T.; Jones, T.H.; Newington, J.E. Microbiota, Fauna, and Mesh Size Interactions in Litter Decomposition. Oikos 2002, 99, 317–323. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A. Microplastic in Terrestrial Ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Büks, F.; Kaupenjohann, M. Global Concentrations of Microplastics in Soils—A Review. Soil 2020, 6, 649–662. [Google Scholar] [CrossRef]
- Luo, W.; Su, L.; Craig, N.J.; Du, F.; Wu, C.; Shi, H. Comparison of Microplastic Pollution in Different Water Bodies from Urban Creeks to Coastal Waters. Environ. Pollut. 2019, 246, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; An, Y.-J. Edible Size of Polyethylene Microplastics and Their Effects on Springtail Behavior. Environ. Pollut. 2020, 266, 115255. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, Y.; Zhang, T.; Qiao, Y.; Klobučar, G.; Li, M. Toxicological Effects of Polystyrene Microplastics on Earthworm (Eisenia fetida). Environ. Pollut. 2020, 259, 113896. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Jia, W.; Xu, L.; Huang, Y. Deciphering the Effects of LDPE Microplastic Films on Diversity, Composition and Co-Occurrence Network of Soil Fungal Community. Appl. Soil Ecol. 2023, 182, 104716. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The Role of Microbial Community in the Decomposition of Leaf Litter and Deadwood. Appl. Soil Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Fan, P.; Tan, W.; Yu, H. Effects of Different Concentrations and Types of Microplastics on Bacteria and Fungi in Alkaline Soil. Ecotoxicol. Environ. Saf. 2022, 229, 113045. [Google Scholar] [CrossRef]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef]
- Ya, H.; Xing, Y.; Zhang, T.; Lv, M.; Jiang, B. LDPE Microplastics Affect Soil Microbial Community and Form a Unique Plastisphere on Microplastics. Appl. Soil Ecol. 2022, 180, 104623. [Google Scholar] [CrossRef]
- Wang, Q.; Adams, C.A.; Wang, F.; Sun, Y.; Zhang, S. Interactions between Microplastics and Soil Fauna: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3211–3243. [Google Scholar] [CrossRef]
- Li, B.; Song, W.; Cheng, Y.; Zhang, K.; Tian, H.; Du, Z.; Wang, J.; Wang, J.; Zhang, W.; Zhu, L. Ecotoxicological Effects of Different Size Ranges of Industrial-Grade Polyethylene and Polypropylene Microplastics on Earthworms Eisenia fetida. Sci. Total Environ. 2021, 783, 147007. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Song, W.; Tian, H.; Zhang, K.; Li, B.; Du, Z.; Zhang, W.; Wang, J.; Wang, J.; Zhu, L. The Effects of High-Density Polyethylene and Polypropylene Microplastics on the Soil and Earthworm Metaphire guillelmi Gut Microbiota. Chemosphere 2021, 267, 129219. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Zhu, D.; Qiao, M. Effects of Polyethylene Microplastics on the Gut Microbial Community, Reproduction and Avoidance Behaviors of the Soil Springtail, Folsomia candida. Environ. Pollut. 2019, 247, 890–897. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Widden, P.; Deslandes, I. Feeding Preferences of the Collembolan Folsomia candida in Relation to Microfungal Successions on Decaying Litter. Soil Biol. Biochem. 1992, 24, 685–692. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic Transport in Soil by Earthworms. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Vepsäläinen, M.; Kukkonen, S.; Vestberg, M.; Sirviö, H.; Maarit Niemi, R. Application of Soil Enzyme Activity Test Kit in a Field Experiment. Soil Biol. Biochem. 2001, 33, 1665–1672. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A Practical Guide to Amplicon and Metagenomic Analysis of Microbiome Data. Protein Cell 2021, 12, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Kattge, J.; Wall, D.H. Climate and Litter Quality Differently Modulate the Effects of Soil Fauna on Litter Decomposition across Biomes. Ecol. Lett. 2013, 16, 1045–1053. [Google Scholar] [CrossRef]
- Njoroge, D.M.; Chen, S.; Zuo, J.; Dossa, G.G.O.; Cornelissen, J.H.C. Soil Fauna Accelerate Litter Mixture Decomposition Globally, Especially in Dry Environments. J. Ecol. 2022, 110, 659–672. [Google Scholar] [CrossRef]
- Coleman, D.C.; Geisen, S.; Wall, D.H. Soil Fauna: Occurrence, Biodiversity, and Roles in Ecosystem Function. In Soil Microbiology, Ecology and Biochemistry, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 131–159. ISBN 978-0-12-822941-5. [Google Scholar]
- Coleman, D.C.; Wall, D.H. Soil Fauna: Occurrence, Biodiversity, and Roles in Ecosystem Function. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 111–149. ISBN 978-0-12-415955-6. [Google Scholar]
- Gómez-Brandón, M.; Aira, M.; Lores, M.; Domínguez, J. Epigeic Earthworms Exert a Bottleneck Effect on Microbial Communities through Gut Associated Processes. PLoS ONE 2011, 6, e24786. [Google Scholar] [CrossRef]
- Scheu, S.; Ruess, L.; Bonkowski, M. Interactions between Microorganisms and Soil Micro- and Mesofauna. In Microorganisms in Soils: Roles in Genesis and Functions; Varma, A., Buscot, F., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3, pp. 253–275. ISBN 978-3-540-22220-0. [Google Scholar]
- Stewart, R.I.A.; Dossena, M.; Bohan, D.A.; Jeppesen, E.; Kordas, R.L.; Ledger, M.E.; Meerhoff, M.; Moss, B.; Mulder, C.; Shurin, J.B.; et al. Mesocosm Experiments as a Tool for Ecological Climate-Change Research. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2013; Volume 48, pp. 71–181. ISBN 978-0-12-417199-2. [Google Scholar]
- Lavelle, P. Earthworm Activities and the Soil System. Biol. Fertil. Soils 1988, 6, 237–251. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Zhao, C. Functions of Earthworm in Ecosystem. Biodivers. Sci. 2007, 15, 142. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Bednarczuk, E.M.; Neville, J. Reproductive Significance of Feeding on Saprobic and Arbuscular Mycorrhizal Fungi by the Collembolan, Folsomia candida. Funct. Ecol. 1999, 13, 756–761. [Google Scholar] [CrossRef]
- Crowther, T.W.; Boddy, L.; Jones, T.H. Species-Specific Effects of Soil Fauna on Fungal Foraging and Decomposition. Oecologia 2011, 167, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Ten Have, R.; Teunissen, P.J.M. Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chem. Rev. 2001, 101, 3397–3414. [Google Scholar] [CrossRef] [PubMed]
- Aust, S.D. Mechanisms of Degradation by White Rot fungi. Environ. Health Perspect. 1995, 103, 59–61. [Google Scholar] [CrossRef]
- Voříšková, J.; Baldrian, P. Fungal Community on Decomposing Leaf Litter Undergoes Rapid Successional Changes. ISME J. 2013, 7, 477–486. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Rajaura, S.; Chauhan, P.; Singh, A. Metabolomics and Therapeutic Potential of Ophiocordyceps Sinensis. In Phytochemical Genomics; Swamy, M.K., Kumar, A., Eds.; Springer Nature: Singapore, 2022; pp. 319–342. ISBN 978-981-19577-8-9. [Google Scholar]
- Crowther, T.W.; Boddy, L.; Hefin Jones, T. Functional and Ecological Consequences of Saprotrophic Fungus–Grazer Interactions. ISME J. 2012, 6, 1992–2001. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, T.; Lv, M.; Fang, Y.; Liu, R.; Luo, Y.; Xu, C.; Tian, X. Grazing Effects of Soil Fauna on White-Rot Fungi: Biomass, Enzyme Production and Litter Decomposition Ability. J. Fungi 2022, 8, 348. [Google Scholar] [CrossRef]
- Sharma, D.K.; Tomar, S.; Chakraborty, D. Role of Earthworm in Improving Soil Structure and Functioning. Curr. Sci. 2017, 113, 1064. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Liang, Y.; Liang, Y.; Zhao, Y.; Wang, Z.; Li, Y.; Liu, W.; Wang, X.; Yang, G.; et al. The Multifunctionality of Soil Aggregates Is Related to the Complexity of Aggregate Microbial Community during Afforestation. CATENA 2024, 236, 107737. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Domínguez, J. Species-Specific Effects of Epigeic Earthworms on Microbial Community Structure during First Stages of Decomposition of Organic Matter. PLoS ONE 2012, 7, e31895. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zou, M.; Jia, Z.; Zhou, S.; Li, Y. Microplastics in Soils: A Review of Methods, Occurrence, Fate, Transport, Ecological and Environmental Risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar] [CrossRef]
- Weber, C.J.; Rillig, M.C.; Bigalke, M. Mind the Gap: Forest Soils as a Hidden Hub for Global Micro- and Nanoplastic Pollution. Microplast. Nanoplast. 2023, 3, 19. [Google Scholar] [CrossRef]
- Anbumani, S.; Kakkar, P. Ecotoxicological Effects of Microplastics on Biota: A Review. Env. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef]
- Hou, J.; Xu, X.; Yu, H.; Xi, B.; Tan, W. Comparing the Long-Term Responses of Soil Microbial Structures and Diversities to Polyethylene Microplastics in Different Aggregate Fractions. Environ. Int. 2021, 149, 106398. [Google Scholar] [CrossRef]
- Ekanayaka, A.H.; Tibpromma, S.; Dai, D.; Xu, R.; Suwannarach, N.; Stephenson, S.L.; Dao, C.; Karunarathna, S.C. A Review of the Fungi That Degrade Plastic. J. Fungi 2022, 8, 772. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Hao, J.; Yang, H.; Chen, M.; Lian, J.; Chen, Y.; Brown, R.W.; Jones, D.L.; Wan, Z.; Wang, W.; et al. Earthworms Mediate the Influence of Polyethylene (PE) and Polylactic Acid (PLA) Microplastics on Soil Bacterial Communities. Sci. Total Environ. 2023, 905, 166959. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The Distribution of Microplastics in Soil Aggregate Fractions in Southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
Initial Soil Index | Values |
---|---|
pH | 6.49 ± 0.17 |
Organic carbon (g/kg) | 27.15 ± 0.86 |
Total N (g/kg) | 4.79 ± 0.25 |
Total P (g/kg) | 1.08 ± 0.18 |
Pairs | df | R2 | P |
---|---|---|---|
L vs. LA | 1 | 0.05 | 0.75 |
L vs. LH | 1 | 0.08 | 0.10 |
L vs. LHA | 1 | 0.07 | 0.24 |
LA vs. LH | 1 | 0.10 | 0.04 |
LA vs. LHA | 1 | 0.09 | 0.10 |
LH vs. LHA | 1 | 0.06 | 0.72 |
Network Parameter | L | LA | LH | LHA |
---|---|---|---|---|
Node | 110 | 91 | 88 | 78 |
Edge | 274 | 596 | 352 | 363 |
Positive correlation (pink color line) | 274 | 591 | 352 | 362 |
Negative relationship (green color line) | 0 | 5 | 0 | 1 |
Mean degree | 4.982 | 13.099 | 8 | 9.308 |
Network diameter | 11 | 8 | 7 | 8 |
Map density | 0.046 | 0.146 | 0.092 | 0.121 |
Modularization | 0.685 | 0.381 | 0.464 | 0.542 |
Average clustering coefficient | 0.45 | 0.594 | 0.523 | 0.628 |
Average path length | 4.528 | 3.183 | 2.802 | 3.458 |
L | LA | LH | LHA | |
---|---|---|---|---|
Soft Rot | 0.978859 | 0.990936 | 0.976611 | 0.944328 |
Blue Rot | 0.002479 | 0.001745 | 0.007940 | 0.020795 |
Staining | 0.002479 | 0.001745 | 0.007940 | 0.020795 |
Nematode | 0.007222 | 0.002361 | 0.002531 | 0.006394 |
trapping fungus | 0.007222 | 0.002361 | 0.002531 | 0.006394 |
White Rot | 0.001567 | 0.000760 | 0.001421 | 0.000741 |
Brown Rot | 0.000171 | 0.000091 | 0.000926 | 0.000546 |
Hypogeous | 0.000000 | 0.000000 | 0.000100 | 0.000006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ye, R.; Li, B.-L.; Tian, K. Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree. Forests 2024, 15, 488. https://doi.org/10.3390/f15030488
Wang X, Ye R, Li B-L, Tian K. Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree. Forests. 2024; 15(3):488. https://doi.org/10.3390/f15030488
Chicago/Turabian StyleWang, Xin, Rumeng Ye, Bai-Lian Li, and Kai Tian. 2024. "Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree" Forests 15, no. 3: 488. https://doi.org/10.3390/f15030488
APA StyleWang, X., Ye, R., Li, B. -L., & Tian, K. (2024). Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree. Forests, 15(3), 488. https://doi.org/10.3390/f15030488