Decomposition and Carbon and Nitrogen Releases of Twig and Leaf Litter Were Inhibited by Increased Level of Nitrogen Deposition in a Subtropical Evergreen Broad-Leaved Forest in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Design of Experimentation
2.2.1. The Collection and Bagging of Leaf and Twig Litters
2.2.2. Design of Plot and Fertilization
2.3. Sampling and Assessment of Litter
2.3.1. Litter Sampling
2.3.2. Chemical Analysis
2.4. Determination of the Stoichiometry, Remaining Mass, and Remaining Nutrients in Litter
2.5. Statistical Analyses
3. Results
3.1. Litter Remaining and Decomposition Coefficient
3.2. Lignin and Cellulose Remaining in the Litter
3.3. Nutrients Remaining in the Litter
3.4. Stoichiometric Ratios in the Litter
3.5. Linking Nutrient Releases with Lignin and Cellulose Degradation
4. Discussion
4.1. Impacts of N Additions on Litter Decomposition
4.2. Impacts of N Addition on Nutrient Release
4.3. Impacts of Lignin and Cellulose Degradation on Nutrient Release
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, L.; Yu, Q.; Zhang, Q.; Wang, Z.; Pan, Y.; Larssen, T.; Tang, J.; Mulder, J. Acid Deposition in Asia: Emissions, Deposition, and Ecosystem Effects. Atmos. Environ. 2016, 146, 55–69. [Google Scholar] [CrossRef]
- Adrian, W. A Comparison of a Wet Pressure Digestion Method with Other Commonly Used Wet and Dry-Ashing Methods. Analyst 1973, 98, 213–216. [Google Scholar] [CrossRef]
- Tie, L.; Fu, R.; Peñuelas, J.; Sardans, J.; Zhang, S.; Zhou, S.; Hu, J.; Huang, C. The Additions of Nitrogen and Sulfur Synergistically Decrease the Release of Carbon and Nitrogen from Litter in a Subtropical Forest. Forests 2020, 11, 1280. [Google Scholar] [CrossRef]
- Tan, J.; Fu, J.S.; Dentener, F.; Sun, J.; Emmons, L.; Tilmes, S.; Sudo, K.; Flemming, J.; Jonson, J.E.; Gravel, S.; et al. Multi-Model Study of HTAP II on Sulfur and Nitrogen Deposition. Atmos. Chem. Phys. 2018, 18, 6847–6866. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Du, E.; De Vries, W.; Liu, X.; Fang, J.; Galloway, J.N.; Jiang, Y. Spatial Boundary of Urban ‘Acid Islands’ in Southern China. Sci. Rep. 2015, 5, 12625. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced Nitrogen Deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Kwon, T.; Shibata, H.; Kepfer-Rojas, S.; Schmidt, I.K.; Larsen, K.S.; Beier, C.; Berg, B.; Verheyen, K.; Lamarque, J.-F.; Hagedorn, F.; et al. Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes. Front. For. Glob. Chang. 2021, 4, 678480. [Google Scholar] [CrossRef]
- Koehler, B.; Tranvik, L.J. Reactivity Continuum Modeling of Leaf, Root, and Wood Decomposition across Biomes: Reactivity Continuum of Decomposition. J. Geophys. Res. Biogeosci. 2015, 120, 1196–1214. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gao, S.; Wang, P.; Qiu, J.; Shang, S. Impacts of Simulated Nitrogen Deposition on Soil Enzyme Activity in a Northern Temperate Forest Ecosystem Depend on the Form and Level of Added Nitrogen. Eur. J. Soil Biol. 2021, 103, 103287. [Google Scholar] [CrossRef]
- Frouz, J. Effects of Soil Macro- and Mesofauna on Litter Decomposition and Soil Organic Matter Stabilization. Geoderma 2018, 332, 161–172. [Google Scholar] [CrossRef]
- Yarwood, S.A. The Role of Wetland Microorganisms in Plant-Litter Decomposition and Soil Organic Matter Formation: A Critical Review. FEMS Microbiol. Ecol. 2018, 94, fiy175. [Google Scholar] [CrossRef]
- Wang, Q.; Kwak, J.-H.; Choi, W.-J.; Chang, S. Long-Term N and S Addition and Changed Litter Chemistry Do Not Affect Trembling Aspen Leaf Litter Decomposition, Elemental Composition and Enzyme Activity in a Boreal Forest. Environ. Pollut. 2019, 250, 143–154. [Google Scholar] [CrossRef]
- Abay, P.; Gong, L.; Chen, X.; Luo, Y.; Wu, X. Spatiotemporal Variation and Correlation of Soil Enzyme Activities and Soil Physicochemical Properties in Canopy Gaps of the Tianshan Mountains, Northwest China. J. Arid Land 2022, 14, 824–836. [Google Scholar] [CrossRef]
- Jing, H.; Wang, G. Temporal Dynamics of Pinus Tabulaeformis Litter Decomposition under Nitrogen Addition on the Loess Plateau of China. For. Ecol. Manag. 2020, 476, 118465. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Eddy, W.C.; Buyarski, C.R.; Adair, E.C.; Ogdahl, M.L.; Weisenhorn, P. Response of Decomposing Litter and Its Microbial Community to Multiple Forms of Nitrogen Enrichment. Ecol. Monogr. 2012, 82, 389–405. [Google Scholar] [CrossRef]
- Wang, J.; Bu, W.; Zhao, B.; Zhao, X.; Zhang, C.; Fan, J.; Gadow, K. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus Tabulaeformis Forests. Forests 2015, 6, 4462–4476. [Google Scholar] [CrossRef]
- Odiwe, A.I.; Borisade, T.V.; Raimi, I.O.; Rufai, A.B. Litter Fall and Standing Crop Litter of Bambusa vulgaris Schrad. Ex J.C. Wendl. Stands in Secondary Rainforest in Ile-Ife, Nigeria. Int. J. Biol. Chem. Sci 2019, 13, 2224. [Google Scholar] [CrossRef]
- Tu, L.; Hu, H.; Chen, G.; Peng, Y.; Xiao, Y.; Hu, T.; Zhang, J.; Li, X.; Liu, L.; Tang, Y. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition. PLoS ONE 2014, 9, e88752. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Tu, L.; Peng, Y.; Hu, H.; Hu, T.; Xu, Z.; Liu, L.; Tang, Y. Effect of Nitrogen Additions on Root Morphology and Chemistry in a Subtropical Bamboo Forest. Plant Soil 2017, 412, 441–451. [Google Scholar] [CrossRef]
- Zhuang, L.; Liu, Q.; Liang, Z.; You, C.; Tan, B.; Zhang, L.; Yin, R.; Yang, K.; Bol, R.; Xu, Z. Nitrogen Additions Retard Nutrient Release from Two Contrasting Foliar Litters in a Subtropical Forest, Southwest China. Forests 2020, 11, 377. [Google Scholar] [CrossRef]
- Wu, J.; Liu, W.; Zhang, W.; Shao, Y.; Duan, H.; Chen, B.; Wei, X.; Fan, H. Long-Term Nitrogen Addition Changes Soil Microbial Community and Litter Decomposition Rate in a Subtropical Forest. Appl. Soil Ecol. 2019, 142, 43–51. [Google Scholar] [CrossRef]
- Wei, S.; Tie, L.; Liao, J.; Liu, X.; Du, M.; Lan, S.; Li, X.; Li, C.; Zhan, H.; Huang, C. Nitrogen and Phosphorus Co-Addition Stimulates Soil Respiration in a Subtropical Evergreen Broad-Leaved Forest. Plant Soil 2020, 450, 171–182. [Google Scholar] [CrossRef]
- Tie, L.; Zhang, S.; Peñuelas, J.; Sardans, J.; Zhou, S.; Hu, J.; Huang, C. Responses of Soil C, N, and P Stoichiometric Ratios to N and S Additions in a Subtropical Evergreen Broad-Leaved Forest. Geoderma 2020, 379, 114633. [Google Scholar] [CrossRef]
- Gong, J.; Zhu, C.; Yang, L.; Yang, B.; Wang, B.; Baoyin, T.; Liu, M.; Zhang, Z.; Shi, J. Effects of Nitrogen Addition on Above-and Belowground Litter Decomposition and Nutrient Dynamics in the Litter-Soil Continuum in the Temperate Steppe of Inner Mongolia, China. J. Arid Environ. 2020, 172, 104036. [Google Scholar] [CrossRef]
- Trentini, C.P.; Villagra, M.; Gómez Pámies, D.; Bernava Laborde, V.; Bedano, J.C.; Campanello, P.I. Effect of Nitrogen Addition and Litter Removal on Understory Vegetation, Soil Mesofauna, and Litter Decomposition in Loblolly Pine Plantations in Subtropical Argentina. For. Ecol. Manag. 2018, 429, 133–142. [Google Scholar] [CrossRef]
- Allen, S.E. Chemical Analysis of Ecologicalmaterials; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Tu, L.; Hu, T.; Zhang, J.; Li, X.; Hu, H.; Liu, L.; Xiao, Y. Nitrogen Addition Stimulates Different Components of Soil Respiration in a Subtropical Bamboo Ecosystem. Soil Biol. Biochem. 2013, 58, 255–264. [Google Scholar] [CrossRef]
- Berg, B.; Matzner, E. Effect of N Deposition on Decomposition of Plant Litter and Soil Organic Matter in Forest Systems. Environ. Rev. 1997, 5, 1–25. [Google Scholar] [CrossRef]
- Bragazza, L.; Siffi, C.; Iacumin, P.; Gerdol, R. Mass Loss and Nutrient Release during Litter Decay in Peatland: The Role of Microbial Adaptability to Litter Chemistry. Soil Biol. Biochem. 2007, 39, 257–267. [Google Scholar] [CrossRef]
- Olson, J.S. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Bockheim, J.G.; Jepsen, E.A.; Heisey, D.M. Nutrient Dynamics in Decomposing Leaf Litter of Four Tree Species on a Sandy Soil in Northwestern Wisconsin. Can. J. For. Res. 1991, 21, 803–812. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, G.G.; Tang, C.; Fang, H.; Duan, J.; Yu, X. Effects of One-Year Simulated Nitrogen and Acid Deposition on Soil Respiration in a Subtropical Plantation in China. Forests 2020, 11, 235. [Google Scholar] [CrossRef]
- Li, Q.; Song, X.; Gu, H.; Gao, F. Nitrogen Deposition and Management Practices Increase Soil Microbial Biomass Carbon but Decrease Diversity in Moso Bamboo Plantations. Sci. Rep. 2016, 6, 28235. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Knops, J.M.H. Effects of Elevated CO2, Increased Nitrogen Deposition, and Plant Diversity on Aboveground Litter and Root Decomposition. Ecosphere 2018, 9, e02111. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, Y.; Chen, H.Y.H.; Ruan, H. Responses of Litter Decomposition and Nutrient Release to N Addition: A Meta-Analysis of Terrestrial Ecosystems. Appl. Soil Ecol. 2018, 128, 35–42. [Google Scholar] [CrossRef]
- Liu, Q.; Liyan, Z.; Ni, X.; You, C.; Wanqin, Y.; Wu, F.; Tan, B.; Yue, K.; Liu, Y.; Zhang, L.; et al. Nitrogen Additions Stimulate Litter Humification in a Subtropical Forest, Southwestern China. Sci. Rep. 2018, 8, 17525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Z. Responses of Litter Decomposition and Nutrient Release of Bothriochloa Ischaemum to Soil Petroleum Contamination and Nitrogen Fertilization. Int. J. Environ. Sci. Technol. 2019, 16, 719–728. [Google Scholar] [CrossRef]
- Manning, P.; Saunders, M.; Bardgett, R.; Bonkowski, M.; Bradford, M.; Ellis, R.; Kandeler, E.; Marhan, S.; Tscherko, D. Direct and Indirect Effects of Nitrogen Deposition on Litter Decomposition. Soil Biol. Biochem. 2008, 40, 688–698. [Google Scholar] [CrossRef]
- Craine, J.M.; Morrow, C.; Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 2007, 88, 2105–2113. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, S.; Trofymow, J.A.; Jackson, R.B.; Porporato, A. Stoichiometric Controls on Carbon, Nitrogen, and Phosphorus Dynamics in Decomposing Litter. Ecol. Monogr. 2010, 80, 89–106. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Zhang, L.; Xin, X.; Liu, X. Litter Mixing Significantly Affects Decomposition in the Hulun Buir Meadow Steppe of Inner Mongolia, China†. J. Plant Ecol. 2014, 7, 56–67. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zhao, J.; Xiao, K.; Wang, K. Effects of Nitrogen Addition on Activities of Soil Nitrogen Acquisition enzymes: A Meta-Analysis. Agric. Ecosyst. Environ. 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Pei, G.; Liu, J.; Peng, B.; Wang, C.; Jiang, P.; Bai, E. Nonlinear Coupling of Carbon and Nitrogen Release During Litter Decomposition and Its Responses to Nitrogen Addition. JGR Biogeosci. 2020, 125, e2019JG005462. [Google Scholar] [CrossRef]
- Siegenthaler, M.B.; Tamburini, F.; Frossard, E.; Chadwick, O.; Vitousek, P.; Pistocchi, C.; Mészáros, E.; Helfenstein, J. A dual isotopic (32P and 18O) incubation study to disentangle mechanisms controlling phosphorus cycling in soils from a climatic gradient (Kohala, Hawaii). Soil Biol. Biochem. 2020, 149, 107920. [Google Scholar] [CrossRef]
- Chen, H.; Dong, S.; Liu, L.; Ma, C.; Zhang, T.; Zhu, X.; Mo, J. Effects of Experimental Nitrogen and Phosphorus Addition on Litter Decomposition in an Old-Growth Tropical Forest. PLoS ONE 2013, 8, e84101. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Song, C.; Ren, J.; Tan, W.; Jin, S.; Jiang, L. Influence of Nitrogen Additions on Litter Decomposition, Nutrient Dynamics, and Enzymatic Activity of Two Plant Species in a Peatland in Northeast China. Sci. Total Environ. 2018, 625, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Talhelm, A.F.; Pregitzer, K.S. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition. Ecosystems 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Vallicrosa, H.; Sardans, J.; Ogaya, R.; Fernández, P.R.; Peñuelas, J. Short-Term N-Fertilization Differently Affects the Leaf and Leaf Litter Chemistry of the Dominant Species in a Mediterranean Forest under Drought Conditions. Forests 2021, 12, 605. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Von Oheimb, G.; Power, S.A.; Falk, K.; Friedrich, U.; Mohamed, A.; Krug, A.; Boschatzke, N.; Härdtle, W. N:P Ratio and the Nature of Nutrient Limitation in Calluna-Dominated Heathlands. Ecosystems 2010, 13, 317–327. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Negative Effects of Fertilization on Plant Nutrient Resorption. Ecology 2015, 96, 373–380. [Google Scholar] [CrossRef]
- Liu, J.; Liu, W.; Long, X.-E.; Chen, Y.; Huang, T.; Huo, J.; Duan, L.; Wang, X. Effects of Nitrogen Addition on C:N:P Stoichiometry in Moss Crust-Soil Continuum in the N-Limited Gurbantünggüt Desert, Northwest China. Eur. J. Soil Biol. 2020, 98, 103174. [Google Scholar] [CrossRef]
- Teglia, A.; Di Baccio, D.; Matteucci, G.; Scartazza, A.; De Cinti, B.; Mazzenga, F.; Ravaioli, D.; Muzzi, E.; Marcolini, G.; Magnani, F. Effects of Simulated Nitrogen Deposition on the Nutritional and Physiological Status of Beech Forests at Two Climatic Contrasting Sites in Italy. Sci. Total Environ. 2022, 834, 155362. [Google Scholar] [CrossRef]
- Li, W.; Sheng, H.; Liu, Y.; Zhang, R.; Ekawati, D.; Qian, Y.; Lou, Y. Ecostoichiometry Reveals the Separation of Microbial Adaptation Strategies in a Bamboo Forest in an Urban Wetland under Simulated Nitrogen Deposition. Forests 2020, 11, 428. [Google Scholar] [CrossRef]
- Tian, P.; Zhao, X.; Liu, S.; Wang, Q.; Zhang, W.; Guo, P.; Razavi, B.S.; Liang, C.; Wang, Q. Differential Responses of Fungal and Bacterial Necromass Accumulation in Soil to Nitrogen Deposition in Relation to Deposition Rate. Sci. Total Environ. 2022, 847, 157645. [Google Scholar] [CrossRef]
- Brown, M.E.; Chang, M.C. Exploring Bacterial Lignin Degradation. Curr. Opin. Chem. Biol. 2014, 19, 1–7. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, J.; Ding, W.; Gunina, A.; Chen, Z.; Bol, R.; Luo, J.; Bolan, N. Characterization of Organic Carbon in Decomposing Litter Exposed to Nitrogen and Sulfur Additions: Links to Microbial Community Composition and Activity. Geoderma 2017, 286, 116–124. [Google Scholar] [CrossRef]
- Mieczan, T.; Adamczuk, M.; Tarkowska-Kukuryk, M.; Wojciech, P.; Pawlik-Skowrońska, B. Effects of Experimental Addition of Nitrogen and Phosphorus on Microbial and Metazoan Communities in a Peatbog. Eur. J. Protistol. 2017, 59, 50–64. [Google Scholar] [CrossRef]
- Mcclaugherty, B. Plant Litter; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Wang, L.; Zhang, J.; He, R.; Chen, Y.; Yang, L.; Zheng, H.; Li, H.; Xiao, J.; Liu, Y. Impacts of Soil Fauna on Lignin and Cellulose Degradation in Litter Decomposition across an Alpine Forest-Tundra Ecotone. Eur. J. Soil Biol. 2018, 87, 53–60. [Google Scholar] [CrossRef]
- Talbot, J.M.; Treseder, K.K. Interactions among Lignin, Cellulose, and Nitrogen Drive Litter Chemistry–Decay Relationships. Ecology 2012, 93, 345–354. [Google Scholar] [CrossRef]
- Yang, S.; Yao, F.; Ye, J.; Fang, S.; Wang, Z.; Wang, R.; Zhang, Q.; Ma, R.; Wang, X.; Jiang, Y.; et al. Latitudinal Pattern of Soil Lignin/Cellulose Content and the Activity of Their Degrading Enzymes across a Temperate Forest Ecosystem. Ecol. Indic. 2019, 102, 557–568. [Google Scholar] [CrossRef]
- Jiang, L.; Li, S.; Wang, H.; Dai, X.; Meng, S.; Fu, X.; Zheng, J.; Yan, H.; Ma, N.; Xue, Y. Mechanisms Underlying Aboveground and Belowground Litter Decomposition Converge over Time under Nutrient Deposition. Forests 2023, 14, 130. [Google Scholar] [CrossRef]
Stand | Altitude/m | Age/a | Mean Height | DBH/cm | Canopy Density | Slope/(°) | Aspect | Soil Category |
---|---|---|---|---|---|---|---|---|
H/m | ||||||||
1 | 2130 | 20 | 9.6 | 14.5 | 0.87 | 23 | NE | red soil |
2 | 2132 | 18 | 12.1 | 20.7 | 0.9 | 28 | NE | red soil |
3 | 2133 | 20 | 10.8 | 18.3 | 0.85 | 30 | NE | red soil |
Treatment | Soil Layer (cm) | Maximum Water-Holding Capacity (mm) | Capillary Water Capacity (mm) | Field Water Capacity (mm) | Overall Porosity (%) | Capillary Porosity (%) | Noncapillary Porosity (%) | Moisture Content (%) | Bulk Density (g·cm−3) | Organic Carbon (mg·g−1) | Total Nitrogen (mg·g−1) | Total Phosphorus (mg·g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0~10 | 62.07 ± 3.22 b | 54.28 ± 1.44 b | 44.88 ± 0.17 b | 53.03 ± 1.73 a | 55.32 ± 7.84 a | 10.23 ± 2.53 a | 47.87 ± 1.80 a | 0.95 ± 0.10 a | 40.29 ± 1.23 a | 0.90 ± 0.05 a | 0.66 ± 0.01 a |
10~20 | 103.27 ± 12.75 a | 93.41 ± 3.85 a | 70.91 ± 6.51 a | 44.33 ± 3.38 b | 49.38 ± 6.98 b | 8.90 ± 5.13 b | 34.38 ± 4.69 b | 1.15 ± 0.08 a | 21.29 ± 0.54 b | 0.43 ± 0.01 b | 0.42 ± 0.02 b | |
LN | 0~10 | 53.03 ± 1.72 b | 42.80 ± 4.25 b | 33.59 ± 1.60 b | 65.21 ± 1.22 a | 54.28 ± 1.44 a | 6.72 ± 4.62 a | 43.13 ± 1.14 a | 0.93 ± 0.11 a | 40.14 ± 1.87 a | 0.89 ± 0.02 a | 0.64 ± 0.03 a |
10~20 | 96.67 ± 6.77 a | 78.88 ± 3.48 a | 63.67 ± 1.72 a | 52.06 ± 0.33 b | 46.71 ± 1.93 b | 2.25 ± 0.61 b | 28.32 ± 1.09 b | 0.95 ± 0.11 a | 20.22 ± 0.36 b | 0.41 ± 0.01 b | 0.41 ± 0.01 b | |
MN | 0~10 | 65.21 ± 1.22 b | 49.96 ± 4.84 b | 45.30 ± 5.53 b | 61.72 ± 11.98 a | 49.96 ± 4.48 a | 10.93 ± 2.65 a | 49.51 ± 2.02 a | 0.88 ± 0.09 b | 38.46 ± 0.98 a | 0.88 ± 0.04 a | 0.62 ± 0.05 a |
10~20 | 104.12 ± 0.66 a | 103.05 ± 12.58 a | 81.78 ± 8.52 a | 56.11 ± 2.82 b | 51.52 ± 6.29 a | 5.35 ± 2.26 b | 35.60 ± 0.66 b | 1.27 ± 0.14 a | 21.65 ± 0.13 b | 0.37 ± 0.02 b | 0.38 ± 0.02 b | |
HN | 0~10 | 61.72 ± 11.98 b | 55.32 ± 7.84 b | 41.04 ± 2.91 b | 62.07 ± 3.22 a | 42.80 ± 4.25 a | 11.76 ± 7.14 a | 47.34 ± 7.20 a | 1.10 ± 0.11 a | 39.46 ± 1.54 a | 0.88 ± 0.04 a | 0.69 ± 0.04 a |
10~20 | 112.22 ± 5.64 a | 98.77 ± 13.97 a | 87.67 ± 16.62 a | 51.63 ± 6.38 b | 39.44 ± 1.74 b | 4.59 ± 3.47 b | 48.12 ± 11.80 a | 1.23 ± 0.10 a | 19.03 ± 0.11 b | 0.42 ± 0.01 b | 0.40 ± 0.01 b |
Treatments | Regression Equation | Coefficient of Determination (R2) | k-Value (Year−1) | T50% (Year) | T95% (Year) | |
---|---|---|---|---|---|---|
Leaf litter | CK | y = 92.421e−0.603t | 0.991 ** | −0.603 | 1.149 | 4.968 |
LN | y = 91.982e−0.572t | 0.989 ** | −0.572 | 1.212 | 5.237 | |
MN | y = 90.605e−0.509t | 0.985 ** | −0.509 | 1.362 | 5.886 | |
HN | y = 91.212e−0.485t | 0.985 ** | −0.485 | 1.429 | 6.177 | |
Twig litter | CK | y = 91.294e−0.258t | 0.965 ** | −0.258 | 2.687 | 11.611 |
LN | y = 92.727e−0.253t | 0.965 ** | −0.253 | 2.740 | 11.841 | |
MN | y = 91.824e−0.230t | 0.960 ** | −0.230 | 3.014 | 13.025 | |
HN | y = 93.159e−0.227t | 0.964 ** | −0.227 | 3.054 | 13.197 |
Litter Remaining | Lignin Remaining | Cellulose Remaining | C Remaining | N Remaining | P Remaining | C/N | C/P | N/P | ||
---|---|---|---|---|---|---|---|---|---|---|
CP | df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
MSE | 44,991.71 | 5501.931 | 55,162.547 | 34,799.348 | 195,217.799 | 287,360.77 | 47,911.008 | 37,269,994.3 | 57.678 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
T | df | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
MSE | 4559.169 | 1454.799 | 3647.243 | 70,007.933 | 8343.27 | 9020.417 | 873.45 | 119,925.359 | 66.652 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
N | df | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
MSE | 499.32 | 2854.963 | 1880.606 | 1287.374 | 20,112.376 | 5873.764 | 2371.048 | 3437.328 | 89.86 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.05 | <0.001 | |
T × N | df | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 |
MSE | 4.026 | 12.424 | 6.526 | 10.245 | 258.53 | 444.702 | 55.159 | 5292.109 | 4.694 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
T × CP | df | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
MSE | 394.106 | 171.368 | 628.9436 | 840.931 | 1665.793 | 4456.391 | 714.259 | 58,060.194 | 28.887 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
N × CP | df | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
MSE | 20.727 | 344.764 | 46.641 | 21.921 | 1435.881 | 339.5 | 303.75 | 6463.765 | 4.766 | |
p | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
T × N × CP | df | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 | 69 |
MSE | 2.675 | 5.621 | 4.699 | 4.821 | 198.608 | 202.976 | 40.425 | 2787.844 | 2.026 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xing, J.; Hu, C.; Song, C.; Wang, Q.; Wang, S. Decomposition and Carbon and Nitrogen Releases of Twig and Leaf Litter Were Inhibited by Increased Level of Nitrogen Deposition in a Subtropical Evergreen Broad-Leaved Forest in Southwest China. Forests 2024, 15, 492. https://doi.org/10.3390/f15030492
Song Y, Xing J, Hu C, Song C, Wang Q, Wang S. Decomposition and Carbon and Nitrogen Releases of Twig and Leaf Litter Were Inhibited by Increased Level of Nitrogen Deposition in a Subtropical Evergreen Broad-Leaved Forest in Southwest China. Forests. 2024; 15(3):492. https://doi.org/10.3390/f15030492
Chicago/Turabian StyleSong, Yali, Jinmei Xing, Chun Hu, Chenggong Song, Qian Wang, and Shaojun Wang. 2024. "Decomposition and Carbon and Nitrogen Releases of Twig and Leaf Litter Were Inhibited by Increased Level of Nitrogen Deposition in a Subtropical Evergreen Broad-Leaved Forest in Southwest China" Forests 15, no. 3: 492. https://doi.org/10.3390/f15030492
APA StyleSong, Y., Xing, J., Hu, C., Song, C., Wang, Q., & Wang, S. (2024). Decomposition and Carbon and Nitrogen Releases of Twig and Leaf Litter Were Inhibited by Increased Level of Nitrogen Deposition in a Subtropical Evergreen Broad-Leaved Forest in Southwest China. Forests, 15(3), 492. https://doi.org/10.3390/f15030492