Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. The InVEST Model Estimates Carbon Storage
2.3.2. PLUS Model
- (1)
- The Markov module
- (2)
- The LEAS module
- (3)
- The CARS module
- (4)
- Scenario Setup
- NIS: The scenario is based on land use data from three periods between 2010 and 2020, and utilizes Markov chains to forecast the demand for different land use types. This scenario extends the historical trends of land use change in the study area, considering areas without functional restrictions and planned development zones.
- MPS: This scenario takes into account a series of policy influences, including the “Special Action Plan for the Protection and Restoration of Mangroves (2020–2025)”, the “Opinions of the Central Committee of the Communist Party of China and the State Council on Fully, Accurately, and Comprehensively Implementing the New Development Concept and Doing Well in Carbon Peaking and Carbon Neutrality Work”, the “Overall Plan for the Protection and Restoration of Important Ecological Systems in China (2021–2035)”, and the “Coastal Protection and Restoration Engineering Work Plan”, among others. In this scenario, in response to these policies, efforts are made to scientifically construct mangroves. Based on the current status of mangrove resources, scientific arguments and reasonable determinations are made regarding suitable areas for mangrove restoration. Building upon the clearance of fish ponds within nature reserves, priority is given to implementing ecological restoration of mangroves, adhering to the principle of “planting trees wherever possible”, prioritizing the use of local mangrove species, and expanding mangrove areas. Rare mangrove species are protected. Requirements for strengthened regional control and land use planning are implemented to limit the conversion of mangrove species. The aim of this scenario is to reflect the increased enforcement of mangrove protection policies by the local government in the research area, encourage the implementation of comprehensive mangrove protection, and prioritize the protection of mangrove ecosystems. In delineating ecological protection redlines, based on the principles of “all suitable areas should be delineated, and all delineated areas should be protected”, mangroves in relevant natural reserves, as well as areas outside natural reserves suitable for mangrove restoration, are all included in the ecological protection redline for strict protection. Referring to existing research designs and aligning with our experimental goals [53,54], the model was set as follows: (1) Strictly limiting the transition of mangroves to other land use types; (2) Increasing the probability of converting forests and cultivated land into mangroves by 80%, reducing the probability of converting grasslands and residential land into mangroves by 80%, and increasing the probability of converting water bodies and unused land into mangroves by 60%; (3) Establishing a five-kilometer buffer zone around the existing mangrove distribution range to meet the distribution requirements of suitable mangrove habitats.
3. Results
3.1. Validation of Model Accuracy and Identification of Historical Drivers of Change
3.2. Multiscenario Mangrove Distribution
3.3. Estimating Mangrove Carbon Storage on Hainan Island
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Y.; Gou, R.; Bai, J.; Moreno-Mateos, D.; Davis, C.C.; Wan, L.; Song, S.; Zhang, H.; Zhu, X.; Lin, G. Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island, China. Glob. Ecol. Biogeogr. 2022, 31, 1692–1706. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Shi, X.; Nie, T.; Xiong, Q.; Liu, Z.; Zhang, J.; Liu, W.; Wu, L.; Cui, W.; Sun, Z. Assessment of carbon stock and sequestration of the mangrove ecosystems on Hainan Island based on InVEST and MaxEnt models. J. Trop. Biol. 2023, 14, 298–306. [Google Scholar] [CrossRef]
- Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Ewers Lewis, C.J.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I.; et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 2017, 7, 523–528. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 2018, 8, 240–244. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Al Rakib, A.; Roy, S.; Ferdousi, J.; Raikwar, V.; Kona, M.A.; Al Fatin, S.A. Predicting changes in land use/land cover and seasonal land surface temperature using multi-temporal landsat images in the northwest region of Bangladesh. Heliyon 2021, 7, e07623. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Abdallah, M.; Jose, F.; Elzain, H.E.; Bhuyan, M.S.; Shoemaker, D.J.; Selvam, S. Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area. Ecol. Inform. 2023, 78, 102324. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Wang, Y.; Chao, B.; Dong, P.; Zhang, D.; Yu, W.; Hu, W.; Ma, Z.; Chen, G.; Liu, Z.; Chen, B. Simulating spatial change of mangrove habitat under the impact of coastal land use: Coupling MaxEnt and Dyna-CLUE models. Sci. Total Environ. 2021, 788, 147914. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Worku, H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Tan, Z.; Guan, Q.; Lin, J.; Yang, L.; Luo, H.; Ma, Y.; Tian, J.; Wang, Q.; Wang, N. The response and simulation of ecosystem services value to land use/land cover in an oasis, Northwest China. Ecol. Indic. 2020, 118, 106711. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Luo, S.; Hu, X.; Sun, Y.; Yan, C.; Zhang, X. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model. Chin. J. Eco-Agric. 2023, 31, 300–314. [Google Scholar]
- Sun, X.-x.; Xue, J.-h.; Dong, L.-n. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on plus model and InVEST model. J. Ecol. Rural. Environ. 2023, 39, 41–51. [Google Scholar]
- Wang, Q.; Watanabe, M.; Ouyang, Z. Simulation of water and carbon fluxes using BIOME-BGC model over crops in China. Agric. For. Meteorol. 2005, 131, 209–224. [Google Scholar] [CrossRef]
- Quesada, B.; Arneth, A.; Robertson, E.; de Noblet-Ducoudré, N. Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environ. Res. Lett. 2018, 13, 064023. [Google Scholar] [CrossRef]
- Fatichi, S.; Leuzinger, S.; Körner, C. Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytol. 2014, 201, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.M. Modeling the climate and carbon systems to estimate the social cost of carbon. Wiley Interdiscip. Rev. Clim. Change 2018, 9, e532. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Trop. Geogr. 2019, 39, 397–409. [Google Scholar]
- Liao, L.; Zhou, L.; Wang, S.; Wang, X. Carbon sequestration potential of biomass carbon pool for new afforestation in China during 2005–2013. Acta Geogr. Sin. 2016, 71, 1939–1947. [Google Scholar]
- Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. J. Geogr. Sci. 2014, 24, 249–268. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Liu, X.; Zhao, D.; Sun, X.; Xu, L. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Model. 2015, 318, 210–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Tang, Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios. Acta Ecol. Sin. 2021, 41, 360–373. [Google Scholar]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Hou, J.-K.; Chen, J.-J.; Zhang, K.-Q.; Zhou, G.-Q.; You, H.-T.; Han, X.-W. Temporal and spatial variation characteristics of carbon storage in the source region of the Yellow River based on InVEST and GeoSoS-FLUS models and its response to different future scenarios. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 5253–5262. [Google Scholar]
- Zhao, H.; Guo, B.; Wang, G. Spatial–Temporal Changes and Prediction of Carbon Storage in the Tibetan Plateau Based on PLUS-InVEST Model. Forests 2023, 14, 1352. [Google Scholar] [CrossRef]
- Qiang, L.; Zhongyang, Y.; Yiqing, C.; Jinrui, L.; Zongzhu, C.; Xiaohua, C. Multi-scenario simulation of land use change and its eco-environmental effect in Hainan Island based on CA-Markov model. Ecol. Environ. 2021, 30, 1522. [Google Scholar]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xin, K.; Li, Z.; Gao, C.; Yan, K. Carbon storage and sequestration function evaluation in Dongzhaigang mangrove reserve of Hainan. Wetl. Sci. 2015, 13, 338–343. [Google Scholar]
- Jia, P.; Huang, W.; Zhang, Z.; Cheng, J.; Xiao, Y. The Carbon Sink of Mangrove Ecological Restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. Forests 2022, 13, 1547. [Google Scholar] [CrossRef]
- Bai, J.; Meng, Y.; Gou, R.; Lyu, J.; Dai, Z.; Diao, X.; Zhang, H.; Luo, Y.; Zhu, X.; Lin, G. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 2021, 35, 774–786. [Google Scholar] [CrossRef]
- Fang, X.; Zou, J.; Wu, Y.; Zhang, Y.; Zhao, Y.; Zhang, H. Evaluation of the sustainable development of an island “Blue Economy”: A case study of Hainan, China. Sustain. Cities Soc. 2021, 66, 102662. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, J.; Wang, L.; Guo, J.; Feng, J.; Wu, H.; Lin, G. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Glob. Ecol. Conserv. 2019, 17, e00575. [Google Scholar] [CrossRef]
- Wang, G.; Guan, D.; Peart, M.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo Bay, Guangdong Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [Google Scholar] [CrossRef]
- Fang, F.; Li, Z.; Gui, H. Investigation and Research on Current Situation of Mangrove in Hainan. Trop. For. 2022, 50, 42–49. [Google Scholar]
- Fu, C.; Song, X.; Xie, Y.; Wang, C.; Luo, J.; Fang, Y.; Cao, B.; Qiu, Z. Research on the Spatiotemporal Evolution of Mangrove Forests in the Hainan Island from 1991 to 2021 Based on SVM and Res-UNet Algorithms. Remote Sens. 2022, 14, 5554. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, Q. Area, Distribution and Species Composition of Mangroves in China. Wetl. Sci. 2014, 12, 435–440. [Google Scholar] [CrossRef]
- Wang, B.; Liao, J.; Zhu, W.; Qiu, Q.; Wang, L.; Tang, L. The weight of neighborhood setting of the FLUS model based on a historical scenario: A case study of land use simulation of urban agglomeration of the Golden Triangle of Southern Fujian in 2030. Acta Ecol. Sin. 2019, 39, 4284–4298. [Google Scholar]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of hainan island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Li, H. Assessment of the impact of rubber plantation expansion on regional carbon storage based on time series remote sensing and the invest model. Remote Sens. 2022, 14, 6234. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, J.; Hou, J.; Zhou, G.; You, H.; Han, X. Study on sustainable development of carbon storage in Guilin coupled with InVEST and GeoSOS-FLUS model. China Environ. Sci. 2022, 42, 2799–2809. [Google Scholar]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Xin, K.; Yan, K.; Gao, C.; Li, Z. Carbon storage and its influencing factors in Hainan Dongzhangang mangrove wetlands. Mar. Freshw. Res. 2018, 69, 771–779. [Google Scholar] [CrossRef]
- Jin, F.; Yang, H.; Cai, Z.; Zhao, Q. Calculation of density and reserve of organic carbon in soils. Acta Pedol. Sin. 2001, 38, 522–528. [Google Scholar]
- Ren, B.; Wang, Q.; Zhang, R.; Zhou, X.; Wu, X.; Zhang, Q. Assessment of ecosystem services: Spatio-temporal analysis and the spatial response of influencing factors in hainan province. Sustainability 2022, 14, 9145. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting urban land use change based on cellular automata and the PLUS model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Sun, Y.; Du, Q.; Xiao, X.; Luo, H.; Zhang, J.; Mi, J. Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. J. Environ. Manag. 2023, 335, 117543. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.-Y.; Lyu, F.-N.; Chen, S.-L.; Yu, Z.-R. Temporal and spatial variations of carbon storage and carbon sink improvement strategy at the district and county level based on PLUS-InVEST model: Taking Yanqing District as an example. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2023, 34, 3373–3384. [Google Scholar]
- Zhou, W.; Wang, J.; Han, Y.; Yang, L.; Que, H.; Wang, R. Scenario Simulation of the Relationship between Land-Use Changes and Ecosystem Carbon Storage: A Case Study in Dongting Lake Basin, China. Int. J. Environ. Res. Public Health 2023, 20, 4835. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liu, X.; Zeng, J. Spatio-temporal change and prediction of carbon storage in Dongjiang River source watershed based on InVEST- PLUS model. Acta Sci. Circumstantiae 2024, 44, 419–430. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Du, H.; Mao, F.; Han, N.; Fan, W.; Xu, Y.; Luo, X. Simulating Future LUCC by Coupling Climate Change and Human Effects Based on Multi-Phase Remote Sensing Data. Remote Sens. 2022, 14, 1698. [Google Scholar] [CrossRef]
- Gao, T.; Ding, D.; Guan, W.; Liao, B. Carbon stocks of coastal wetland ecosystems on Hainan Island, China. Pol. J. Environ. Stud. 2018, 27, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Ray, R.; Ganguly, D.; Chowdhury, C.; Dey, M.; Das, S.; Dutta, M.K.; Mandal, S.K.; Majumder, N.; De, T.K.; Mukhopadhyay, S.K.; et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 2011, 45, 5016–5024. [Google Scholar] [CrossRef]
- Bunker, D.E.; DeClerck, F.; Bradford, J.C.; Colwell, R.K.; Perfecto, I.; Phillips, O.L.; Sankaran, M.; Naeem, S. Species loss and aboveground carbon storage in a tropical forest. Science 2005, 310, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, B.; Wu, Y.; Zheng, K.; Wu, Y. Dynamic simulation of landscape ecological risk in mountain towns based on PLUS model. J. Zhejiang AF Univ. 2022, 39, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Wu, L.; Guo, E.; An, Y.; Xiong, Q.; Shi, X.; Zhang, X.; Sun, Z. Evaluating the Losses and Recovery of GPP in the Subtropical Mangrove Forest Directly Attacked by Tropical Cyclone: Case Study in Hainan Island. Remote Sens. 2023, 15, 2094. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Sun, Z.; An, Y.; Kong, J.; Zhao, J.; Cui, W.; Nie, T.; Zhang, T.; Liu, W.; Wu, L. Exploring the spatio-temporal patterns of global mangrove gross primary production and quantifying the factors affecting its estimation, 1996–2020. Sci. Total Environ. 2024, 908, 168262. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yang, R.; Su, Y.; Fu, Z. Effect of land use and cover change on carbon stock dynamics in a typical desert oasis. Acta Ecol. Sin. 2018, 38, 7801–7812. [Google Scholar]
- Pliscoff, P.; Luebert, F.; Hilger, H.H.; Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Model. 2014, 288, 166–177. [Google Scholar] [CrossRef]
- Gao, F.; Xin, X.; Song, J.; Li, X.; Zhang, L.; Zhang, Y.; Liu, J. Simulation of LUCC Dynamics and Estimation of Carbon Stock under Different SSP-RCP Scenarios in Heilongjiang Province. Land 2023, 12, 1665. [Google Scholar] [CrossRef]
Data Category | Data Description | Resolution | Data Source |
---|---|---|---|
Land Use Data | Land use data for Hainan Island for the years 2010, 2015, and 2020 | 30 m | Resource and Environment Science and Data Center (http://www.resdc.cn/ accessed on 15 March 2024) |
Socioeconomic Data | Population density (POP) | 1000 m | Resource and Environment Science and Data Center (http://www.resdc.cn/ accessed on 15 March 2024) |
Density of gross domestic product (GDP) | 1000 m | - | |
Natural Resource Data | 2010–2020 mean temperature | 1000 m | Resource and Environment Science and Data Center (http://www.resdc.cn/ accessed on 15 March 2024) |
2010–2020 mean precipitation | 1000 m | - | |
Spatial distribution data of soil types | 1000 m | World Soil Database (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ accessed on 15 March 2024) | |
DEM | 90 m | Geospatial Data Cloud (https://www.gscloud.cn/ accessed on 15 March 2024) | |
Slope | |||
Location Factor Data | Distance to highway, railway, urban primary (secondary and tertiary) roads | Shapefile | Geospatial Data Cloud (https://www.gscloud.cn/ accessed on 15 March 2024) |
Mangrove Distribution Data | Mangrove distribution data for Hainan Island for the years 2010, 2015, and 2020 | Shapefile | GMF30_2000–2020 https://data.casearth.cn/en/sdo/detail/62ff50eb08415d271ab1ba98/ accessed on 15 March 2024 |
Name | C_Above (t/ha) | C_Below (t/ha) | C_Soil (t/ha) |
---|---|---|---|
mangrove-n | 44.4 | 19.98 | 131.232 |
mangrove-e | 41.4 | 18.63 | 127.842 |
mangrove-w | 44.8 | 20.16 | 131.684 |
mangrove-s | 27.8 | 12.51 | 112.474 |
2010–2020 | Natural Increase Scenario | Mangrove Protection Scenario | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | A | B | C | D | E | F | G | |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
D | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
E | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
G | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Coefficient | HCW | DF | XYG | DZG | XYW | SY | QLW | Overall |
---|---|---|---|---|---|---|---|---|
Kappa | 0.76 | 0.90 | 0.88 | 0.86 | 0.76 | 0.75 | 0.82 | 0.82 |
OA | 0.83 | 0.94 | 0.92 | 0.90 | 0.85 | 0.82 | 0.87 | 0.88 |
Region | Mangrove | Forest | Agriculture | Unused Land | Water | Built-up | Grassland |
---|---|---|---|---|---|---|---|
DZG | 2588.85 | 2562.3 | 353.52 | 393.3 | 203.58 | 25.11 | 0 |
QLG | 1358.1 | 324.27 | 859.5 | 501.57 | 320.22 | 15.12 | 12.42 |
XYW | 733.32 | 105.75 | 961.92 | 0.54 | 514.71 | 23.22 | 8.91 |
XYG | 730.08 | 37.71 | 150.03 | 78.3 | 426.69 | 20.16 | 41.58 |
DF | 220.59 | 236.07 | 231.03 | 0 | 439.02 | 1.62 | 0 |
HCW | 361.89 | 244.08 | 64.8 | 0 | 47.07 | 19.26 | 5.22 |
SY | 94.86 | 596.34 | 11.43 | 0 | 6.75 | 26.64 | 1.71 |
Region | Mangrove | Forest | Agriculture | Unused Land | Water | Built-up | Grassland |
---|---|---|---|---|---|---|---|
DZG | 2662.92 | 2594.07 | 350.82 | 387.09 | 199.89 | 22.86 | 0 |
QLG | 1631.43 | 327.42 | 949.77 | 525.87 | 528.66 | 23.31 | 13.05 |
XYW | 954.27 | 99.63 | 834.84 | 0.54 | 427.86 | 23.58 | 7.65 |
XYG | 774.09 | 38.07 | 121.5 | 86.04 | 402.93 | 21.51 | 40.41 |
DF | 233.37 | 232.74 | 227.34 | 0 | 433.53 | 1.35 | 0 |
HCW | 366.39 | 243.99 | 65.88 | 0 | 47.34 | 24.48 | 5.04 |
SY | 169.29 | 485.46 | 10.08 | 0 | 6.03 | 65.25 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wu, L.; Zheng, Y.; Zhang, X.; Wang, Y.; Chen, Q.; Sun, Z.; Nie, T. Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model. Forests 2024, 15, 750. https://doi.org/10.3390/f15050750
Shi X, Wu L, Zheng Y, Zhang X, Wang Y, Chen Q, Sun Z, Nie T. Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model. Forests. 2024; 15(5):750. https://doi.org/10.3390/f15050750
Chicago/Turabian StyleShi, Xian, Lan Wu, Yinqi Zheng, Xiang Zhang, Yijia Wang, Quan Chen, Zhongyi Sun, and Tangzhe Nie. 2024. "Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model" Forests 15, no. 5: 750. https://doi.org/10.3390/f15050750
APA StyleShi, X., Wu, L., Zheng, Y., Zhang, X., Wang, Y., Chen, Q., Sun, Z., & Nie, T. (2024). Dynamic Estimation of Mangrove Carbon Storage in Hainan Island Based on the InVEST-PLUS Model. Forests, 15(5), 750. https://doi.org/10.3390/f15050750