Do Sonic Tomography and Static Load Tests Yield Comparable Values of Load-Bearing Capacity?
Abstract
:1. Introduction
- If both methods are interchangeable, they could can the most cost efficient or practical method.
- When the same tree has been assessed using different methods by different consultants, they need to compare and evaluate the validity of the results.
2. Materials and Methods
2.1. Tomography
2.2. Static Load Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rust, S. A New Tomographic Device for the Non-Destructive Testing of Standing Trees. In Proceedings of the 12th International Symposium on Nondestructive Testing of Wood, University of Western Hungary, Sopron, Hungary, 13–15 September 2000; pp. 233–238. [Google Scholar]
- Wessolly, L.; Erb, M. Manual of Tree Statics and Tree Inspection; Patzer Verlag: Berlin, Germany, 2016; ISBN 978-3-87617-143-2. [Google Scholar]
- Wolf, J. Experimentelle Überprüfung der Berechnung der Flächenträgheitsmomente aus dem Impulstomogramm. Bachelor’s Thesis, Hochschule Bremen, Bremen, Germany, 2010. [Google Scholar]
- Lesnino, G. Vergleichsuntersuchungen zur Sicherheitsermittlung an Bäumen—Schalltomografie und Zugversuche. In Proceedings of the Baumtage Süd, Böblingen, Germany, 20–21 October 2009; pp. 1–5. [Google Scholar]
- Bieker, D.; Kehr, R.; Weber, G.; Rust, S. Non-Destructive Monitoring of Early Stages of White Rot by Trametes Versicolor in Fraxinus Excelsior. Ann. For. Sci. 2010, 67, 210. [Google Scholar] [CrossRef]
- Bieker, D.; Rust, S. Non-Destructive Estimation of Sapwood and Heartwood Width in Scots Pine (Pinus sylvestris L.). Silva Fenn. 2010, 44, 267–273. [Google Scholar] [CrossRef]
- Bieker, D.; Rust, S. Electric Resistivity Tomography Shows Radial Variation of Electrolytes in Quercus Robur. Can. J. For. Res. 2010, 40, 1189–1193. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C.; Spitzer, K. Three-Dimensional Modelling and Inversion of Dc Resistivity Data Incorporating Topography—II. Inversion. Geophys. J. Int. 2006, 166, 506–517. [Google Scholar] [CrossRef]
- Just, A.; Jacobs, F. Elektrische Widerstandstomographie zur Untersuchung des Gesundheitszustandes von Bäumen. In Proceedings of the VII. Arbeitsseminar “Hochauflösende Geoelektrik”, Bucha, Germany, 3–5 November 1998; Danckwardt, E., Ed.; Institut für Geophysik und Geologie der Universität Leipzig: Bucha, Germany, 1998. [Google Scholar]
- Sinn, G.; Wessolly, L. A Contribution to the Proper Assessment of the Strength and Stability of Trees. Arboric. J. 1989, 13, 45–65. [Google Scholar] [CrossRef]
- Niklas, K.J.; Spatz, H.-C. Worldwide Correlations of Mechanical Properties and Green Wood Density. Am. J. Bot. 2010, 97, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, D.E. Chapter 5 Mechanical Properties of Wood. In Wood Handbook General Technical Report FPL–GTR–190; Forest Products Laboratory: Madison, WI, USA, 2010. [Google Scholar]
- Jessome, A.P. Strength and Related Properties of Woods Grown in Canada; Eastern Forest Products Laboratory: Ottawa, ON, Canada, 1977. [Google Scholar]
- Lavers, G.M.; Moore, G.L. The Strength Properties of Timber; Department of the Environment, Building Research Establishment; HMSO: Watford, UK, 1983. [Google Scholar]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and Extensible Bone Image Analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Koizumi, A.; Hirai, T. Evaluation of the Section Modulus for Tree-Stem Cross Sections of Irregular Shape. J. Wood Sci. 2006, 52, 213–219. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Rinntech. Benutzerhandbuch Arbotom; Rinntech: Heidelberg, Germany, 2011. [Google Scholar]
- Cristini, V.; Tippner, J.; Tomšovský, M.; Zlámal, J.; Mařík, R. Acoustic Tomography Outputs in Comparison to the Properties of Degraded Wood in Beech Trees. Eur. J. Wood Prod. 2022, 80, 1377–1387. [Google Scholar] [CrossRef]
- Bork, R.; Düsterdiek, S.; Detter, A.; Rust, S. Vergleich von Zugversuchen, Materialtests an Kleinproben und Literaturwerten. In Proceedings of the Jahrbuch der Baumpflege; Dujesiefken, D., Ed.; Haymarket Media: Augsburg, Germany, 2012; pp. 237–242. [Google Scholar]
- Gil-Moreno, D.; MClean, J.P.; Ridley-Ellis, D. Models to Predict the Radial Variation of Stiffness, Strength, and Density in Planted Noble Fir, Norway Spruce, Western Hemlock, and Western Red Cedar in Great Britain. Ann. For. Sci. 2023, 80, 1–15. [Google Scholar] [CrossRef]
- Lachenbruch, B.; Moore, J.R.; Evans, R. Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence. In Size- and Age-Related Changes in Tree Structure and Function; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Tree Physiology; Springer: Dordrecht, The Netherlands, 2011; Volume 4, pp. 121–164. ISBN 978-94-007-1241-6. [Google Scholar]
- Schimleck, L.R.; Dahlen, J.; Auty, D. Radial Patterns of Specific Gravity Variation in North American Conifers. Can. J. For. Res. 2022, 52, 889–900. [Google Scholar] [CrossRef]
- Van Duong, D.; Hasegawa, M.; Matsumura, J. The Relations of Fiber Length, Wood Density, and Compressive Strength to Ultrasonic Wave Velocity within Stem of Melia Azedarach. J. Indian Acad. Wood Sci. 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Rungwattana, K.; Hietz, P. Radial Variation of Wood Functional Traits Reflect Size-Related Adaptations of Tree Mechanics and Hydraulics. Funct. Ecol. 2018, 32, 260–272. [Google Scholar] [CrossRef]
- Wassenberg, M.; Chiu, H.-S.; Guo, W.; Spiecker, H. Analysis of Wood Density Profiles of Tree Stems: Incorporating Vertical Variations to Optimize Wood Sampling Strategies for Density and Biomass Estimations. Trees 2015, 29, 551–561. [Google Scholar] [CrossRef]
- Ubuy, M.H.; Eid, T.; Bollandsås, O.M. Variation in Wood Basic Density within and between Tree Species and Site Conditions of Exclosures in Tigray, Northern Ethiopia. Trees 2018, 32, 967–983. [Google Scholar] [CrossRef]
- Bouslimi, B.; Koubaa, A.; Bergeron, Y. Regional, Site, and Tree Variations of Wood Density and Growth in Thuja occidentalis L. in the Quebec Forest. Forests 2022, 13, 1984. [Google Scholar] [CrossRef]
- Kane, B.C.P.; Ryan, H.D.P.I. Examining Formulas That Assess Strength Loss Due to Decay in Trees: Woundwood Toughness Improvement in Red Maple (Acer rubrum). J. Arboric. 2003, 29, 209–217. [Google Scholar] [CrossRef]
- Duong, D.V.; Schimleck, L.; Tran, D.L.; Vo, H.D. Radial and Among-Clonal Variations of the Stress-Wave Velocity, Wood Density, and Mechanical Properties in 5-Year-Old Acacia Auriculiformis Clones. BioResources 2022, 17, 2084–2096. [Google Scholar] [CrossRef]
- Lachenbruch, B.; Johnson, G.R.; Downes, G.M.; Evans, R. Relationships of Density, Microfibril Angle, and Sound Velocity with Stiffness and Strength in Mature Wood of Douglas-Fir. Can. J. For. Res. 2010, 40, 55–64. [Google Scholar] [CrossRef]
- Papandrea, S.F.; Cataldo, M.F.; Bernardi, B.; Zimbalatti, G.; Proto, A.R. The Predictive Accuracy of Modulus of Elasticity (MOE) in the Wood of Standing Trees and Logs. Forests 2022, 13, 1273. [Google Scholar] [CrossRef]
- Watt, M.S.; Trincado, G. Modelling between Tree and Longitudinal Variation in Green Density within Pinus Radiata: Implications for Estimation of MOE by Acoustic Methods. N. Z. J. For. Sci. 2014, 44, 16. [Google Scholar] [CrossRef]
- Todoroki, C.L.; Lowell, E.C. Validation of Models Predicting Modulus of Elasticity in Douglas-Fir Trees, Boles, and Logs. N. Z. J. For. Sci. 2016, 46, 11. [Google Scholar] [CrossRef]
- Burcham, D.C.; Brazee, N.J.; Marra, R.E.; Kane, B. Can Sonic Tomography Predict Loss in Load-Bearing Capacity for Trees with Internal Defects? A Comparison of Sonic Tomograms with Destructive Measurements. Trees-Struct. Funct. 2019, 33, 681–695. [Google Scholar] [CrossRef]
- Brazee, N.J.; Burcham, D.C. Internal Decay in Landscape Oaks (Quercus Spp.): Incidence, Severity, Explanatory Variables, and Estimates of Strength Loss. Forests 2023, 14, 978. [Google Scholar] [CrossRef]
- Langum, C.E.; Yadama, V.; Lowell, E.C. Physical and Mechanical Properties of Young-Growth Douglas-Fir and Western Hemlock from Western Washington. For. Prod. J. 2009, 59, 37–47. [Google Scholar] [CrossRef]
- Bonser, R.H.C.; Ennos, A.R. Measurement of Prestrain in Trees: Implications for the Determination of Safety Factors. Funct. Ecol. 1998, 12, 971–974. [Google Scholar] [CrossRef]
- Rinn, F. Statische Hinweise im Schall-Tomogramm von Bäumen. Stadt Und Grün 2004, 7, 41–45. [Google Scholar]
- Rust, S. Accuracy and Reproducibility of Acoustic Tomography Significantly Increase with Precision of Sensor Position. J. For. Landsc. Res. 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Rust, S. Reproducibility of Stress Wave and Electrical Resistivity Tomography for Tree Assessment. Forests 2022, 13, 295. [Google Scholar] [CrossRef]
- Burcham, D.C.; Brazee, N.J.; Marra, R.E.; Kane, B. Geometry Matters for Sonic Tomography of Trees. Trees 2023, 37, 837–848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rust, S.; Detter, A. Do Sonic Tomography and Static Load Tests Yield Comparable Values of Load-Bearing Capacity? Forests 2024, 15, 768. https://doi.org/10.3390/f15050768
Rust S, Detter A. Do Sonic Tomography and Static Load Tests Yield Comparable Values of Load-Bearing Capacity? Forests. 2024; 15(5):768. https://doi.org/10.3390/f15050768
Chicago/Turabian StyleRust, Steffen, and Andreas Detter. 2024. "Do Sonic Tomography and Static Load Tests Yield Comparable Values of Load-Bearing Capacity?" Forests 15, no. 5: 768. https://doi.org/10.3390/f15050768
APA StyleRust, S., & Detter, A. (2024). Do Sonic Tomography and Static Load Tests Yield Comparable Values of Load-Bearing Capacity? Forests, 15(5), 768. https://doi.org/10.3390/f15050768