Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Field Data
2.2.2. Handheld LiDAR Data
2.3. Moso Bamboo DBH Extraction Methods
2.3.1. Removal of Noise
2.3.2. Ground Point Classification and Normalization
2.3.3. Individual Tree Segmentation
2.3.4. DBH Extraction
2.3.5. Denoising Parameter Optimization
2.3.6. Accuracy Assessment
3. Results
3.1. Identification Results and Analysis of Moso Bamboo
3.2. Parameter Optimization Results and Analysis
3.3. DBH Extraction Results and Analysis
3.4. Analysis of Errors
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Zhou, Y.; Qin, H.; Liang, C.; Shao, S.; Fuhrmann, J.J.; Chen, J.; Xu, Q. Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China. For. Ecol. Manag. 2021, 498, 119549. [Google Scholar] [CrossRef]
- Li, L.; Zhu, H.; Wu, T.; Wei, L.; Li, N. New landscape-perspective exploration of Moso bamboo forests under on/off-year phenomena and human activities. Front. For. Glob. Change 2023, 6, 1204329. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, S.; Guan, F.; Xia, W.; Wang, S.; Xiao, X. Strip Clearcutting Drives Vegetation Diversity and Composition in the Moso Bamboo Forests. For. Sci. 2022, 68, 27–36. [Google Scholar] [CrossRef]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Li, L. Phenology Examination, Classification and Aboveground Biomass Estimation of Moso Bamboo Forests Using Time Series Remote Sensing Data. Ph.D. Thesis, Zhejiang A&F University, Hangzhou, China, 2020. [Google Scholar]
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of Carbon Fixation in Bamboo Forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
- Shendryk, I.; Broich, M.; Tulbure, M.G.; Alexandrov, S.V. Bottom-up delineation of individual trees from full-waveform airborne laser scans in a structurally complex eucalypt forest. Remote Sens. Environ. 2016, 173, 69–83. [Google Scholar] [CrossRef]
- Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [Google Scholar] [CrossRef]
- Proudman, A.; Ramezani, M.; Digumarti, S.T.; Chebrolu, N.; Fallon, M. Towards real-time forest inventory using handheld LiDAR. Robot. Auton. Syst. 2022, 157, 104240. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Sun, H. Application of LiDAR data to forest parameters estimation. World For. Res. 2010, 23, 61–64. [Google Scholar]
- Pham, D.D.; Suh, Y.S. Remote length measurement system using a single point laser distance sensor and an inertial measurement unit. Comput. Stand. Interfaces 2017, 50, 153–159. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Cao, L.; Gao, S. Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas. ISPRS J. Photogramm. Remote Sens. 2019, 147, 307–318. [Google Scholar] [CrossRef]
- Cai, S.; Xin, Y.; Duan-Mu, J. Extraction of DBH from filtering out low intensity point cloud by backpack laser scanning. For. Eng. 2021, 37, 12–19. [Google Scholar]
- Brolly, G.; Kiraly, G.; Lehtomaki, M.; Liang, X. Voxel-based automatic tree detection and parameter retrieval from terrestrial laser scans for plot-wise forest inventory. Remote Sens. 2021, 13, 542. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, W.; Liang, D.; Deng, S.; Li, C. Distinguishing Phyllostachys edulis age based on laser scanning intensity. Chin. J. Lasers 2018, 45, 272–280. [Google Scholar]
- Li, L.; Sun, Y.; Wan, F.; Xu, X.; Huang, X. Research on canopy height inversion of Moso bamboo forests on Ta-pieh Mountains based on LiDAR. J. Bamboo Res. 2022, 41, 10–16. [Google Scholar]
- Huang, L.; Guan, F. Retrieving parameters of individual Moso bamboo using terrestrial laser scanning data. J. Northeast For. Univ. 2021, 49, 67–70, 114. [Google Scholar]
- Jiang, R.; Lin, J.; Li, T. Refined Aboveground Biomass Estimation of Moso Bamboo Forest Using Culm Lengths Extracted from TLS Point Cloud. Remote Sens. 2022, 14, 5537. [Google Scholar] [CrossRef]
- Yang, B.; Liang, F.; Huang, R. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod. Cartogr. Sin. 2017, 46, 1509–1516. [Google Scholar]
- Lu, D.; Zou, G. Comparative research on denoising algorithms of 3D laser point cloud. Bull. Surv. Mapp. 2019, S2, 102–105. [Google Scholar]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Liu, C.; Xing, Y.; Duanmu, J.; Tian, X. Evaluating different methods for estimating diameter at breast height from terrestrial laser scanning. Remote Sens. 2018, 10, 513. [Google Scholar] [CrossRef]
- Haris, B.; Jasmin, V.; Walter, B.; De Cubber, S.; Bruno, S. Fast Statistical Outlier Removal Based Method for Large 3D Point Clouds of Outdoor Environments. IFAC-PapersOnLine 2018, 51, 348–353. [Google Scholar]
Serial Number | Sample Size | Number of Plants | Under-Forest Condition | Average Slope |
---|---|---|---|---|
Site 1 | 20 m × 20 m | 27 | Few shrubs | 5° |
Site 2 | 20 m × 20 m | 18 | Shrubby | 9° |
Site 3 | 20 m × 20 m | 27 | Shrubby | 13° |
Site 4 | 20 m × 20 m | 20 | Shrubby | 25° |
Site 5 | 20 m × 20 m | 20 | Few shrubs | 15° |
Site 6 | 20 m × 20 m | 20 | Few shrubs | 5° |
Performance Indicators | Parameters |
---|---|
Laser Sensor | VLP–16 |
LiDAR Accuracy | ±3 cm |
Relative Accuracy | ≤3 cm |
Absolute Accuracy | 5 cm |
Size | L270 mm × W210 mm × H120 mm |
Laser Wavelength | 903 nm |
Scan Rate | 300000 pts/s |
View Angle Range | 280°~360° (Horizontal); –90°~90° (Vertical) |
Scan Range | 100 m |
Serial Number | Number of Plants Measured | Number of Plants Identified | Number of Undetected Strains | Recognition Rate (%) |
---|---|---|---|---|
Site 1 | 27 | 24 | 3 | 88.89 |
Site 2 | 18 | 17 | 1 | 94.44 |
Site 3 | 27 | 24 | 3 | 88.89 |
Site 4 | 20 | 19 | 1 | 95 |
Site 5 | 20 | 18 | 2 | 90 |
Site 6 | 20 | 20 | 0 | 100 |
Serial Number | Minimum Number of Neighborhood Points | Accuracy (%) | R2 | RMSE | rRMSE (%) |
---|---|---|---|---|---|
Site 1 | 10 | 96.37 | 0.959 | 0.416 | 4.38 |
20 | 94.39 | 0.872 | 0.632 | 6.24 | |
30 | 93.87 | 0.906 | 0.700 | 7.36 | |
40 | 93.64 | 0.839 | 0.713 | 7.5 | |
50 | 94.48 | 0.898 | 0.647 | 6.80 | |
Site 2 | 10 | 90.44 | 0.344 | 1.431 | 16.03 |
20 | 89.39 | 0.444 | 0.916 | 15.69 | |
30 | 88.08 | 0.214 | 1.567 | 17.56 | |
40 | 88.40 | 0.205 | 1.613 | 18.07 | |
50 | 87.02 | 0.227 | 1.593 | 17.85 | |
Site 3 | 10 | 86.80 | 0.519 | 1.572 | 13.38 |
20 | 85.95 | 0.435 | 1.689 | 14.38 | |
30 | 86.68 | 0.511 | 1.606 | 13.67 | |
40 | 83.54 | 0.586 | 1.802 | 15.35 | |
50 | 82.92 | 0.330 | 1.989 | 16.94 | |
Site 4 | 10 | 92.39 | 0.637 | 1.073 | 9.32 |
20 | 89.66 | 0.206 | 1.492 | 12.97 | |
30 | 91.83 | 0.621 | 1.007 | 8.75 | |
40 | 91.37 | 0.623 | 1.164 | 10.12 | |
50 | 90.67 | 0.539 | 1.220 | 10.61 | |
Site 5 | 10 | 89.68 | 0.691 | 1.513 | 14.02 |
20 | 88.55 | 0.576 | 1.220 | 17.89 | |
30 | 90.03 | 0.728 | 1.398 | 12.96 | |
40 | 89.30 | 0.681 | 1.545 | 14.32 | |
50 | 88.65 | 0.634 | 0.586 | 14.70 | |
Site 6 | 10 | 94.44 | 0.865 | 0.702 | 7.26 |
20 | 93.09 | 0.819 | 0.759 | 7.77 | |
30 | 93.87 | 0.832 | 0.725 | 7.50 | |
40 | 92.47 | 0.770 | 0.883 | 9.14 | |
50 | 92.78 | 0.808 | 0.784 | 8.11 |
Serial Number | Standard Deviation Multiplier | Accuracy (%) | R2 | RMSE | rRMSE (%) |
---|---|---|---|---|---|
Site 1 | 1 | 96.37 | 0.959 | 0.416 | 4.38 |
2 | 94.06 | 0.896 | 0.728 | 7.66 | |
3 | 93.60 | 0.778 | 0.870 | 9.15 | |
4 | 94.20 | 0.215 | 0.761 | 8.00 | |
5 | 94.91 | 0.902 | 0.633 | 6.66 | |
Site 2 | 1 | 90.44 | 0.344 | 1.431 | 16.03 |
2 | 89.58 | 0.411 | 1.357 | 15.20 | |
3 | 88.30 | 0.241 | 1.539 | 17.24 | |
4 | 88.06 | 0.282 | 1.492 | 16.71 | |
5 | 89.09 | 0.424 | 1.365 | 15.29 | |
Site 3 | 1 | 86.80 | 0.519 | 1.57 | 13.38 |
2 | 91.05 | 0.645 | 1.157 | 9.85 | |
3 | 88.39 | 0.508 | 1.408 | 11.99 | |
4 | 87.89 | 0.567 | 1.480 | 12.60 | |
5 | 88.97 | 0.486 | 1.390 | 11.84 | |
Site 4 | 1 | 92.39 | 0.515 | 1.073 | 9.32 |
2 | 92.63 | 0.637 | 1.071 | 9.31 | |
3 | 92.51 | 0.367 | 1.154 | 10.03 | |
4 | 92.49 | 0.449 | 1.159 | 10.08 | |
5 | 92.52 | 0.499 | 1.118 | 9.72 | |
Site 5 | 1 | 89.68 | 0.691 | 1.513 | 14.02 |
2 | 92.12 | 0.740 | 1.316 | 12.20 | |
3 | 89.70 | 0.578 | 1.710 | 15.85 | |
4 | 89.98 | 0.544 | 1.771 | 16.42 | |
5 | 89.21 | 0.583 | 1.737 | 16.11 | |
Site 6 | 1 | 94.44 | 0.865 | 0.702 | 7.26 |
2 | 94.72 | 0.872 | 0.668 | 6.91 | |
3 | 94.36 | 0.857 | 0.731 | 7.56 | |
4 | 93.23 | 0.816 | 0.822 | 8.50 | |
5 | 94.10 | 0.868 | 0.680 | 7.03 |
Serial ID | Measured DBH (cm) | Fitted DBH (cm) |
---|---|---|
MZ02dm01 | 6.9 | 8.8 |
MZ03dm04 | 13.4 | 11.2 |
MZ03dm25 | 13.0 | 10.7 |
MZ04dm10 | 12.7 | 9.1 |
MZ04dm11 | 9.8 | 8.3 |
MZ05dm03 | 7.5 | 11.5 |
MZ05dm05 | 5.0 | 10.5 |
MZ06dm12 | 7.9 | 9.7 |
Sample Site | Pre-Deletion | Post-Deletion | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | R2 | RMSE | rRMSE (%) | Accuracy (%) | R2 | RMSE | rRMSE (%) | |
Site 1 | 96.37 | 0.959 | 0.416 | 4.38 | 96.37 | 0.959 | 0.416 | 4.38 |
Site 2 | 90.44 | 0.344 | 1.431 | 16.03 | 95.42 | 0.672 | 0.694 | 7.37 |
Site 3 | 91.05 | 0.645 | 1.157 | 9.85 | 94.24 | 0.732 | 0.915 | 7.84 |
Site 4 | 92.63 | 0.637 | 1.071 | 9.31 | 95.48 | 0.729 | 0.714 | 6.19 |
Site 5 | 92.12 | 0.740 | 1.316 | 12.20 | 96.71 | 0.931 | 0.565 | 5.08 |
Site 6 | 94.72 | 0.872 | 0.668 | 6.91 | 95.60 | 0.903 | 0.564 | 5.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wei, L.; Li, N.; Zhang, S.; Wu, Z.; Dong, M.; Chen, Y. Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation. Forests 2024, 15, 804. https://doi.org/10.3390/f15050804
Li L, Wei L, Li N, Zhang S, Wu Z, Dong M, Chen Y. Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation. Forests. 2024; 15(5):804. https://doi.org/10.3390/f15050804
Chicago/Turabian StyleLi, Longwei, Linjia Wei, Nan Li, Shijun Zhang, Zhicheng Wu, Miaofei Dong, and Yuyun Chen. 2024. "Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation" Forests 15, no. 5: 804. https://doi.org/10.3390/f15050804
APA StyleLi, L., Wei, L., Li, N., Zhang, S., Wu, Z., Dong, M., & Chen, Y. (2024). Extracting the DBH of Moso Bamboo Forests Using LiDAR: Parameter Optimization and Accuracy Evaluation. Forests, 15(5), 804. https://doi.org/10.3390/f15050804