Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gathering Species Distribution Points and a Base Map for Analysis
2.2. Climatic Factors
2.3. Screening of Environmental Variables
2.4. Model Development and Statistical Evaluation
3. Results
3.1. Assessment of the MaxEnt Model
3.2. Contribution of Important Climatic Variables
3.3. Predicting Potential Distribution under Current Conditions
3.4. Forecast of Future Potential Habitat
3.5. Shift of the Geometric Center across Various Climate Scenarios
4. Discussion
4.1. Significance of Model Predictions
4.2. Prospective Changes in Q. oxyphylla’s Suitable Habitat
4.3. Impacts of Climatic Parameters on the Distribution of Q. oxyphylla
4.4. Study Limitations and Future Directions
5. Conclusions
- (1)
- The predicted suitable habitat for Q. oxyphylla is primarily in southern China, characterized by a subtropical monsoon climate, with Sichuan province displaying the largest area of suitability. Additionally, a well-defined suitable range is identified within the plateau climates of Yunnan and Tibet, indicating that Q. oxyphylla can thrive in high-altitude regions with unique climatic conditions. The overall geographical boundaries of Q. oxyphylla are predicted to remain similar to the current ones, with a southwestward migration and expansion.
- (2)
- The distribution is significantly influenced by temperature- and precipitation-derived variables, particularly annual precipitation, isothermality, and temperature annual range, underscoring the importance of these climatic factors in determining Q. oxyphylla’s habitat suitability.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dormann, C.F. Promising the Future? Global Change Projections of Species Distributions. Basic Appl. Ecol. 2007, 8, 387–397. [Google Scholar] [CrossRef]
- Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; Volume 2.
- CMA Climate Change Centre. Blue Book on Climate Change in China; Science Press: Beijing, China, 2022. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- IPPC Year of Plant Health and Environmental Protection. Plant Health and Environmental Protection. Available online: https://www.ippc.int/en/themes/environment-protection/ (accessed on 10 May 2024).
- Trumbore, S.; Brando, P.; Hartmann, H. Forest Health and Global Change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Brett, R.S.; Luc, D.M.; Tom, C.L.B.; Ary, A.H.; John, M.P.; Richard, T.C.; Stuart, H.M.B.; Paul, P.; Kit, M.K.; David, D.; et al. The Broad Footprint of Climate Change from Genes to Biomes to People. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Li, Q.T.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13, 715. [Google Scholar] [CrossRef]
- Fabrício, L.M.; Carla, R.; Fábio, R.; José, G.R.; David, H.L.; António, M.F.A.; Délia, C.; Miguel, A.A.P.C. Prediction of the Potential Distribution of Drosophila suzukii on Madeira Island Using the Maximum Entropy Modeling. Agriculture 2023, 13, 1764. [Google Scholar] [CrossRef]
- Pan, T.T. The Phylogeographic Structure and Climate Response Characteristics of Three Spring Blossom Osmanthus Species. Nanjing For. Univ. 2021, 57–61. [Google Scholar] [CrossRef]
- Yang, H.X.; Jiang, N.Z.Y.; Li, C.; Li, J. Prediction of the Current and Future Distribution of Tomato Leafminer in China Using the MaxEnt Model. Insects 2023, 14, 531. [Google Scholar] [CrossRef] [PubMed]
- He, Y.L.; Ma, J.M.; Chen, G.S. Potential Geographical Distribution and Its Multi-Factor Analysis of Pinus massoniana in China Based on the Maxent Model. Ecol. Indic. 2023, 154, 110790. [Google Scholar] [CrossRef]
- Duan, Y.Z.; Wang, H.T.; Wang, C.; Du, Z.Y. Potential Distribution of Endangered Plant Helianthemum songaricum in China under Climate Change. J. Plant. Resour. Environ. 2020, 29, 55–68. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Hausser, J. Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps without Absence Data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F.; Franklin, J. BIOCLIM: The First Species Distribution Modelling Package, Its Early Applications and Relevance to Most Current MaxEnt Studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Papes, M.; Gaubert, P. Modelling Ecological Niches from Low Number of Occurrences: Assessment of the Conservation Status of Poorly Known Viverrids (Mammalia, Carnivora) across Two Continents. Divers. Distrib. 2007, 13, 890–902. [Google Scholar] [CrossRef]
- Saha, A.; Rahman, S.; Alam, S. Modeling Current and Future Potential Distributions of Desert Locust Schistocerca gregaria (Forskål) under Climate Change Scenarios Using MaxEnt. J. Asia-Pac. Biodivers. 2021, 14, 399–409. [Google Scholar] [CrossRef]
- Ward, D.F. Modelling the Potential Geographic Distribution of Invasive Ant Species in New Zealand. Biol. Invasions 2007, 9, 723–735. [Google Scholar] [CrossRef]
- Kumar, S.; Stohlgren, T.J. Maxent Modeling for Predicting Suitable Habitat for Threatened and Endangered Tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ 2009, 6, 94–98. [Google Scholar]
- Zhang, H.H.; Sun, X.; Zhang, G.S.; Zhang, X.K.; Miao, Y.J.; Zhang, M.; Feng, Z.; Zeng, R.; Pei, J.; Huang, L.F. Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch: Predictions Based on MaxEnt Ecological Niche Modeling. Sustainability 2023, 15, 631. [Google Scholar] [CrossRef]
- Pandi, G.G.P.; Choudhary, J.S.; Chemura, A.; Basana-Gowda, G.; Annamalai, M.; Patil, N.; Adak, T.; Rath, P.C. Predicting the Brown Planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae) Potential Distribution under Climatic Change Scenarios in India. Curr. Sci. 2021, 121, 1600–1609. [Google Scholar] [CrossRef]
- Li, Q.; Qi, Y.; Wang, Q.; Wang, D.L. Prediction of the Potential Distribution of Vaccinium uliginosum in China Based on the Maxent Niche Model. Sci. Hortic. 2022, 8, 1202. [Google Scholar] [CrossRef]
- Naudiyal, N.; Wang, J.N.; Ning, W. Potential Distribution of Abies, Picea, and Juniperus Species in the Sub-Alpine Forest of Minjiang Headwater Region under Current and Future Climate Scenarios and Its Implications on Ecosystem Services Supply. Ecol. Indic. 2021, 121, 107131. [Google Scholar] [CrossRef]
- Guo, L.Q.; Cheng, M.; Sun, J.F. A New Record Species of Jiangxi Shell Bucket Family-Quercus oxyphylla. South. For. Sci. 2019, 47, 40–41. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Dormann, C.G.; Elith, J.; Bacher, S.; Buchmann, C.M. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2012, 35, 27–46. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, M.Y.; Li, C.; Liu, Z.Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kim, S.; Yoon, S.H.; Jung, S.H.; Kim, D.H.; Lee, W. Evaluation of Spatial Distribution of Three Major Leptocorisa (Hemiptera: Alydidae) Pests Using MaxEnt Model. Insects 2022, 13, 750. [Google Scholar] [CrossRef] [PubMed]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Gao, T.; Xu, Q.; Liu, Y.; Zhao, J.Q.; Shi, J. Predicting the Potential Geographic Distribution of Sirex nitobei in China under Climate Change Using Maximum Entropy Model. Forests 2021, 12, 151. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Sun, R.Z.; Tong, G.J.; Zhang, Q.; Xu, L.J.; Sang, Z.H.; Li, Y.H. A Study on the Suitable Areas for Growing Apricot Kernels in China Based on the MaxEnt Model. Sustainability 2023, 15, 9635. [Google Scholar] [CrossRef]
- Hong, D.Y.; Zhou, S.L.; He, X.; Yuan, J.; Zhang, Y.; Cheng, F.; Zeng, X.; Wang, Y.; Zhang, X. Current Status of Wild Tree Peony Species with Special Reference to Conservation. Biodivers. Sci. 2017, 25, 781–793. [Google Scholar] [CrossRef]
- Liu, L.; Wang, R.L.; Zhang, Y.Y.; Mou, Q.Y.; Guo, Y.S.; Liu, K.; Huang, N.; Ouyang, C.L.; Hu, J.Y.; Du, B.G. Simulation of Potential Suitable Distribution of Alnus cremastogyne Burk. In China under Climate Change Scenarios. Ecol. Indic. 2021, 133, 108396. [Google Scholar] [CrossRef]
- Wei, B.; Wang, R.L.; Hou, K.; Wang, X.Y.; Wu, W. Predicting the Current and Future Cultivation Regions of Carthamus tinctorius L. Using MaxEnt Model under Climate Change in China. Glob. Ecol. Conserv. 2018, 16, 477. [Google Scholar] [CrossRef]
- Yan, X.Y.; Wang, S.C.; Duan, Y.; Han, J.; Huang, D.H.; Zhou, J. Current and Future Distribution of the Deciduous Shrub Hydrangea macrophylla in China Estimated by MaxEnt. Ecol. Evol. 2021, 11, 16099–16112. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Yadav, S.K.; Rajput, B.S.; Sharma, P. Carbon Storage and Economic Efficiency of Fruit-Based Systems in Semi-Arid Region: A Symbiotic Approach for Sustainable Agriculture and Climate Resilience. Carbon Res. 2024, 3, 33. [Google Scholar] [CrossRef]
- Shi, X.D.; Wang, J.W.; Zhang, L.; Chen, S.X.; Zhao, A.L.; Ning, X.D.; Fan, G.R.; Wu, N.S.; Zhang, L.; Wang, Z.D. Prediction of the Potentially Suitable Areas of Litsea cubeba in China Based on Future Climate Change Using the Optimized MaxEnt Model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Cai, Y.L.; Zhao, X.Y. An Analysis of the Spatial Pattern of Summer Persistent Moderate-to-Heavy Rainfall Regime in Guizhou Province of Southwest China and the Control Factors. Theor. Appl. Climatol. 2009, 97, 205–218. [Google Scholar] [CrossRef]
- Zhuo, Z.H.; Xu, D.P.; Pu, B.; Wang, R.L.; Ye, M. Predicting Distribution of Zanthoxylum bungeanum Maxim. in China. BMC Ecol. 2020, 20, 46. [Google Scholar] [CrossRef]
- Yan, H.Y.; He, J.; Xu, X.C.; Yao, X.Y.; Wang, G.Y.; Tang, L.G.; Feng, L.; Zou, L.M.; Gu, X.L.; Qu, Y.F.; et al. Prediction of Potentially Suitable Distributions of Codonopsis pilosula in China Based on an Optimized MaxEnt Model. Front. Ecol. Evol. 2021, 9, 773396. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, X.B.; Jiang, X.L.; Fan, T.T.; Liang, X.C.; Yan, W.D. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests 2023, 14, 394. [Google Scholar] [CrossRef]
- Gebrewahid, Y.; Abrehe, S.; Meresa, E.; Gebru, E.; Kiros, A.; Gebrehiwot, G.; Kiros, K.; Gezu, A.; Gebrekidan, A.; Darcha, G. Current and Future Predicting Potential Areas of Oxytenanthera abyssinica (A. Richard) Using MaxEnt Model under Climate Change in Northern Ethiopia. Ecol. Process. 2020, 9, 6. [Google Scholar] [CrossRef]
- Xun, X.J. Pollen-Based Biome Reconstruction at Middle Holocene (6kaBP) and Last Glacial Maximum (18ka BP) in China. Acta Bot. Sin. 2000, 42, 1201–1209. [Google Scholar]
- Xing, Y.F.; Shi, J.J.; De, K.J.; Wang, X.L.; Wang, W.; Ma, Y.; Zhang, H.R.; He, M.H.; Liu, Q.Q. The Current Distribution of Carex alatauensis in the Qinghai–Tibet Plateau Estimated by MaxEnt. Agron. J. 2023, 13, 564. [Google Scholar] [CrossRef]
- Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent Modeling for Predicting the Potential Distribution of Endangered Medicinal Plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Duan, X.G.; Li, J.Q.; Wu, S.H. MaxEnt Modeling to Estimate the Impact of Climate Factors on Distribution of Pinus densiflora. Forests 2022, 13, 402. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent Modeling for Predicting the Potential Geographical Distribution of Two Peony Species under Climate Change. Sci. Total. Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
Environmental Variables | Description | PC/% | PI/% |
---|---|---|---|
Bio12 | Annual Precipitation | 50.5 | 3.9 |
Bio7 | Temperature Annual Range | 27.6 | 74.1 |
Bio3 | Isothermality | 18.1 | 14.9 |
Bio15 | Precipitation Seasonality | 2.1 | 4.7 |
Bio8 | Mean Temperature of Wettest Quarter | 0.9 | 0.3 |
Bio9 | Mean Temperature of Driest Quarter | 0.8 | 2 |
Decades | Scenarios | AUCmean | AUC Ratio | TSS | p-ROC-AUC | Kappa |
---|---|---|---|---|---|---|
Current | - | 0.955 | 1.96 | 0.903 | 0.90 | 0.909 |
2050s | SSP1-2.6 | 0.956 | 1.97 | 0.898 | 0.89 | 0.914 |
SSP2-4.5 | 0.954 | 1.96 | 0.890 | 0.88 | 0.899 | |
SSP5-8.5 | 0.954 | 1.92 | 0.889 | 0.89 | 0.909 | |
2070s | SSP1-2.6 | 0.958 | 1.98 | 0.905 | 0.90 | 0.918 |
SSP2-4.5 | 0.954 | 1.97 | 0.885 | 0.87 | 0.895 | |
SSP5-8.5 | 0.958 | 1.99 | 0.908 | 0.90 | 0.915 |
Decades | Scenarios | Predicted Area/104 km2 | Increase/Decrease Rate (%) [Compared to the Current Distribution] | ||||
---|---|---|---|---|---|---|---|
Total Poorly Suitable Habitat | Total Moderately Suitable Habitat | Total Highly Suitable Habitat | Total Poorly Suitable Habitat | Total Moderately Suitable Habitat | Total Highly Suitable Habitat | ||
Current | - | 127.34 | 65.98 | 51.66 | - | - | - |
2050s | SSP1-2.6 | 138.17 | 69.05 | 59.38 | 8.50 | 4.65 | 14.94 |
SSP2-4.5 | 132.08 | 70.66 | 65.81 | 3.72 | 7.09 | 27.39 | |
SSP5-8.5 | 136.48 | 72.36 | 66.57 | 7.18 | 9.67 | 28.86 | |
2070s | SSP1-2.6 | 124.26 | 76.26 | 69.92 | -2.42 | 15.58 | 35.35 |
SSP2-4.5 | 125.27 | 86.03 | 75.83 | -1.63 | 30.39 | 46.79 | |
SSP5-8.5 | 123.83 | 71.32 | 65.34 | -2.76 | 8.09 | 26.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; You, C.; Zhang, Z.; Xu, Z. Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios. Forests 2024, 15, 1033. https://doi.org/10.3390/f15061033
Chen S, You C, Zhang Z, Xu Z. Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios. Forests. 2024; 15(6):1033. https://doi.org/10.3390/f15061033
Chicago/Turabian StyleChen, Shuhan, Chengming You, Zheng Zhang, and Zhenfeng Xu. 2024. "Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios" Forests 15, no. 6: 1033. https://doi.org/10.3390/f15061033
APA StyleChen, S., You, C., Zhang, Z., & Xu, Z. (2024). Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios. Forests, 15(6), 1033. https://doi.org/10.3390/f15061033