The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Chemical Analyses
2.4. Calculations of Air Pollutant Removal Efficiency
2.4.1. Enrichment Factor (EF)
2.4.2. Metal Accumulation Index (MAI)
2.4.3. Simulation Model
- Q—the amount of pollutant in the air, removed by trees in a certain period of time;
- F—the flow of the pollutant;
- L—the total green coverage of the area;
- T (in seconds)—the vegetative period of urban trees, which was considered equal to 244 days (8 months, May—November) for deciduous and 365 days for evergreen species;
- 0.5—the rate of resuspension of particles that return to the atmosphere [36];
- LAIi —a variable used to indicate the removal of 1 m2 of soil covered by plants from a functional group (for trees, LAIi = 4).
2.5. Statistical Evaluation
3. Results
3.1. Leaf Concentrations of Potentially Toxic Elements
3.2. Calculating Efficiency of Air Pollutant Removal (Potentially Toxic Elements)
3.3. Modeling Efficiency of Air Pollutant Removal (PM10, PM2.5 and NO2)
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Petrova, S. Algorithm for assessment and modeling of some ecosystem services in urban areas (Plovdiv, Bulgaria). Ecol. Balk. 2023, 15, 222–229. [Google Scholar]
- Petrova, S.; Nikolov, B. Soil related ecosystem services in urban areas—A literature review. Ecol. Balk. 2023, 15, 203–231. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Liquete, C.; Braat, L.; Berry, P.; Egoh, B.; Puydarrieux, P.; Fiorina, C.; Santos, F.; et al. Mapping and Assessment of Ecosystems and Their Services. An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Murphy, P.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. Mapping and Assessment of Ecosystems and Their Services. Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020, 2nd Report; Publications office of the European Union: Luxembourg, 2014. [Google Scholar]
- Maes, J.; Teller, A.; Erhard, M.; Conde, S.; Vallecillo Rodriguez, S.; Barredo Cano, J.I.; Paracchini, M.; Abdul Malak, D.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment; EUR 30161 EN; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Chen, B.W.; Wu, C.Y.; Huang, X.J.; Yang, X.F. Examining the relationship between urban land expansion and economic linkage using coupling analysis: A case study of the Yangtze River Economic Belt, China. Sustainability 2020, 12, 1227. [Google Scholar] [CrossRef]
- Ji, X.; Wu, J.; Zhu, Q.; Sun, J. Using a hybrid heterogeneous DEA method to benchmark China’s sustainable urbanization: An empirical study. Ann. Oper. Res. 2019, 278, 281–335. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, W.; Ou, X.; Chai, H.; Khodabakhshi, Z.; Fu, J.; Yuan, P.F.; Horimbere, E.D.L.J. Urban Heat Mitigation towards Climate Change Adaptation: An Eco-Sustainable Design Strategy to Improve Environmental Performance under Rapid Urbanization. Atmosphere 2023, 14, 638. [Google Scholar] [CrossRef]
- Manes, F.; Silli, V.; Salvatori, E.; Incerti, G.; Galante, G.; Fusaro, L.; Perrino, C. Urban Ecosystem Services: Tree diversity and stability of PM10 removal in the Metropolitan Area of Rome. Ann. Bot. 2014, 4, 73–80. [Google Scholar]
- Manes, F.; Salvatori, E. Ecosystem services of urban trees: The case of Rome. Agrochimica 2014, 58, 222–233. [Google Scholar]
- Al-Dabbous, A.N.; Kumar, P. The influence of roadside vegetation barriers on airborne nanoparticles and pedestrian’s exposure under varying wind condition. Atmos. Environ. 2014, 90, 113–124. [Google Scholar] [CrossRef]
- Gallagher, J.; Baldauf, R.; Fuller, C.; Kumar, P.; Gill, L.W.; McNabola, A. Passive methods of air pollution control in the built environment: A review of porous and solid barriers. Atmos. Environ. 2015, 120, 61–70. [Google Scholar] [CrossRef]
- Vaz Monteiro, M.; Handley, P.; Morison, J.I.L.; Doick, K.J. The Role of Urban Trees and Greenspaces in Reducing Urban Air Temperatures; Forestry Commission: Surrey, UK, 2019; p. 19. ISBN 978-0-85538-984-0. [Google Scholar]
- Pearlmutter, D.; Calfapietra, C.; Samson, R.; O’Brien, L.; Krajter Ostoić, S.; Sanesi, G.; Alonso del Amo, R. The Urban Forest, Cultivating Green Infrastructure for People and the Environment; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Petrova, S.; Velcheva, I.; Nikolov, B.; Marinov-Serafimov, P.; Golubinova, I.; Popov, V.; Valcheva, E.; Todorova, K. Assessment of the adaptation of some tree species to the urban environment (Plovdiv, Bulgaria). Comptes Rendus L’academie Bulg. Sci. 2019, 72, 1676–1683. [Google Scholar]
- Petrova, S. Efficiency of Pinus nigra J.F. Arnold in removing pollutants from urban environment (Plovdiv, Bulgaria). Environ. Sci. Pollut. Res. 2020, 27, 39490–39506. [Google Scholar] [CrossRef]
- Valente, D.; Pasimeni, M.R.; Petrosillo, I. The role of green infrastructures in Italian cities by linking natural and social capital. Ecol. Indic. 2020, 108, 105694. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. NPJ Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef]
- Tremper, A.H.; Green, D.C.; Eleftheriou-Vaus, K. Impact of Green Screens on Concentrations of Particulate Matter and Oxides of Nitrogen in Near Road Environments; King’s College London: London, UK, 2015. [Google Scholar]
- Tremper, A.H.; Green, D.C. The Impact of a Green Screen on Concentrations of Nitrogen Dioxide at Bowes Primary School, Enfield; King’s College London: London, UK, 2018. [Google Scholar]
- Abhijith, K.V.; Kumar, P. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Baro, F. Urban Green Infrastructure: Modelling and Mapping Ecosystem Services for Sustainable Planning and Management in and around Cities. Ph.D. Thesis, Universitat Autonoma de Barcelona, Barcelona, Spain, 2016; 227p. [Google Scholar] [CrossRef]
- Petrova, S.; Velcheva, I.; Nikolov, B.; Vasileva, T.; Bivolarski, V. Antioxidant Responses and Adaptation Mechanisms of Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J. F. Arnold towards Urban Air Pollution. Forests 2022, 13, 1689. [Google Scholar] [CrossRef]
- ISTAT. Available online: http://www.en.istat.it (accessed on 11 September 2023).
- European Environmental Agency. Report 2018. Available online: http://eea.government.bg/bg/soer/2017/air/emisii-na-vredni-veshtestva-vav-vazduha (accessed on 28 September 2023).
- Petrova, S.; Petkova, M. Plant Traits of Tilia tomentosa Moench, Fraxinus excelsior L., and Pinus nigra J.F. Arnold as a Proxy of Urbanization. Forests 2023, 14, 800. [Google Scholar] [CrossRef]
- Serbula, S.M.; Miljkovic, D.D.; Kovacevic, R.M.; Ilic, A.A. Assessment of Airborne Heavy Metal Pollution Using Plant Parts and Topsoil. Ecotoxicol. Environ. Saf. 2012, 76, 209–214. [Google Scholar] [CrossRef] [PubMed]
- NCS DC73348; Bush Branches and Leaves—Trace Elements. LGC Standards Ltd.: London, UK, 2016.
- Mingorance, M.D.; Valdés, B.; Rossini Oliva, S. Strategies of Heavy Metal Uptake by Plants Growing under Industrial Emissions. Environ. Int. 2007, 33, 514–520. [Google Scholar] [CrossRef]
- Hu, R.; Yan, Y.; Zhou, X.; Wang, Y.; Fang, Y. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China. Int. J. Environ. Res. Public Health 2018, 15, 374. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Zhu, Y.-G.; Ding, H. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI). Environ. Pollut. 2007, 145, 387–390. [Google Scholar] [CrossRef]
- Municipal Program of Air Quality Management in the City of Plovdiv 2018–2023. Available online: https://www.plovdiv.bg/wp-content/uploads/2018/09/programa-plovdiv-kav-version5-final.pdf (accessed on 24 April 2023). (In Bulgarian).
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Manes, F.; Blasi, C.; Salvatori, E.; Capotorti, G.; Galante, G.; Feoli, E.; Incerti, G. Natural vegetation and ecosystem services related to air quality improvement: Tropospheric ozone removal by evergreen and deciduous forests in Latium (Italy). Ann. Bot. 2012, 2, 79–86. [Google Scholar]
- Zinke, P.J. Forest interception studies in the United States. In Forest Hydrology; Sopper, W.E., Lull, H.W., Eds.; Pergamon Press: Oxford, UK, 1967; pp. 137–161. [Google Scholar]
- Program for the Development, Maintenance and Protection of the Green System of the City of Plovdiv. Available online: https://www.plovdiv.bg/proekt-programa-zelena-sistema/ (accessed on 25 April 2023).
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, D.; Wei, L.; Zhang, X.; Song, B. Bioaccumulation of heavy metals in plant leaves from Yanan city of the Loess Plateau, China. Ecotoxicol. Environ. Saf. 2014, 110, 82–88. [Google Scholar] [CrossRef]
- Alahabadi, A.; Ehrampoush, M.; Miri, M.; Aval, H.; Yousefzadeh, S.; Ghaffari, H.; Ahmadi, E.; Talebi, P.; Fathabadi, Z.; Babai, F.; et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 2017, 172, 459–467. [Google Scholar] [CrossRef]
- Serbula, S.M.; Kalinovic, T.S.; Ilic, A.A.; Kalinovic, J.V.; Steharnik, M.M. Assessment of Airborne Heavy Metal Pollution Using Pinus spp. and Tilia spp. Aerosol Air Qual. Res. 2013, 13, 563–573. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Tot. Environ. 2020, 722, 37622. [Google Scholar] [CrossRef]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef]
- Bell, M.L.; Peng, R.D.; Dominici, F. The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health Persp. 2006, 114, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.J.; Kroeger, T.; Wager, J.E. Urban forest and pollution mitigation. Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Fares, S.; Matteucci, G.; Scarascia-Mugnozza, G.; Morani, A.; Calfapietra, C.; Salvatori, E. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest. Atmos. Environ. 2013, 67, 242–251. [Google Scholar] [CrossRef]
- Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Congedo, L.; Munafò, M.; Ciancarella, L.; Manes, F. Mapping and Assessment of PM10 and O3 Removal by Woody Vegetation at Urban and Regional Level. Remote Sens. 2017, 9, 791. [Google Scholar] [CrossRef]
Motor Traffic (Car Number per 10 min) | Built-Up Area (%) | Urbanization Intensity | Experimental Plot |
---|---|---|---|
0–10 | 0–10 | Low | Plot 4 |
10–50 | 10–40 | Medium | Plot 2 |
50–150 | 40–70 | High | Plot 1 |
>150 | >70 | Very high | Plot 3 |
Pollutant | Average Concentration per Year (Sum of All Emitters) | Average Concentration during the Period 1 Ocotber–31 March | Average Concentration during the Period 1 April–30 September | Emitter | Annual Emissions per Emitter | Annual Concentration per Emitter |
---|---|---|---|---|---|---|
PM10 | 48 µg/m3 | 65.67 µg/m3 | 31.17 µg/m3 | Domestic heating | 245 t/y | 34.4 µg/m3 |
Traffic | 23 t/y | 3.3 µg/m3 | ||||
Industry | 2 t/y | 0.3 µg/m3 | ||||
Background | - | 10 µg/m3 | ||||
PM2.5 | 34.2 µg/m3 | 45.73 | 22.67 µg/m3 | Domestic heating | 172.1 t/y | 26.2 µg/m3 |
Traffic | 16.3 t/y | 2.5 µg/m3 | ||||
Industry | 1 t/y | 0.2 µg/m3 | ||||
Background | - | 5.2 µg/m3 | ||||
NO2 | 30 µg/m3 | 38.67 | 21.33 µg/m3 | Domestic heating | 65.1 t/y | 2.4 µg/m3 |
Traffic | 342.9 t/y | 12.3 µg/m3 | ||||
Industry | 144.6 t/y | 5.3 µg/m3 | ||||
Background | - | 10 µg/m3 |
Species | Site | As | Cd | Cr | Cu | Fe | Mn | Ni | Pb | Sr | U | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tilia tomentosa | 1 | 0.51 (0.03) | 0.05 (0.002) | 0.76 (0.016) | 5.5 (0.26) | 151 (7.7) | 55 (2.09) | 1.03 (0.04) | 2 (0.09) | 68 (2.7) | 0.01 (0.001) | 0.21 (0.01) | 14 (0.52) |
2 | 0.43 (0.024) | 0.04 (0.002) | 0.46 (0.032) | 5.8 (0.18) | 148 (5.18) | 47 (1.79) | 1.04 (0.07) | 1.5 (0.06) | 106 (4.2) | 0.01 (0.001) | 0.19 (0.01) | 18 (0.7) | |
3 | 0.35 (0.018) | 0.08 (0.003) | 0.53 (0.212) | 4.5 (0.19) | 155 (6.67) | 65 (2.28) | 0.78 (0.05) | 4.8 (0.17) | 123 (4.6) | 4.01 (0.148) | 0.24 (0.01) | 16 (0.51) | |
4 | 0.23 (0.01) | 0.09 (0.005) | 0.36 (0.019) | 5.2 (0.22) | 99 (5.15) | 54 (2.05) | 0.81 (0.05) | 2.8 (0.11) | 83 (3.6) | 0.27 (0.001) | 0.23 (0.01) | 13 (0.53) | |
Av | 0.51 (0.03) | 0.05 (0.002) | 0.76 (0.016) | 5.5 (0.26) | 151 (7.7) | 55 (2.09) | 1.03 (0.04) | 2.0 (0.09) | 68 (2.7) | 0.01 (0.001) | 0.21 (0.01) | 14 (0.52) | |
Fraxinus excelsior | 1 | 0.38 (0.019) | 0.04 (0.003) | 0.55 (0.011) | 4.5 (0.16) | 122 (5.49) | 36 (1.13) | 0.53 (0.02) | 1.3 (0.06) | 47 (2.3) | 0.02 (0.001) | 0.16 (0.01) | 14 (0.5) |
2 | 1.07 (0.055) | 0.02 (0.001) | 0.35 (0.01) | 8.4 (0.29) | 105 (3.78) | 20 (0.8) | 0.52 (0.03) | 0.8 (0.03) | 76 (3.3) | 0.01 (0.001) | 0.11 (0.01) | 18 (0.68) | |
3 | 0.22 (0.016) | 0.06 (0.003) | 0.27 (0.011) | 29.4 (1.12) | 106 (4.66) | 31 (1.12) | 0.71 (0.04) | 2 (0.07) | 98 (4.4) | 0.64 (0.022) | 0.14 (0.01) | 15 (0.51) | |
4 | 0.18 (0.011) | 0.03 (0.003) | 0.21 (0.009) | 11.8 (0.44) | 60 (2.94) | 21 (0.74) | 0.45 (0.02) | 1 (0.05) | 90 (3.9) | 0.06 (0.003) | 0.08 (0.01) | 14 (0.5) | |
Av | 0.46 (0.024) | 0.038 (0.003) | 0.345 (0.01) | 13.53 (0.5) | 98 (4.22) | 27 (0.95) | 0.55 (0.03) | 1.28 (0.05) | 78 (3.48) | 0.18 (0.007) | 0.12 (0.01) | 15 (0.55) | |
Pinus nigra | 1 | 0.16 (0.01) | 0.15 (0.007) | 0.49 (0.017) | 3.0 (0.13) | 185 (7.96) | 19 (0.87) | 0.5 (0.03) | 4.4 (0.18) | 7.0 (0.59) | 0.03 (0.001) | 0.29 (0.02) | 25 (0.88) |
2 | 0.17 (0.009) | 0.06 (0.003) | 0.4 (0.02) | 2.0 (0.01) | 125 (5.38) | 10 (0.43) | 0.25 (0.01) | 1.3 (0.05) | 4.0 (0.44) | 0.02 (0.001) | 0.13 (0.01) | 17 (0.71) | |
3 | 0.18 (0.011) | 0.1 (0.005) | 0.62 (0.027) | 2.7 (0.16) | 151 (4.98) | 8.0 (0.34) | 0.31 (0.02) | 4.7 (0.18) | 42 (2.02) | 3.5 (0.13) | 0.31 (0.01) | 27 (1.7) | |
4 | 0.09 (0.006) | 0.07 (0.005) | 0.34 (0.014) | 1.5 (0.06) | 143 (5.43) | 7.0 (0.35) | 0.29 (0.02) | 4.1 (0.17) | 6.0 (0.46) | 0.05 (0.002) | 0.24 (0.01) | 13 (0.44) | |
Av | 0.15 (0.01) | 0.095 (0.005) | 0.46 (0.02) | 2.3 (0.09) | 151 (5.94) | 11.0 (0.49) | 0.34 (0.02) | 3.63 (0.13) | 14.75 (0.88) | 0.9 (0.03) | 0.24 (0.01) | 21 (0.93) |
V | Cr | Mn | Fe | Ni | Cu | Zn | As | Sr | Cd | Pb | U | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V | 1.00 | |||||||||||
Cr | 0.76 | 1.00 | ||||||||||
Mn | 0.06 | −0.03 | 1.00 | |||||||||
Fe | 0.79 | 0.49 | 0.06 | 1.00 | ||||||||
Ni | 0.03 | −0.00 | 0.89 | 0.12 | 1.00 | |||||||
Cu | −0.64 | −0.49 | −0.03 | −0.75 | −0.00 | 1.00 | ||||||
Zn | 0.53 | 0.64 | −0.43 | 0.50 | −0.30 | −0.23 | 1.00 | |||||
As | −0.38 | −0.19 | 0.18 | −0.21 | 0.29 | 0.04 | −0.08 | 1.00 | ||||
Sr | −0.28 | −0.12 | 0.67 | −0.50 | 0.70 | 0.43 | −0.37 | 0.34 | 1.00 | |||
Cd | 0.82 | 0.60 | −0.09 | 0.67 | −0.17 | −0.44 | 0.59 | −0.55 | −0.40 | 1.00 | ||
Pb | 0.89 | 0.53 | −0.01 | 0.66 | −0.14 | −0.44 | 0.44 | −0.52 | −0.31 | 0.84 | 1.00 | |
U | 0.43 | 0.68 | 0.03 | −0.16 | −0.08 | −0.09 | 0.24 | −0.14 | 0.29 | 0.28 | 0.33 | 1.00 |
Species | As | Cd | Cr | Cu | Fe | Mn | Ni | Pb | Sr | U | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T. tomentosa | 1.65 | 0.72 | 1.47 | 1.01 | 1.39 | 1.02 | 1.14 | 0.99 | 1.15 | 4 | 0.96 | 1.15 |
F. excelsior | 2.56 | 1.27 | 1.64 | 1.15 | 1.63 | 1.29 | 1.22 | 1.28 | 0.87 | 3 | 1.5 | 1.07 |
P. nigra | 1.67 | 1.36 | 1.35 | 1.53 | 1.06 | 1.57 | 1.17 | 0.89 | 2.46 | 18 | 1 | 1.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, S. The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal. Forests 2024, 15, 1034. https://doi.org/10.3390/f15061034
Petrova S. The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal. Forests. 2024; 15(6):1034. https://doi.org/10.3390/f15061034
Chicago/Turabian StylePetrova, Slaveya. 2024. "The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal" Forests 15, no. 6: 1034. https://doi.org/10.3390/f15061034
APA StylePetrova, S. (2024). The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal. Forests, 15(6), 1034. https://doi.org/10.3390/f15061034