Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.2.1. Remote Sensing Data
2.2.2. Sample Data
2.3. Methods
2.3.1. Image Combination
2.3.2. Feature Extraction
2.3.3. Classification Methods and Accuracy Assessment
3. Results
3.1. Optimal Season for Classification
3.2. Optimal Classification Scheme
3.3. Optimal Data Source Combinations
4. Discussion
4.1. Comparison of Important Features in the Study Area
4.2. Impact of Topographic Units on Classification
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, L.; Julian, F.; Catalina, M.; Nicole, S.; Barbara, K. Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data. Remote Sens. Environ. 2023, 292, 113576. [Google Scholar]
- Zhang, P.; Shao, G.; Zhao, G.; Master, D.C.L.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s Forest Policy for the 21st Century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [PubMed]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef]
- Ruiliang, P. Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-of-the-Art Review and Perspective. J. Remote Sens. 2021, 2021, 9812624. [Google Scholar]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Ning, Y.; Justin, M.; Cong, X.; Na, C. Indigenous forest classification in New Zealand—A comparison of classifiers and sensors. Int. J. Appl. Earth Obs. Geoinf. 2021, 102. [Google Scholar]
- Liu, L.; Coops, N.C.; Aven, N.W.; Pang, Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens. Environ. 2017, 200, 170–182. [Google Scholar] [CrossRef]
- Michael, L.; Alena, D.; Markus, H.; Clement, A.; Markus, I. Combination of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central European Biosphere Reserve. Remote Sens. 2022, 14, 2687. [Google Scholar] [CrossRef]
- Janne, M.; Sarita, K.-S.; Sonja, K.; Topi, T.; Pekka, H.; Peter, K.; Laura, P.; Arto, V.; Sakari, T.; Timo, K.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar]
- Corentin, B.; Philippe, L.; Adrien, M.; Nicolas, L. Mapping tree species proportions from satellite imagery using spectral–spatial deep learning. Remote Sens. Environ. 2022, 280, 113205. [Google Scholar]
- Zhonglu, L.; Hui, L.; Jie, Z.; Linhai, J.; Yunwei, T.; Hongkun, W. Individual Tree Species Classification Based on a Hierarchical Convolutional Neural Network and Multitemporal Google Earth Images. Remote Sens. 2022, 14, 5124. [Google Scholar] [CrossRef]
- Koukal, T.; Immitzer, M.; Atzberger, C. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S.; Yu, Q. Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban tree species. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 144–158. [Google Scholar]
- Key, T.; Warner, T.A.; McGraw, J.B.; Fajvan, M.A. A Comparison of Multispectral and Multitemporal Information in High Spatial Resolution Imagery for Classification of Individual Tree Species in a Temperate Hardwood Forest. Remote Sens. Environ. 2001, 75, 100–112. [Google Scholar] [CrossRef]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef]
- Kai, C.; Juanle, W.; Xinrong, Y. Mapping Forest Types in China with 10 m Resolution Based on Spectral–Spatial–Temporal Features. Remote Sens. 2021, 13, 973. [Google Scholar] [CrossRef]
- Jingru, Y.; Feiyue, M.; Lin, Z.; Yi, Z.; Jia, H.; Jianhua, Y.; Jiangping, C. Why do extreme particulate pollution events occur in low-emission Yunnan Province, China? Atmos. Environ. 2022, 289, 119336. [Google Scholar]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Mengyu, W.; Yi, Z.; Chengquan, H.; Ran, M.; Yong, P.; Wen, J.; Jie, Z.; Zehua, H.; Linchuan, F.; Feng, Z. Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. For. Ecosyst. 2022, 9, 100032. [Google Scholar]
- Ying, Y.; Xuefeng, W.; Mengmeng, S.; Peng, W. Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensis SPAD values under different shade conditions
. Front. Plant Sci. 2022, 13, 928953. [Google Scholar]
- Rogan, J.; Franklin, J.; Roberts, D.A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens. Environ. 2002, 80, 143–156. [Google Scholar] [CrossRef]
- Firat, E.; Can, B.O. Evaluating the effects of texture features on Pinus sylvestris classification using high-resolution aerial imagery. Ecol. Inform. 2023, 78. [Google Scholar]
- Ulander, L.M.H. Radiometric slope correction of synthetic-aperture radar images. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1115–1122. [Google Scholar] [CrossRef]
- Clark, M.L. Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping. Remote Sens. Environ. 2017, 200, 311–325. [Google Scholar] [CrossRef]
- Jong, R.d.; Bruin, S.d.; Wit, A.d.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 2010, 115, 692–702. [Google Scholar] [CrossRef]
- Soleimannejad, L.; Ullah, S.; Abedi, R.; Dees, M.; Koch, B. Evaluating the potential of sentinel-2, landsat-8, and irs satellite images in tree species classification of hyrcanian forest of iran using random forest. J. Sustain. For. 2019, 38, 615–628. [Google Scholar] [CrossRef]
- Liu, P.; Ren, C.; Wang, Z.; Jia, M.; Yu, W.; Ren, H.; Xia, C. Evaluating the Potential of Sentinel-2 Time Series Imagery and Machine Learning for Tree Species Classification in a Mountainous Forest. Remote Sens. 2024, 16, 293. [Google Scholar] [CrossRef]
- Yu, Y.; Li, M.; Fu, Y. Forest type identification by random forest classification combined with SPOT and multitemporal SAR data. J. For. Res. 2018, 29, 1407–1414. [Google Scholar] [CrossRef]
- Zhang, C.; Franklin, S.E.; Wulder, M.A. Geostatistical and texture analysis of airborne-acquired images used in forest classification. Int. J. Remote Sens. 2004, 25, 859–865. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Qian, G.; Jian, Z.; Shijie, G.; Zhangxi, Y.; Hui, D.; Xiaolong, H.; Houxi, Z. Urban Tree Classification Based on Object-Oriented Approach and Random Forest Algorithm Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2022, 14, 3885. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens. Environ. 2008, 112, 2145–2159. [Google Scholar] [CrossRef]
- Haotian, Y.; Yuanwei, H.; Zhigang, Q.; Jianjun, C.; Yao, L. Forest Tree Species Classification Based on Sentinel-2 Images and Auxiliary Data. Forests 2022, 13, 1416. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
- Torsten, W.; Lukas, A.; Kevin, K.; Stefan, K.; Jonas, F. Mapping Dominant Tree Species of German Forests. Remote Sens. 2022, 14, 3330. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Clifford, P.R.; Baoxin, H. Contribution of topographic features and categorization uncertainty for a tree species classification in the boreal biome of Northern Ontario. GIScience Remote Sens. 2023, 60, 2214994. [Google Scholar]
- Chuyong, G.B.; Kenfack, D.; Harms, K.E.; Thomas, D.W.; Condit, R.; Comita, L.S. Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecol. 2011, 212, 1363–1374. [Google Scholar] [CrossRef]
- Sothe, C.; Dalponte, M.; Almeida, C.M.d.; Schimalski, M.B.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T.; Tommaselli, A.M.G. Tree Species Classification in a Highly Diverse Subtropical Forest Integrating UAV-Based Photogrammetric Point Cloud and Hyperspectral Data. Remote Sens. 2019, 11, 1338. [Google Scholar] [CrossRef]
Type | Index | Data Source |
---|---|---|
Spectral features | B1–B8, B8A, B11–B12 | Sentinel-2 |
B2–B7 | Landsat 8 | |
Vegetation indices | NDVI, EVI, LSWI, SAVI, NBR, REP, RENDVI, NDRE1, Brightness, Greenness, Wetness | Sentinel-2 |
NDVI, EVI, LSWI, SAVI, NBR, Brightness, Greenness, Wetness | Landsat 8 | |
Texture features | B11_Con, B11_Var, B11_Diss | Sentinel-2 |
B6_Con, B6_Var, B6_Diss | Landsat 8 | |
Topographic features | Elevation, Slope, Aspect | SRTM DEM |
Backscattering coefficient (σ0) | VV, VH | Sentinel-1 |
Accuracy Assessment | A | B | C | D | Study Area B |
---|---|---|---|---|---|
OA (%) | 77.37 | 75.39 | 84.78 | 83.56 | 83.69 |
Kappa | 0.6807 | 0.6728 | 0.794 | 0.6409 | 0.7877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, H.; Wang, J.; Liang, Y.; Li, R.; Sun, X. Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China. Forests 2024, 15, 929. https://doi.org/10.3390/f15060929
Zhang J, Li H, Wang J, Liang Y, Li R, Sun X. Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China. Forests. 2024; 15(6):929. https://doi.org/10.3390/f15060929
Chicago/Turabian StyleZhang, Jia, Hao Li, Jia Wang, Yuying Liang, Rui Li, and Xiaoting Sun. 2024. "Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China" Forests 15, no. 6: 929. https://doi.org/10.3390/f15060929
APA StyleZhang, J., Li, H., Wang, J., Liang, Y., Li, R., & Sun, X. (2024). Exploring the Differences in Tree Species Classification between Typical Forest Regions in Northern and Southern China. Forests, 15(6), 929. https://doi.org/10.3390/f15060929