Global Overview of the Application of the Braun-Blanquet Approach in Research
Abstract
:1. Introduction
- What are the tasks for which the Braun-Blanquet approach is used?
- How effective is the Braun-Blanquet approach in addressing different problems?
- What kind of plant communities can this approach be applied to?
- What are the problems that remain unresolved?
- What trends can be identified in developing the Braun-Blanquet approach?
2. Materials and Methods
2.1. Data Collection
2.2. Selecting Studies to Include in a Systematic Review
2.3. Data Extraction, Management, Analysis, and Visualization
2.4. Study Limitations
3. Results
3.1. Analysis of the Distribution of the Publications According to Year
3.2. Analysis of Keywords and Research Directions
3.2.1. Cluster 1
3.2.2. Cluster 2
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Hemp, A. | Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro | 2006 | 241 | [111] |
2 | Kelly, D.L. | The native forest vegetation of killarney, south-west Ireland: an ecological account | 1981 | 70 | [112] |
3 | Härdtle, W., Von Oheimb, G., Westphal, C. | Relationships between the vegetation and soil conditions in beech and beech-oak forests of northern Germany | 2005 | 31 | [113] |
4 | Navarro, G.; Molina, J.A.; De La Barra, N. | Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecology | 2005 | 31 | [114] |
5 | Eshaghi Rad, J.; Manthey, M.; Mataji, A. | Comparison of plant species diversity with different plant communities in deciduous forests | 2009 | 28 | [115] |
6 | Peinado, M.; Aguirre, J.L.; Delgadillo, J. | Phytosociological, bioclimatic and biogeographical classification of woody climax communities of western North America | 1997 | 27 | [116] |
7 | Cano, E.; Musarella, C.M.; Cano-Ortiz, A.; Piñar Fuentes, J.C.; Rodríguez Torres, A.; Del Río González, S.; Pinto Gomes, C.J.; Quinto-Canas, R.; Spampinato, G. | Geobotanical Study of the Microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula | 2019 | 24 | [117] |
8 | Li, C. F., Zelený, D., Chytrý, M., Chen, M. Y., Chen, T. Y., Chiou, C. R., Hsia, Y.J.; Liu, H.Y.; Yang, S.Z; Yeh, C.L.; Wang, J.C.; Yu, C.F.; Lai, Y.J.; Guo, K.; Hsieh, C. F. | Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification | 2015 | 23 | [118] |
9 | Çoban, S., Willner, W. | Numerical classification of the forest vegetation in the western Euxine region of Turkey. | 2019 | 20 | [119] |
10 | Krestov, P. V., Ermakov, N. B., Osipov, S. V., Nakamura, Y. | Classification and phytogeography of larch forests of northeast Asia | 2009 | 16 | [120] |
3.2.3. Cluster 3
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Capotorti, G.; Guida, D.; Siervo, V.; Smiraglia, D.; Blasi, C. | Ecological classification of land and conservation of biodiversity at the national level: the case of Italy | 2012 | 54 | [130] |
2 | le Roux, C.J.G.; Grunow, J.O.; Bredenkamp, G.J.; Morris, J.W.; Scheepers, J.C. | A classification of the vegetation of the Etosha National Park | 1988 | 48 | [131] |
3 | Biondi, E.; Casavecchia; S., Pesaresi, S. | Phytosociological synrelevés and plant landscape mapping: From theory to practice | 2011 | 44 | [132] |
4 | Galdenzi, D.; Pesaresi, S.; Casavecchia, S.; Zivkovic, L.; Biondi, E. | The phytosociological and syndynamical mapping for the identification of High Nature Value Farmland | 2012 | 25 | [133] |
5 | Jalilian, A.M.; Shayesteh, K.; Danehkar, A.; Salmanmahiny, A. | A new ecosystem-based land classification of Iran for conservation goals | 2020 | 14 | [129] |
6 | Malfasi, F., Cannone, N. | Phytosociology of the vegetation communities of the Stelvio Pass area | 2021 | 3 | [134] |
3.2.4. Cluster 4
3.2.5. Cluster 5
3.2.6. Analysis of Keywords and Research Directions for the Period 2018–2022
3.3. Citation Analysis
3.4. Bibliographic Relationship Analysis
3.5. Author Publication Activity Analysis
4. Discussion
- Improving the conceptual and methodological foundations of the Braun-Blanquet approach. The issues of the influence of the size of the sample area on the classification result are investigated here (due to differences in the size of the sample areas, the same vegetation can be assigned to different phytosociological classes or habitat types): the reduction in classification errors associated with inaccuracy of scales and a subjective component and the evaluation of the effectiveness of the Braun-Blanquet approach in comparison with traditional methods of multiple data analysis and others.
- Improvement in regional vegetation classifications (including verification of their nomenclatural accuracy to ensure the accuracy of plant community biodiversity estimates and to avoid confusion in the names of syntaxons), synthesizing them and producing a comprehensive classification for large areas as a basis for biodiversity conservation and sustainable land use. It also raises questions about identifying the habitats of rare or endemic species and the vulnerability of different plant communities to stresses.
- Expansion of the geography of the Braun-Blanquet approach: to the west (USA), to the east (Russia), to the south (South Africa), and to the north (Arctic territories).
- Compilation and updating of databases of phytosociological data necessary to establish and maintain a basis for systematization and environmental analysis.
- Management dynamics and vegetation management. This research area is not sufficiently popular with researchers using the Braun-Blanquet approach. It can be assumed that this is due to the insufficient development of the methodology for identifying and evaluating vegetation dynamics. Due to the importance of this problem, there is an urgent need to improve the methodology for its successful solution.
- Discussion of the important problem of continuity and discreteness of vegetation in the context of ecological classifications and the objectivity of the existence of isolated syntaxons.
- Vegetation mapping. The main purpose of vegetation mapping is to provide a comprehensive understanding of the structure and dynamics of vegetation at different scales: from local to regional and global. In addition, vegetation mapping is a fundamental tool for land managers, policy makers, and conservationists, helping them to develop appropriate strategies for sustainable resource management and land-use planning. The development of vegetation maps required a mandatory consideration of climatic and other environmental factors and a corresponding revision of the diagnostic signs of syntaxons. This provided a strong impetus for further development of the approach. Classifications are beginning to combine biogeography and the assessment of factors affecting the potential and actual structure of vegetation. The geographical principle is becoming one of the most important. The interdisciplinary nature of this field of research requires special training of scientific specialists.
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abhilash, P.C. Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER). Land 2021, 10, 201. [Google Scholar] [CrossRef]
- Wu, L.; Bai, X.; Tian, Y.; Li, Y.; Luo, G.; Wang, J.; Chen, F. Temperature Evolution of Cooling Zones on Global Land Surface since the 1900s. Atmosphere 2023, 14, 1156. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Seeboonruang, U.; Chen, W. Projected Climate Change Effects on Global Vegetation Growth: A Machine Learning Approach. Environments 2023, 10, 204. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Zhang, G.; Wei, X.; Ma, W.; Yu, H. Evaluating the Research Status of the Remote Sensing-Mediated Monitoring of Forest Biomass: A Bibliometric Analysis of WOS. Forests 2024, 15, 524. [Google Scholar] [CrossRef]
- Maiti, R.; Rodriguez, H.G.; Ivanova, N.S. Autoecology and Ecophysiology of Woody Shrubs and Trees: Concepts and Applications; John Wiley & Sons: Oxford, UK, 2016; 352p. [Google Scholar]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector—A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef]
- Hinze, J.; Albrecht, A.; Michiels, H.-G. Climate-Adapted Potential Vegetation—A European Multiclass Model Estimating the Future Potential of Natural Vegetation. Forests 2023, 14, 239. [Google Scholar] [CrossRef]
- Fomin, V.; Ivanova, N.; Mikhailovich, A. Genetic forest typology as a scientific and methodological basis for environmental studies and forest management. IOP Conf. Ser. Earth Environ. Sci. 2020, 609, 012044. [Google Scholar] [CrossRef]
- Ivanova, N.; Fomin, V.; Kusbach, A. Experience of Forest Ecological Classification in Assessment of Vegetation Dynamics. Sustainability 2022, 14, 3384. [Google Scholar] [CrossRef]
- Casas, G.G.; Baselly-Villanueva, J.R.; Limeira, M.M.C.; Torres, C.M.M.E.; Leite, H.G. Classifying the Risk of Forest Loss in the Peruvian Amazon Rainforest: An Alternative Approach for Sustainable Forest Management Using Artificial Intelligence. Trees For. People 2023, 14, 100440. [Google Scholar] [CrossRef]
- Petrokas, R.; Ibanga, D.-A.; Manton, M. Deep Ecology, Biodiversity and Assisted Natural Regeneration of European Hemiboreal Forests. Diversity 2022, 14, 892. [Google Scholar] [CrossRef]
- Kusbach, A.; Dujka, P.; Šebesta, J.; Lukeš, P.; DeRose, R.J.; Maděra, P. Ecological classification can help with assisted plant migration in forestry, nature conservation, and landscape planning. For. Ecol. Manag. 2023, 546, 121349. [Google Scholar] [CrossRef]
- Pojar, J.; Klinka, K.; Meidinger, D.V. Biogeoclimatic ecosystem classification in British Columbia. For. Ecol. Manag. 1987, 22, 119–154. [Google Scholar] [CrossRef]
- Pfister, R.D.; Arno, S.F. Classification of forest habitat types based on potential climax vegetation. For. Sci. 1980, 26, 52–70. [Google Scholar]
- Kusbach, A.; Friedl, M.; Zouhar, V.; Mikita, T.; Šebesta, J. Assessing Forest Classification in a Landscape-Level Framework: An Example from Central European Forests. Forests 2017, 8, 461. [Google Scholar] [CrossRef]
- Dujka, P.; Kusbach, A. Zonal concept: Landscape level parameters and application. J. Landsc. Ecol. 2023, 16, 24–46. [Google Scholar] [CrossRef]
- Dujka, P.; Kusbach, A. Classification of vertical vegetation zonation in the Czech Republic: REVIEW. Zpravy Lesn. Vyzk. 2023, 68, 1–14. [Google Scholar] [CrossRef]
- EUNIS Habitat Classification. Updated in January 2023. Available online: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1/eunis-terrestrial-habitat-classification-review-2021 (accessed on 21 January 2024).
- Barbati, A.; Corona, P.; Marchetti, M. European forest types—European Environment Agency. In EEA Technical Report; European Environment Agency: Copenhagen, Denmark, 2007; Available online: https://www.eea.europa.eu/publications/technical_report_2006_9 (accessed on 1 February 2022).
- Plíva, K. Typologický Systém ÚHÚL (Forest Classification System of the Forest Management Institute); Ústav pro Hospodářskou Úpravu lesů Brandýs nad Labem: Brandýs nad Labem, Czechoslovakia, 1971; p. 90. (In Czech) [Google Scholar]
- Faliński, J.B. Kartografia Geobotaniczna. Cz. 2. Kartografia Fitosocjologiczna; Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych: Warszawa, Poland, 1990; pp. 1–28. (In Polish) [Google Scholar]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas-Merino, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–638. [Google Scholar]
- Pogrebnyak, P.S. Fundamentals of Forest Typology; Publishing House of the Academy of Sciences of the Ukrainian SSR: Kiev, Ukraine, 1955; 452p. [Google Scholar]
- Fomin, V.V.; Zalesov, S.V.; Popov, A.S.; Mikhailovich, A.P. Historical avenues of research in Russian forest typology: Ecological, phytocoenotic, genetic, and dynamic classifications. Can. J. For. Res. 2017, 47, 849–860. [Google Scholar] [CrossRef]
- Ivashkevich, B.A. Types of forests of Primorye and their economic significance. Product. Forces Far East Plant World 1927, 3, 2–3. [Google Scholar]
- Kolesnikov, B.P. The genetic stage in forest typology and its tasks. Russ. For. Sci. 1974, 2, 3–20. [Google Scholar]
- Ivanova, N.S.; Zolotova, E.S. Development of Forest Typology in Russia. Int. J. Bio-Resour. Stress Manag. 2014, 5, 298–303. [Google Scholar] [CrossRef]
- Fomin, V.; Mikhailovich, A.; Zalesov, S.; Popov, A.; Terekhov, G. Development of ideas within the framework of the genetic approach to the classification of forest types. Balt. For. 2021, 27, 1–14. [Google Scholar] [CrossRef]
- Plugatar, Y.V.; Ermakov, N.B.; Krestov, P.V.; Matveeva, N.V.; Martynenko, V.B.; Golub, V.B.; Neshataeva, V.Y.; Neshataev, V.Y.; Anenkhonov, A.A.; Lavrinenko, I.A.; et al. The concept of vegetation classification of Russia as an image of contemporary tasks of phytocenology. Rastit. Ross. 2020, 38, 3–12. (In Russian) [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Fernández-González, F.; Loidi, J.; Lousa, M.; Penas, A. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot. 2001, 14, 5–341. [Google Scholar]
- Faliñski, J.B. Long-term studies on vegetation dynamics: Some notes on concepts, fundamentals and conditions. Community Ecol. 2003, 4, 107–113. [Google Scholar] [CrossRef]
- Marfil, J.M.; Molero, J.; Cantó, P.; Rivas-Martínez, S. Bioindicators and bioclimatic data as essential tools towards a consistent biogeographic district typology of sierra Nevada national park (Spain). Lazaroa 2017, 38, 7–25. [Google Scholar] [CrossRef]
- Biurrun, I.; Pielech, R.; Dembicz, I.; Gillet, F.; Kozub, Ł.; Marcenò, C.; Reitalu, T.; Van Meerbeek, K.; Guarino, R.; Chytry, M.; et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 2021, 32, e13050. [Google Scholar] [CrossRef]
- Knollová, I.; Chytrý, M.; Bruelheide, H.; Dullinger, S.; Jandt, U.; Bernhardt-Römermann, M.; Biurrun, I.; de Bello, F.; Glaser, M.; Hennekens, S.; et al. ReSurveyEurope: A database of resurveyed vegetation plots in Europe. J. Veg. Sci. 2024, 35, e13235. [Google Scholar] [CrossRef]
- Cantó, P.; Rivas-Martínez, S. Syntaxonomical checklist and vegetation series of Sierra de Guadarrama National Park (Spain). Mediterr. Bot. 2024, 45. [Google Scholar] [CrossRef]
- Seidl, R.; Turner, M.G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef]
- Koch, O.; de Avila, A.L.; Heinen, H.; Albrecht, A.T. Retreat of Major European Tree Species Distribution under Climate Change—Minor Natives to the Rescue? Sustainability 2022, 14, 5213. [Google Scholar] [CrossRef]
- Zolotova, E.; Ivanova, N.; Ivanova, S. Global Overview of Modern Research Based on Ellenberg Indicator Values. Diversity 2023, 15, 14. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Zur Wertung der Gesellschaftstreue in der Pflanzensoziologie. Vierteljahrsschr. Naturf. Ges. Zürich 1925, 70, 122–149. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde; Springer: Berlin/Heidelberg, Germany; Wien: New York, NY, USA, 1928; 330p. [Google Scholar]
- Braun-Blanquet, J. Pflanzensociologie; Wien: New York, NY, USA, 1964; 865p. [Google Scholar]
- Van Der Maarel, E. The Braun-Blanquet approach in perspective. Vegetatio 1975, 30, 213–219. [Google Scholar] [CrossRef]
- Westhoff, V.E.; van der Maarel, E. The Braun–Blanquet approach. In Classification of Plant Communities; Whittaker, R.H., Ed.; Springer: Dordrecht, The Netherlands, 1978; pp. 287–399. [Google Scholar] [CrossRef]
- Tüxen, R. Die heutige potentielle natürliche Vegetation als Genenstand der Vegetationskartierung. Angew Pflanzensoz Stolzenau 1956, 13, 5–42. [Google Scholar]
- Guinochet, M. Phytosociologie; Masson & Cie: Paris, France, 1973. [Google Scholar]
- Tüxen, R. Sigmeten und Geosigmeten, ihre Ordnung und ihre Bedeutug für Wissenschaft, Naturschutz und Planung. Biogeographie 1979, 16, 79–92. [Google Scholar]
- Gillet, F.; de Foucault, B.; Julve, P. La phytosociologie synusiale inte’gre´e: Objects et concepts. Candollea 1991, 46, 315–340. [Google Scholar]
- Ge´hu, J.M. Dictionnaire de Sociologie et Synecologie Vegetales; J Cramer: Berlin/Stuttgart, Germany, 2006; p. 900. [Google Scholar]
- Mucina, L. Classification of vegetation: Past present and future. J. Veg. Sci. 1997, 8, 751–760. [Google Scholar] [CrossRef]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Sánchez-Mata, D. The phytosociological approach in North American studies: Some considerations on phytosociological nomenclature. Folia Geobot. Phytotax 1997, 32, 415–418. [Google Scholar] [CrossRef]
- Mirkin, B.M.; Naumova, L.G. Dynamics of activity of syntaxonomiccentres in Russia and processes of their integration. Rastit. Ross. 2017, 31, 119–124. (In Russian) [Google Scholar]
- Miyawaki, A. Phytosociology in Japan. The past, present and future from the footsteps of one phytosociologist. Braun-Blanquetia 2010, 46, 55–58. [Google Scholar]
- MacKinnon, A.; Meidinger, D.; Klinka, K. Use of the biogeoclimatic ecosystem classification system in British Columbia. For. Chron. 1992, 68, 100–120. [Google Scholar] [CrossRef]
- Zaugunova, L.B. Approaches to the assessment of the biological diversity of the forest cover. In Monitoring of the Biological Diversity of the Forests of Russia: Methodology and Methods; Nauka: Moscow, Russia, 2008; pp. 36–58. [Google Scholar]
- Ulanova, N.G. Synthesis of classification of cutting vegetation in spruce forests of the southern taiga from the positions of I.S. Melekhov, V.N. Sukachev, B.P. Kolesnikov and Zh. Braun-Blanquet. In Genetic Typology, Dynamics and Geography of Russian Forests; Reports of the All-Russian Scientific Conference with International Participation Dedicated to the 100th Anniversary of the Birth of B. P. Kolesnikov (Yekaterinburg, July 21–24, 2009); Botanical Garden of the Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2009; pp. 72–75. [Google Scholar]
- Pham, T.M.; Nguyen, H.C.; Nguyen, V.K.; Pham, H.H.; Nguyen, N.T.; Dang, G.T.H.; Dinh, H.T.; Pham, T.A. Application of the Worldwide Bioclimatic Classification System to determine bioclimatic features and potential natural vegetation distribution in Van Chan district, Vietnam. Trop. Ecol. 2023, 64, 765–780. [Google Scholar] [CrossRef]
- Krajina, V.J. Ecosystem classification of forests (Summary of contributions to the Forest Ecosystem Symposium). Silva Fenn. 1960, 105, 107–110. [Google Scholar]
- Zaugunova, L.B.; Martynenko, V.B. Determinant of Forest Types in European Russia. Available online: http://cepl.rssi.ru/bio/forest/index.html (accessed on 14 October 2023).
- Biondi, E. Phytosociology today: Methodological and conceptual evolution. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 19–29. [Google Scholar] [CrossRef]
- Biondi, E.; Feoli, E.; Zuccarello, V. Modelling environmental responses of plant associations: A review of some critical concepts in vegetation study. Crit. Rev. Plant Sci. 2004, 23, 149–156. [Google Scholar] [CrossRef]
- Code of phytosociological nomencalture. Vegetatio 1986, 67, 145–195. [CrossRef]
- Theurillat, J.; Willner, W.; Fernández-González, F.; Bültmann, H.; Čarni, A.; Gigante, D.; Weber, H. International Code of Phytosociological Nomenclature. 4th edition. Appl. Veg. Sci. 2021, 24, e12491. [Google Scholar] [CrossRef]
- Blasi, C.; Frondoni, R. Modern perspectives for plant sociology: The case of ecological land classification and the ecoregions of Italy. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2011, 145, 30–37. [Google Scholar] [CrossRef]
- Rivas-Martinez, S. Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2005, 139, 135–144. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, 160. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environ-mental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- Kugley, S.; Wade, A.; Thomas, J.; Mahood, Q.; Jørgensen, A.-M.K.; Hammerstrøm, K.; Sathe, N. Searching for studies: GUidelines on information retrieval for Campbell Systematic Reviews. Campbell Syst. Rev. 2017, 13, 1–73. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Gehanno, J.-F.; Rollin, L.; Darmoni, S. Is the coverage of Google Scholar enough to be used alone for systematic reviews. BMC Med. Inform. Decis. Mak. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 119908. [Google Scholar] [CrossRef]
- Ekeoma, E.C.; Sterling, M.; Metje, N.; Spink, J.; Farrelly, N.; Fenton, O. Unearthing Current Knowledge Gaps in Our Understanding of Tree Stability: Review and Bibliometric Analysis. Forests 2024, 15, 513. [Google Scholar] [CrossRef]
- Zhao, J.; Davies, C.; Veal, C.; Xu, C.; Zhang, X.; Yu, F. Review on the Application of Nature-Based Solutions in Urban Forest Planning and Sustainable Management. Forests 2024, 15, 727. [Google Scholar] [CrossRef]
- Yelsiz, M.Ş.; Yücedağ, C.; Çiçek, N.; Ayan, S. A Bibliometric Analysis of Scientific Research in Turkey on National Parks between 2002 and 2021. 2024. Available online: https://forestist.org/en/a-bibliometric-analysis-of-scientific-research-in-turkey-on-national-parks-between-2002-and-2021-132788 (accessed on 27 May 2024).
- Huang, Y.; Xiong, K.; Xiao, J. To Achieve a Win–Win Situation: Reorganizing and Enhancing Agroforestry Ecosystem Assets and Productivity to Inform Karst Desertification Control. Forests 2024, 15, 502. [Google Scholar] [CrossRef]
- Okolie, C.C.; Danso-Abbeam, G.; Groupson-Paul, O.; Ogundeji, A.A. Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis. Land 2023, 12, 50. [Google Scholar] [CrossRef]
- Ivanova, N.; Zolotova, E. Landolt Indicator Values in Modern Research: A Review. Sustainability 2023, 15, 9618. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 1979, 39, 97–114. [Google Scholar] [CrossRef]
- Westhoff, V.; van der Maarel, E. The Braun-Blanquet Approach. In Ordination and Classification of Communities; Whittaker, R.H., Ed.; Springer: Dordrecht, The Netherlands, 1973; pp. 617–626. [Google Scholar]
- Barkman, J.J.; Doing, H.; Segal, S. Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot. Neerl. 1964, 13, 394–419. [Google Scholar] [CrossRef]
- Chytrý, M.; Otýpková, Z. Plot sizes used for phytosociological sampling of European vegetation. J. Veg. Sci. 2003, 14, 563–570. [Google Scholar] [CrossRef]
- Poore, M.E.D. The Use of Phytosociological Methods in Ecological Investigations: I. The Braun-Blanquet System. J. Ecol. 1955, 43, 226. [Google Scholar] [CrossRef]
- Lepš, J.; Hadincová, V. How reliable are our vegetation analyses? J. Veg. Sci. 1992, 3, 119–124. [Google Scholar] [CrossRef]
- van der Maarel, E.; Janssen, J.G.M.; Louppen, J.M.W. TABORD, a program for structuring phytosociological tables. Vegetatio 1978, 38, 143–156. [Google Scholar] [CrossRef]
- Moreno-Casasola, P.; Espejel, I. Classification and ordination of coastal sand dune vegetation along the Gulf and Caribbean Sea of Mexico. Vegetatio 1986, 66, 147–182. [Google Scholar] [CrossRef]
- Kočí, M.; Chytrý, M.; Tichý, L. Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. J. Veg. Sci. 2006, 14, 601–610. [Google Scholar] [CrossRef]
- Podani, J. Braun-blanquet’s legacy and data analysis in vegetation science. J. Veg. Sci. 2006, 17, 113–117. [Google Scholar] [CrossRef]
- Moore, J.J.; Fitzsimons, S.J.P.; Lambe, E.; White, J. A comparison and evaluation of some phytosociological techniques. Plant Ecol. 1970, 20, 1–20. [Google Scholar] [CrossRef]
- Clements, F.E. Nature and Structure of the Climax. J. Ecol. 1936, 24, 252–284. [Google Scholar] [CrossRef]
- Guarino, R.; Guccione, M.; Gillet, F. Plant communities, synusiae and the arithmetic of a sustainable classification. Veg. Classif. Surv. 2022, 3, 7–13. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant communities of Italy: The Vegetation Prodrome. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2014, 148, 728–814. [Google Scholar] [CrossRef]
- Mucina, L. Conspectus of classes of European vegetation. Folia Geobot 1997, 32, 117–172. [Google Scholar] [CrossRef]
- Hemp, A. The Banana Forests of Kilimanjaro: Biodiversity and Conservation of the Chagga Homegardens. Biodivers Conserv 2006, 15, 1193–1217. [Google Scholar] [CrossRef]
- Chytry, M. Phytosociological Data Give Biased Estimates of Species Richness. J. Veg. Sci. 2001, 12, 439. [Google Scholar] [CrossRef]
- Feoli, E.; Lagonegro, M. Syntaxonomical analysis of beech woods in the apennines (italy) using the program package IAHOPA. Vegetatio 1982, 50, 129–173. [Google Scholar] [CrossRef]
- Cilliers, S.S.; Bredenkamp, G.J. Vegetation of road verges on an urbanisation gradient in potchefstroom, South Africa. Landsc. Urban Plan. 2000, 46, 217–239. [Google Scholar] [CrossRef]
- Cowling, R.M.; Campbell, B.M.; Mustart, P.; McDonald, D.J.; Jarman, M.L.; Moll, E.J. Vegetation classification in a floristically complex area: The Agulhas Plain. S. Afr. J. Bot. 1988, 54, 290–300. [Google Scholar] [CrossRef]
- Blasi, C.; di Pietro, R.; Fortini, P.; Catonica, C. The main plant community types of the alpine belt of the Apennine chain. Plant Biosyst. 2003, 137, 83–110. [Google Scholar] [CrossRef]
- Furness, H.D.; Breen, C.M. The vegetation of seasonally flooded areas of the Pongolo River Floodplain. Bothalia 1980, 13, 217–231. [Google Scholar] [CrossRef]
- Mostert, T.H.C.; Bredenkamp, G.J.; Klopper, H.L.; Verwe, C.; Mostert, R.E.; Hahn, N. Major vegetation types of the Soutpansberg conservancy and the blouberg nature reserve, South Africa. Koedoe 2008, 50, 32–48. [Google Scholar] [CrossRef]
- Tomaselli, M. The snow-bed vegetation in the Northern Apennines. Vegetatio 1991, 94, 177–189. [Google Scholar] [CrossRef]
- Bonyongo, M.C.; Bredenkamp, G.J.; Veenendaal, E. Foodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana. S. Afr. J. Bot. 2000, 66, 15–21. [Google Scholar] [CrossRef]
- Hermy, M.; Stieperaere, H. An indirect gradient analysis of the ecological relationships between ancient and recent reiverine woodlands to the south of Bruges (Flanders, Belgium). Vegetatio 1981, 44, 43–49. [Google Scholar] [CrossRef]
- Godefroid, S.; Rucquoij, S.; Koedam, N. To what extent do forest herbs recover after clearcutting in beech forest? For. Ecol. Manag. 2005, 210, 39–53. [Google Scholar] [CrossRef]
- Czerepko, J. A long-term study of successional dynamics in the forest wetlands. For. Ecol. Manag. 2008, 255, 630–642. [Google Scholar] [CrossRef]
- Dzwonko, Z.; Loster, S. Vegetation differentiation and secondary succession on a limestone hill in southern Poland. J. Veg. Sci. 1990, 1, 615–622. [Google Scholar] [CrossRef]
- Vacek, S.; Cerný, T.; Vacek, Z.; Podrázský, V.; Mikeska, M.; Králíček, I. Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. For. Ecol. Manag. 2017, 398, 75–90. [Google Scholar] [CrossRef]
- Hemp, A. Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol. 2006, 184, 27–42. [Google Scholar] [CrossRef]
- Kelly, D.l. The native forest vegetation of killarney, south-west ireland: An ecological account. J. Ecol. 1981, 69, 437–472. [Google Scholar] [CrossRef]
- Härdtle, W.; Von Oheimb, G.; Westphal, C. Relationships between the vegetation and soil conditions in beech and beech-oak forests of northern Germany. Plant Ecol. 2005, 177, 113–124. [Google Scholar] [CrossRef]
- Navarro, G.; Molina, J.A.; De La Barra, N. Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecol. 2005, 176, 113–130. [Google Scholar] [CrossRef]
- Eshaghi Rad, J.; Manthey, M.; Mataji, A. Comparison of plant species diversity with different plant communities in deciduous forests. Int. J. Environ. Sci. Technol. 2009, 6, 389–394. [Google Scholar] [CrossRef]
- Peinado, M.; Aguirre, J.L.; Delgadillo, J. Phytosociological, bioclimatic and biogeographical classification of woody climax communities of western North America. J. Veg. Sci. 1997, 8, 505–528. [Google Scholar] [CrossRef]
- Cano, E.; Musarella, C.M.; Cano-Ortiz, A.; Piñar Fuentes, J.C.; Rodríguez Torres, A.; Del Río González, S.; Pinto Gomes, C.J.; Quinto-Canas, R.; Spampinato, G. Geobotanical Study of the Microforests of Juniperus oxycedrus subsp. badia in the Central and Southern Iberian Peninsula. Sustainability 2019, 11, 1111. [Google Scholar] [CrossRef]
- Li, C.F.; Zelený, D.; Chytrý, M.; Chen, M.Y.; Chen, T.Y.; Chiou, C.R.; Hsia, Y.J.; Liu, H.Y.; Yang, S.Z.; Yeh, C.L.; et al. Chamaecyparis montane cloud forest in Taiwan: Ecology and vegetation classification. Ecol. Res. 2015, 30, 771–791. [Google Scholar] [CrossRef]
- Çoban, S.; Willner, W. Numerical classification of the forest vegetation in the western Euxine region of Turkey. Phytocoenologia 2019, 49, 71–106. [Google Scholar] [CrossRef]
- Krestov, P.V.; Ermakov, N.B.; Osipov, S.V.; Nakamura, Y. Classification and phytogeography of larch forests of northeast Asia. Folia Geobot. 2009, 44, 323–363. [Google Scholar] [CrossRef]
- Kuchler, A.W.; Zonneveld, I.S. Vegetation mapping. Veg. Mapp. 1988, 26, 1097. [Google Scholar] [CrossRef]
- Franklin, J. Predictive vegetation mapping: Geographic modelling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geogr. 1995, 19, 474–499. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote sensing for urban vegetation mapping using random forest and texture analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
- Marín Del Valle, T.; Jiang, P. Comparison of common classification strategies for large-scale vegetation mapping over the Google Earth Engine platform. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103092. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Saini, R. Integrating Vegetation Indices and Spectral Features for Vegetation Mapping from Multispectral Satellite Imagery Using AdaBoost and Random Forest Machine Learning Classifiers. Geomat. Environ. Eng. 2023, 17, 57–74. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Pérez-Gómez, R.; Ganis, P.; Feoli, E. The use of vegetation series to assess α and β vegetation diversity and their relationships with geodiversity in the province of Almeria (Spain) with watersheds as operational geographic units. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 1395–1407. [Google Scholar] [CrossRef]
- Allegrezza, M.; Montecchiari, S.; Ottaviani, C.; Pelliccia, V.; Tesei, G. Syntaxonomy of the Robiniapseudoacacia communities in the central peri-adriatic sector of the Italian peninsula. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 616–623. [Google Scholar] [CrossRef]
- Jalilian, A.M.; Shayesteh, K.; Danehkar, A.; Salmanmahiny, A. A new ecosystem-based land classification of Iran for conservation goals. Environ. Monit. Assess. 2020, 192, 182. [Google Scholar] [CrossRef] [PubMed]
- Capotorti, G.; Guida, D.; Siervo, V.; Smiraglia, D.; Blasi, C. Ecological classification of land and conservation of biodiversity at the national level: The case of Italy. Biol. Conserv. 2012, 147, 174–183. [Google Scholar] [CrossRef]
- le Roux, C.J.G.; Grunow, J.O.; Bredenkamp, G.J.; Morris, J.W.; Scheepers, J.C. A classification of the vegetation of the Etosha National Park. S. Afr. J. Bot. 1988, 54, 1–10. [Google Scholar] [CrossRef]
- Biondi, E.; Casavecchia, S.; Pesaresi, S. Phytosociological synrelevés and plant landscape mapping: From theory to practice. Plant Biosyst. 2011, 145, 261–273. [Google Scholar] [CrossRef]
- Galdenzi, D.; Pesaresi, S.; Casavecchia, S.; Zivkovic, L.; Biondi, E. The phytosociological and syndynamical mapping for the identification of High Nature Value Farmland. Plant Sociol. 2012, 49, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Malfasi, F.; Cannone, N. Phytosociology of the vegetation communities of the Stelvio Pass area. J. Maps 2021, 17, 367–375. [Google Scholar] [CrossRef]
- Matveyeva, N.V. Floristic classification and ecology of tundra vegetation of the Taymyr peninsula, Northern Siberia. J. Veg. Sci. 1994, 5, 813–828. [Google Scholar] [CrossRef]
- Walker, D.A.; Daniëls, F.J.A.; Matveyeva, N.V.; Šibík, J.; Walker, M.D.; Breen, A.L.; Druckenmiller, L.A.; Raynolds, M.K.; Bültmann, H.; Hennekens, S.; et al. Circumpolar arctic vegetation classification. Phytocoenologia 2018, 48, 181–201. [Google Scholar] [CrossRef]
- Koroleva, N.E. Phytosociological survey of the tundra vegetation of the Kola Peninsula, Russia. J. Veg. Sci. 1994, 5, 803–812. [Google Scholar] [CrossRef]
- Matveyeva, N.V. Vegetation of the southern part of Bolshevik Island (Severnaya Zemlya Archipelago). Veg. Russ. 2006, 8, 3–87. [Google Scholar] [CrossRef]
- Kholod, S.S. Classification of Wrangel Island vegetation. Veg. Russ. 2007, 11, 3–135. [Google Scholar] [CrossRef]
- Jennings, M.D.; Faber-Langendoen, D.; Loucks, O.L.; Peet, R.K.; Roberts, D. Characterizing associations and alliances of the U.S. National Vegetation Classification. Ecol. Monogr. 2009, 79, 173–199. [Google Scholar] [CrossRef]
- Glaser, P.; Wheeler, G.; Gorham, E.; Wright, H.E. The patterned mires of the red lake peatland, northern minnesota: Vegetation, water chemistry and landforms. J. Ecol. 1981, 69, 575–599. [Google Scholar] [CrossRef]
- Willems, J.H. Phytosociological and geographical survey of mesohromion communities in western Europe. Vegetatio 1982, 48, 227–240. [Google Scholar] [CrossRef]
- Murray-Hudson, M.; Wolski, P.; Cassidy, L.; Brown, M.T.; Thito, K.; Kashe, K.; Mosimanyana, E. Remote Sensing-derived hydroperiod as a predictor of floodplain vegetation composition. Wetl. Ecol. Manag. 2015, 23, 603–616. [Google Scholar] [CrossRef]
- Taylor, H.C. A vegetation survey of the Cape of Good Hope Nature Reserve. I. The use of association-analysis and Braun-Blanquet methods. Bothalia 1984, 15, 245–258. [Google Scholar] [CrossRef]
- Kavgaci, A.; Carni, A.; Tecimen, H.; Ozalp, G. Diversity of floodplain forests in the Igneada region (NW Thrace—Turkey). Hacquetia 2011, 10, 73–93. [Google Scholar] [CrossRef]
- Jiroušek, M.; Peterka, T.; Chytrý, M.; Jiménez-Alfaro, B.; Pérez-Haase, A.; Auniņa, L.; Biurrun, I.; Dítě, D.; Hájková, P.; Jansen, F.; et al. Classification of European bog vegetation of the Oxycocco-Sphagnetea class. Appl. Veg. Sci. 2022, 25, e12646. [Google Scholar] [CrossRef]
- Nowak, A.; Nobis, M.; Nowak, S.; Kotowski, M.; Świerszcz, S. Phytosociological survey of juniper wood vegetation in Tajikistan (Middle Asia). Dendrobiology 2022, 88, 16–36. [Google Scholar] [CrossRef]
- Ighbareyeh, J.M.H.; Cano-Ortiz, A.; Cano, E. Phytosociology and Vegetation of Plants of Beit Jibrin in Palestine. Land 2022, 11, 264. [Google Scholar] [CrossRef]
- Vassilev, K.; Nazarov, M.; Mardari, C.; Grigorov, B.; Georgiev, S.; Genova, B.; Velev, N. Syntaxonomical and ecological diversity of the class Polygono-Poetea annuae in Bulgaria. Acta Bot. Croat. 2022, 81, 32–41. [Google Scholar] [CrossRef]
- Behn, K.; Alvarez, M.; Mutebi, S.; Becker, M. Vegetation diversity in East African wetlands: Cocktail algorithms supported by a vegetation-plot database. Phytocoenologia 2022, 51, 199–219. [Google Scholar] [CrossRef]
- van Staden, P.J.; Bredenkamp, G.J.; Bezuidenhout, H.; Brown, L.R. A reclassification and description of the Waterberg Mountain vegetation of the Marakele National Park, Limpopo province, South Africa. Koedoe 2021, 63, 16. [Google Scholar] [CrossRef]
- Bezuidenhout, H.; Brown, L.R. Mountain Zebra National Park phytosociological classification: A case study of scale and management in the Eastern Cape, South Africa. S. Afr. J. Bot. 2021, 138, 227–241. [Google Scholar] [CrossRef]
- Brown, L.R.; Magagula, I.P.; Barrett, A.S. A vegetation classification and description of Telperion Nature Reserve, Mpumalanga, South Africa. Veg. Classif. Surv. 2022, 3, 199–219. [Google Scholar] [CrossRef]
- Daemane, M.E.; Ramoelo, A.; Adelabu, S.; Bezuidenhout, H.; Brown, L.R. Plant community assemblages and environmental drivers in the mountainous grassland ecosystem of South Africa. Phytocoenologia 2022, 51, 263–274. [Google Scholar] [CrossRef]
- Canas, R.Q.; Cano-Ortiz, A.; Spampinato, G.; del Río, S.; Raposo, M.; Fuentes, J.C.P.; Gomes, C.P. Contribution to the Knowledge of Rocky Plant Communities of the Southwest Iberian Peninsula. Plants 2021, 10, 1590. [Google Scholar] [CrossRef]
- Kapitonova, O.A.; Lysenko, T.M. New association Phragmitetum altissimi ass. nov. (Phragmito-Magnocaricetea Klika in Klika et Novák 1941) from the European part of Russia and Western Siberia. Veg. Russ. 2022, 45, 74–90. [Google Scholar] [CrossRef]
- Golovanov, Y.M.; Biktimerova, G.Y. The new associations of anthropogenic vegetation of the classes Sisymbrietea Gutte et Hilbig 1975 and Digitario sanguinalis–Eragrostietea minoris Mucina, Lososová et Šilc in Mucina et al. 2016 in the Republic of Bashkortostan. Veg. Russ. 2022, 44, 61–75. [Google Scholar] [CrossRef]
- Golovanov, Y.; Abramova, L. Database of anthropogenic vegetation of the Urals and adjacent territories. BIO Web Conf. 2021, 38, 37. [Google Scholar] [CrossRef]
- Dziuba, T.P.; Dubyna, D.V. Database of halophytic and littoral vegetation of Ukraine. Phytocoenologia 2021, 50, 329–338. [Google Scholar] [CrossRef]
- Ermakov, N.B. The higher units of pine forests of Russia in connection with the general concept of vegetation classification of Northern Eurasia. Plant Biol. Hortic. Theory Innov. 2021, 1, 94–113. [Google Scholar] [CrossRef]
- Ovcharova, N.V.; Ermakov, N.B.; Silantyeva, M.M. Syntaxonomic and ecological peculiarities of extra-zonal pine forests with participation of Acer negundo L. From the forest-steppe and steppe zones of Altai Krai (South-Eastern Siberia). Acta Biol. Sib. 2021, 7, 451–466. [Google Scholar] [CrossRef]
- Kozhevnikova, M.; Prokhorov, V. Syntaxonomy of the xero-mesophytic oak forests in the Republic of Tatarstan (Eastern Europe). Veg. Classif. Surv. 2021, 2, 47–58. [Google Scholar] [CrossRef]
- Meddour, R.; Sahar, O.; Bouxin, G. Syntaxonomical survey of cork oak forests (Quercus suber L.) in the province of Tizi Ouzou, Kabylia, Northern Algeria. Hacquetia 2022, 21, 297–325. [Google Scholar] [CrossRef]
- Joel-Reyes, O.; Acosta-Cantillo, F.; Bergues-Garrido, P. Sintaxis de los bosques húmedos ofilíticos de la altiplanicie de Nipe, Cuba oriental. Rev. Politécnica 2022, 18, 98–109. [Google Scholar] [CrossRef]
- Ermakov, N.B.; Plugatar, Y.V.; Leiba, V.D. Abies nordmanniana and Picea orientalis forests from the Colchic region (Western Caucasus) and new concept of Euxine dark coniferous forests classification in the Braun-Blanquet system. Bot. Pacifica 2022, 11, 45–55. [Google Scholar] [CrossRef]
- Ermakov, N.B.; Polyakova, M.A. Syntaxonomy and geography of light-coniferous and mixed (Pinus sibirica, Larix sibirica) forests of the Bolshoy Agul River basin (Eastern Sayan, Southern Siberia). Turczaninowia 2022, 25, 5–18. [Google Scholar] [CrossRef]
- Ermakov, N.B.; Martynenko, V.B. The higher units of dark coniferous forests of eastern part of Europe, Southern Urals and Western Siberia in the Braun-Blanquet system. Veg. Russ. 2022, 44, 76–96. [Google Scholar] [CrossRef]
- Klimova, N.V.; Chernova, N.A.; Dyukarev, A.G. Vegetation of Suffusion Depressions in the Northern Part of the Subtaiga of Western Siberia. Vestn. Tomsk. Gos. Univ. Biol. 2022, 59, 85–109. [Google Scholar] [CrossRef]
- Matveyeva, N.V.; Lavrinenko, O.V. The checklist of the syntaxa within the Russian Arctic: Current state with vegetation classification. Rastit. Ross. 2021, 42, 3–41. [Google Scholar] [CrossRef]
- Teteryuk, B.Y.; Lavrinenko, O.V.; Kipriyanova, L.M. Sparganion hyperborei—New alliance in water-bodies of the Arctic and mountainous regions of Eurasia. Bot. Pacifica 2022, 11, 57–64. [Google Scholar] [CrossRef]
- Lavrinenko, O.V.; Lapshina, E.D.; Lavrinenko, I.A. New associations with Eriophorum vaginatum L. in the Russian Arctic. Bot. Pacifica 2022, 11, 15–36. [Google Scholar] [CrossRef]
- Lapshina, E.D.; Filippov, I.V.; Ganasevich, G.N. Low-sedge vegetation of waterlogged bog hollows and fens in the north of Western Siberia. Veg. Russ. 2022, 45, 3–38. [Google Scholar] [CrossRef]
- Sokolova, T.A. Large-scale geobotanical map of the Tuzla Spit and Tuzla Island (the Kerch Strait). Geobot. Mapp. 2019, 57–67. [Google Scholar] [CrossRef]
- Lavrinenko, I.A. Typology and syntaxonomic composition of vegetation territorial units: Novel approach suggested with the case study of Arctic marshes. Rastit. Ross. 2020, 39, 100–148. [Google Scholar] [CrossRef]
- Lavrinenko, I.A. West European geobotanists approaches to typology and mapping of vegetation territorial units. Rastit. Ross. 2021, 42, 146–164. [Google Scholar] [CrossRef]
- Al-Khulaidi, A.W.A.; Al-Namazi, A.A. Vegetation mapping and development of a method for the vegetation typification in the Arabian Peninsula. Electron. J. Univ. Aden Basic Appl. Sci. 2022, 3, 327–338. [Google Scholar] [CrossRef]
- Lavrinenko, O.V.; Lavrinenko, I.A. Vegetation of Loiseleurio procumbentis–Vaccinietea Eggler ex Schubert 1960 class in the East European tundras. Rastit. Ross. 2020, 38, 27–84. [Google Scholar] [CrossRef]
- Tichý, L.; Hennekens, S.M.; Novák, P.; Rodwell, J.S.; Schaminée, J.H.J.; Chytrý, M. Optimal Transformation of Species Cover for Vegetation Classification. Appl. Veg. Sci. 2020, 23, 710–717. [Google Scholar] [CrossRef]
- Peterka, T.; Syrovátka, V.; Dítě, D.; Hájková, P.; Hrubanová, M.; Jiroušek, M.; Plesková, Z.; Singh, P.; Šímová, A.; Šmerdová, E.; et al. Is variable plot size a serious constraint in broad-scale vegetation studies? A case study on fens. J. Veg. Sci. 2020, 31, 594–605. [Google Scholar] [CrossRef]
- Di Pietro, R.; Fortini, P.; Misano, G.; Terzi, M. Phytosociology of Atractylis cancellata and Micromeria microphylla communities in southern Italy with insights on the xerothermic steno-Mediterranean grasslands high-rank syntaxa. Plant Sociol. 2021, 58, 133–155. [Google Scholar] [CrossRef]
- Karaköse, M. Numerical classification and ordination of Esenli (Giresun) forest vegetation. Biologia 2019, 74, 1441–1453. [Google Scholar] [CrossRef]
- Bulokhov, A.D.; Panasenko, N.N.; Semenishchenkov, Y.A.; Kharin, A.V. Phytocoenotic diversity and dynamics of the communities of association Caricetum gracilis Savich 1926 under the xerophytization of the Desna River floodplain. Rastit. Ross. 2019, 37, 3–28. [Google Scholar] [CrossRef]
- Barkman, J.J. Fidelity and character-species, a critical evaluation. Vegetatio 1989, 85, 105–116. [Google Scholar] [CrossRef]
- Werger, M.J.A. On the use of association-analysis and principal component analysis in interpreting a Braun-Blanquet phytosociological table of a Dutch grassland. Plant Ecol. 1973, 28, 129–144. [Google Scholar] [CrossRef]
- Kowalska, A.; Wolski, J.; Affek, A.N.; Regulska, E.; Roo-Zielińska, E. The use of phytosociological relevés in recent studies of the natural environment. Prz. Geogr. 2021, 93, 311–339. [Google Scholar] [CrossRef]
- Enright, N.J.; Nuñez, M.A. The Braun-Blanquet reviews in Plant Ecology: In honour of our founding editor, Josias Braun-Blanquet. Plant Ecol. 2013, 214, 1417–1418. [Google Scholar] [CrossRef]
- Gao, Y.; Pan, K.; Li, H.; Zhao, B. Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review. Forests 2024, 15, 634. [Google Scholar] [CrossRef]
Keyword | Links | Occurrence |
---|---|---|
Methodology improvement and methods of numerical classification and ordination | ||
Phytosociology | 110 | 56 |
Distribution | 192 | 163 |
Braun-Blanquet method | 168 | 99 |
Braun-Blanquet procedure | 81 | 40 |
Ordination | 138 | 50 |
Correspondence analysis | 109 | 24 |
Twinspan | 102 | 35 |
DCA | 82 | 15 |
Numerical classification | 53 | 15 |
Decorana | 52 | 13 |
Vegetation types, biodiversity and conservation | ||
Plant community | 196 | 329 |
Plant | 184 | 148 |
Grassland | 141 | 133 |
Vegetation type | 134 | 64 |
Species richness | 147 | 54 |
Tree | 118 | 45 |
Ecosystem | 125 | 75 |
Conservation | 123 | 64 |
Biodiversity | 112 | 34 |
Wetland | 105 | 45 |
Forest communities | 94 | 23 |
Floristic diversity | 76 | 25 |
Conservation | 123 | 64 |
Vegetation dynamics and management | ||
Management | 125 | 40 |
Transformation | 102 | 46 |
Fire | 91 | 30 |
Degradation | 67 | 15 |
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | van der Maarel, E. | Transformation of cover-abundance values in phytosociology and its effects on community similarity | 1979 | 1044 | [81] |
2 | Westhoff, V.E.; van der Maarel, E. | The Braun–Blanquet Approach | 1973, 1978 | 796 | [43,82] |
3 | Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. | Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities | 2016 | 769 | [50] |
4 | Barkman, J.J.; Doing, H.; Segal, S. | Kritische bemerkungen und vorschläge zur quantitativen vegetations analyse | 1964 | 308 | [83] |
5 | Pojar, J.; Klinka, K.; Meidinger, D.V. | Biogeoclimatic ecosystem classification in British Columbia | 1987 | 290 | [13] |
6 | Chytrý, M.; Otýpková, Z. | Plot sizes used for phytosociological sampling of European vegetation | 2003 | 216 | [84] |
7 | Poore, M.E.D. | The Use of Phytosociological Methods in Ecological Investigations: I. The Braun-Blanquet System | 1955 | 144 | [85] |
8 | Lepš, J.; Hadincová, V. | How reliable are our vegetation analyses? | 1992 | 139 | [86] |
9 | Biondi, E. | Phytosociology today: methodological and conceptual evolution | 2011 | 127 | [60] |
10 | van der Maarel, E.; Janssen, J.G.M.; Louppen, J.M.W. | TABORD, a program for structuring phytosociological tables | 1978 | 127 | [87] |
11 | Moreno-Casasola, P., Espejel, I. | Classification and ordination of coastal sand dune vegetation along the Gulf and Caribbean Sea of Mexico | 1986 | 99 | [88] |
12 | Kočí, M.; Chytrý, M.; Tichý, L. | Formalized reproduction of an expert-based phytosociological classification: a case study of subalpine tall-forb vegetation | 2006 | 64 | [89] |
13 | Podani, J. | Braun-blanquet’s legacy and data analysis in vegetation science | 2006 | 91 | [90] |
14 | Moore, J.J.; Fitzsimons, S.J.P.; Lambe, E.; White J. | A comparison and evaluation of some phytosociological techniques | 1970 | 61 | [91] |
15 | Poore, M.E. | The use of phytosociological methods in ecological investigations: ii. practical issues involved in an attempt to apply the braun-blanquet system | 1955 | 61 | [85] |
16 | Biondi, E., Feoli, E., Zuccarello, V. | Modelling environmental responses of plant associations: A review of some critical concepts in vegetation study | 2004 | 39 | [61] |
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; Galdenzi, D.; Gasparri, R.; Lasen, C.; Pesaresi, S.; Poldini, L.; Sburlino, G.; Taffetani, F.; Vagge, I.; Zitti S.; Zivkovic L. | Plant communities of Italy: The Vegetation Prodrome | 2014 | 153 | [94] |
2 | Mucina, L. | Conspectus of classes of European vegetation | 1997 | 104 | [95] |
3 | Hemp, A. | The Banana Forests of Kilimanjaro: Biodiversity and Conservation of the Chagga Homegardens | 2006 | 104 | [96] |
4 | Chytry, M. | Phytosociological Data Give Biased Estimates of Species Richness | 2001 | 62 | [97] |
5 | Feoli, E.; Lagonegro, M. | Syntaxonomical analysis of beech woods in the apennines (italy) using the program package IAHOPA | 1982 | 48 | [98] |
6 | Cilliers, S.S; Bredenkamp, G.J. | Vegetation of road verges on an urbanisation gradient in potchefstroom, South Africa | 2000 | 44 | [99] |
7 | Cowling, R.M.; Campbell, B.M.; Mustart, P.; McDonald, D.J.; Jarman, M.L.; Moll, E.J. | Vegetation classification in a floristically complex area: The Agulhas Plain | 1988 | 37 | [100] |
8 | Blasi, C.; di Pietro, R.; Fortini, P.; Catonica, C. | The main plant community types of the alpine belt of the Apennine chain | 2003 | 37 | [101] |
9 | Furness, H.D.; Breen, C.M. | The vegetation of seasonally flooded areas of the Pongolo River Floodplain | 1980 | 34 | [102] |
10 | Mostert, T.H.C.; Bredenkamp, G.J.; Klopper, H.L.; Verwe, C.; Mostert, R.E.; Hahn, N. | Major vegetation types of the Soutpansberg conservancy and the blouberg nature reserve, South Africa | 2008 | 34 | [103] |
11 | Tomaselli, M. | The snow-bed vegetation in the Northern Apennines | 1991 | 34 | [104] |
12 | Bonyongo, M.C., Bredenkamp, G.J., Veenendaal, E. | Floodplain vegetation in the Nxaraga Lagoon area, Okavango Delta, Botswana | 2000 | 26 | [105] |
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Hermy, M.; Stieperaere, H. | An indirect gradient analysis of the ecological relationships between ancient and recent reiverine woodlands to the south of Bruges (Flanders, Belgium) | 1981 | 63 | [106] |
2 | Godefroid, S.; Rucquoij, S.; Koedam, N. | To what extent do forest herbs recover after clearcutting in beech forest? | 2005 | 45 | [107] |
3 | Czerepko, J. | A long-term study of successional dynamics in the forest wetlands. Forest Ecology and Management | 2008 | 34 | [108] |
4 | Dzwonko, Z.; Loster, S. | Vegetation differentiation and secondary succession on a limestone hill in southern Poland | 1990 | 31 | [109] |
5 | Vacek, S., Cerný, T., Vacek, Z., Podrázský, V., Mikeska, M., Králíček, I. | Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe | 2017 | 25 | [110] |
Keyword | Links | Occurrence |
---|---|---|
Forest | 172 | 357 |
Forest-steppe zone | 77 | 12 |
Pine forest | 77 | 34 |
Association (ass) | 153 | 294 |
Differentiation | 118 | 29 |
Dominance | 121 | 27 |
Grass | 126 | 37 |
Herb layer | 93 | 13 |
Invasion | 80 | 24 |
Invasive species | 79 | 18 |
Keyword | Links | Occurrence |
---|---|---|
Map | 130 | 49 |
Geobotanical map | 57 | 11 |
Vegetation unit | 131 | 45 |
Territorial unit | 43 | 28 |
Typological unit | 52 | 15 |
Typology | 58 | 12 |
Combination | 136 | 55 |
Environmental factor | 132 | 39 |
Nomenclature | 117 | 27 |
Series | 139 | 45 |
Basis | 158 | 69 |
Marsh | 90 | 25 |
Keyword | Links | Occurrence |
---|---|---|
Arctic | 74 | 23 |
Russian Arctic | 48 | 15 |
Tundra zone | 74 | 17 |
Syntaxon | 144 | 57 |
Higher unit | 73 | 14 |
Checklist | 69 | 20 |
Evc | 39 | 21 |
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Matveyeva, N.V. | Floristic classification and ecology of tundra vegetation of the Taymyr peninsula, Northern Siberia | 1994 | 49 | [135] |
2 | Walker, D.A.; Daniëls, F.J.A.; Matveyeva, N.V.; Šibík, J.; Walker, M.D.; Breen, A.L.; Druckenmiller, L.A.; Raynolds, M.K.; Bültmann, H.; Hennekens, S.; Buchhorn, M.; Epstein, H.E.; Ermokhina, K.; Fosaa, A.M.; Hei∂marsson, S.; Heim, B.; Jónsdóttir, I.S.; Koroleva, N.; Lévesque, E.; MacKenzie, W.H.; Henry, G.H.R.; Nilsen, L.; Peet, R.; Razzhivin, V.; Talbot, S.S.; Telyatnikov, M.; Thannheiser, D.; Webber, P.J.; Wirth, L.M. | Circumpolar arctic vegetation classification | 2018 | 36 | [136] |
3 | Koroleva, N. E. | Phytosociological survey of the tundra vegetation of the Kola Peninsula, Russia | 1994 | 25 | [137] |
4 | Matveyeva, N.V. | Vegetation of the southern part of Bolshevik Island (Severnaya Zemlya Archipelago) | 2006 | 23 | [138] |
5 | Kholod, S.S. | Classification of Wrangel Island vegetation | 2007 | 23 | [139] |
Keyword | Links | Occurrence |
---|---|---|
Floodplain | 107 | 44 |
Pasture | 76 | 23 |
Meadow community | 51 | 21 |
Meadow vegetation | 40 | 11 |
Aquatic vegetation | 48 | 15 |
Floristic composition | 157 | 67 |
Floristic classification | 97 | 20 |
Rank | Authors | Title | Year of Publication | Crossref Citations | References |
---|---|---|---|---|---|
1 | Glaser, P.; Wheeler, G.; Gorham, E.; Wright, H.E. | The patterned mires of the red lake peatland, northern Minnesota: vegetation, water chemistry and landforms | 1981 | 179 | [141] |
2 | Willems, J.H. | Phytosociological and geographical survey of mesohromion communities in western Europe | 1984 | 49 | [142] |
3 | Murray-Hudson, M., Wolski, P., Cassidy, L., Brown, M. T., Thito, K., Kashe, K., Mosimanyana, E. | Remote Sensing-derived hydroperiod as a predictor of floodplain vegetation composition | 2015 | 29 | [143] |
4 | Taylor, H.C. | A vegetation survey of the Cape of Good Hope Nature Reserve. I. The use of association-analysis and Braun-Blanquet methods | 1984 | 26 | [144] |
5 | Kavgaci, A., Carni, A., Tecimen, H., Ozalp, G. | Diversity of floodplain forests in the Igneada region (NW Thrace—Turkey) | 2011 | 15 | [145] |
Rank | Author | Institute | Country | Number of Papers | Number of Citations |
---|---|---|---|---|---|
1 | Braun-Blanquet, J. | International Station for Alpine and Mediterranean Geobotany, SIGMA | France, Switzerland | 8 | 2096 |
2 | van der Maarel, E. | Division of Geobotany, Toernooiveld | Netherlands | 5 | 1889 |
3 | Chytrý, M. | Masaryk University | Czech Republic | 16 | 1317 |
4 | Mucina, L. | Department of Vegetation Ecology and Biological Conservation, University of Vienna; School of Plant Biology, The University of Western Australia | Austria, Australia | 5 | 923 |
5 | Dengler, J. | University of Bayreuth, Germany German Centre for Integrative Biodiversity Research | Germany | 7 | 908 |
6 | Di Pietro, R. | Section Environment and Landscape, Sapienza University of Roma | Italy | 8 | 905 |
7 | Daniëls, F.J.A. | Institute of Plant Biology and Biotechnology, University of Münster | Germany | 9 | 878 |
8 | Willner, W. | Vienna Institute for Nature Conservation and Analyses; Department of Botany and Biodiversity Research, University of Vienna | Austria | 8 | 878 |
9 | Tichý, L. | Department of Botany and Zoology, Masaryk University | Czech Republic | 3 | 869 |
10 | Čarni, A. | Institute of Biology, Scientific Research Center of the Slovenian Academy of Sciences and Arts; University of Nova Gorica; Macedonian Academy of Sciences and Arts | Slovenia, Republic of Macedonia | 6 | 862 |
11 | Schaminée, J.H.J. | Institute for Water and Wetland Research, Radboud University | Netherlands | 5 | 839 |
12 | Ermakov, N. | Laboratory of Ecology and Geobotany, Central Siberian Botanical Garden; Nikitskiy Botanical Garden | Russian Federation | 6 | 835 |
13 | Hennekens, S.M. | Alterra | Netherlands | 5 | 834 |
14 | Pignatti, S. | Department of Environmental Biology, University of Rome L‘a Sapienza’ | Italy | 5 | 827 |
15 | Hájek, M. | Department of Botany and Zoology, Masaryk University | Czech Republic | 5 | 826 |
16 | Bültmann, H. | - | Germany | 2 | 823 |
17 | Valachovič, M. | Institute of Botany, Slovak Academy of Sciences | Slovakia | 3 | 808 |
18 | Westhoff, V. | Groesbeek | Netherlands | 2 | 805 |
19 | Bergmeier, E. | Department of Vegetation and Plant Diversity Analysis, Albrecht von Haller Institute of Plant Sciences, University of Göttingen | Germany | 3 | 800 |
20 | Dimopoulos, P. | Faculty of Environmental and Natural Resources Management, University of Patras | Greece | 2 | 792 |
Rank | Author | Institute | Country | Number of Papers | Number of Citations |
---|---|---|---|---|---|
1 | Bredenkamp, G.J. | University of Pretoria | South Africa | 67 | 547 |
2 | Brown, L.R. | University of South Africa | South Africa | 24 | 101 |
3 | van Rooyen, N. | University of Pretoria | South Africa | 23 | 114 |
4 | Bezuidenhout, H. | University of South Africa; Applied Behavioural Ecology and Ecosystem Research Unit, UNISA | USA | 22 | 113 |
5 | Nobis, M. | Institute of Botany, Jagiellonian University | Poland | 17 | 132 |
6 | Nowak, A. | Opole University | Poland | 17 | 132 |
7 | Nowak, S. | Opole University | Poland | 17 | 132 |
8 | Chytrý, M. | Masaryk University | Czech Republic | 16 | 1317 |
9 | du Preez, P.J. | National Museum | South Africa | 16 | 98 |
10 | Cilliers, S.S. | School for Environmental Sciences and Development, Potchefstroom University for C.H.E. | South Africa | 15 | 117 |
Rank | Journal | Documents | Citations | Avg. Citations | Avg. Norm. Citations |
---|---|---|---|---|---|
1 | Classification of Plant Communities | 1 | 476 | 476.0 | 6.00 |
2 | Ordination and Classification of Communities | 1 | 329 | 329.0 | 4.67 |
3 | Acta Botanica Neerlandica | 1 | 311 | 311.0 | 0.26 |
4 | Environmental Management | 1 | 159 | 159.0 | 2.00 |
5 | Applied Vegetation Science | 6 | 840 | 140.0 | 8.45 |
6 | Forest Ecology and Management | 5 | 403 | 80.6 | 3.20 |
7 | The Journal of Ecology | 8 | 493 | 61.6 | 1.19 |
8 | Vegetatio | 40 | 2354 | 58.9 | 1.10 |
9 | Landscape and Urban Planning | 2 | 116 | 58.0 | 3.00 |
10 | Biodiversity and Conservation | 2 | 110 | 55.0 | 2.04 |
11 | Encyclopedia of Ecology | 2 | 99 | 49.5 | 3.54 |
12 | Ecography | 1 | 45 | 45.0 | 7.37 |
13 | Ecosphere | 1 | 41 | 41.0 | 4.69 |
14 | Journal of Vegetation Science | 31 | 1239 | 40.0 | 2.23 |
15 | Critical Reviews in Plant Sciences | 1 | 39 | 39,0 | 2.38 |
16 | Plant Ecology | 12 | 440 | 36.7 | 1.49 |
17 | Rodriguésia | 2 | 56 | 28.0 | 4.92 |
18 | International Journal of Environmental Science and Technology | 1 | 28 | 28.0 | 3.61 |
19 | Bulletin du Jardin Botanique de l’Etat a Bruxelles | 1 | 27 | 27.0 | 1.00 |
20 | Plant Biosystems—an international journal dealing with all aspects of plant biology | 24 | 552 | 23.0 | 2.13 |
Rank | Journal | Documents | Citations | Avg. Citations | Avg. Norm. Citations |
---|---|---|---|---|---|
1 | Vegetatio | 40 | 2354 | 58.9 | 1.10 |
2 | Journal of Vegetation Science | 31 | 1239 | 40.0 | 2.23 |
3 | Applied Vegetation Science | 6 | 840 | 140.0 | 8.45 |
4 | Phytocoenologia | 78 | 840 | 10.8 | 1.23 |
5 | Plant Biosystems—an international journal dealing with all aspects of plant biology | 24 | 552 | 23.0 | 2.13 |
6 | The Journal of Ecology | 8 | 493 | 61.6 | 1.19 |
7 | Classification of Plant Communities | 1 | 476 | 476.0 | 6.00 |
8 | Plant Ecology | 12 | 440 | 36.7 | 1.49 |
9 | Forest Ecology and Management | 5 | 403 | 80.6 | 3.20 |
10 | South African Journal of Botany | 45 | 359 | 8.0 | 0.69 |
11 | Ordination and Classification of Communities | 1 | 329 | 329.0 | 4.67 |
12 | Acta Botanica Neerlandica | 1 | 311 | 311.0 | 0.26 |
13 | Bothalia | 27 | 277 | 10.3 | 1.57 |
14 | Koedoe | 49 | 267 | 5.4 | 0.96 |
15 | Vegetation of Russia | 80 | 251 | 3.1 | 0.47 |
16 | Folia Geobotanica et Phytotaxonomica | 14 | 214 | 15.3 | 0.96 |
17 | Environmental Management | 1 | 159 | 159.0 | 2.00 |
18 | Folia Geobotanica | 13 | 159 | 12.2 | 1.43 |
19 | Landscape and Urban Planning | 2 | 116 | 58.0 | 3.00 |
20 | Biodiversity and Conservation | 2 | 110 | 55.0 | 2.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, N. Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests 2024, 15, 937. https://doi.org/10.3390/f15060937
Ivanova N. Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests. 2024; 15(6):937. https://doi.org/10.3390/f15060937
Chicago/Turabian StyleIvanova, Natalya. 2024. "Global Overview of the Application of the Braun-Blanquet Approach in Research" Forests 15, no. 6: 937. https://doi.org/10.3390/f15060937
APA StyleIvanova, N. (2024). Global Overview of the Application of the Braun-Blanquet Approach in Research. Forests, 15(6), 937. https://doi.org/10.3390/f15060937