Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data
2.1.1. Study Site
2.1.2. Data Collection
2.2. Statistical Analysis
2.2.1. Independent Fitting Model
- Model 1:
- Model 2:
- Model 3:
- Model 4:
- Model 5:
2.2.2. Proportional Function Control Method
2.2.3. Algebraic Sum Control Method
2.2.4. Model Evaluation
3. Results
3.1. Correlation Analysis of Variables
3.2. Analysis of the Independent Fitting Model
3.3. Analysis of the Two Additive Allometric Biomass Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eker, M.; Poudel, K.P.; Özçelik, R. Aboveground Biomass Equations for Small Trees of Brutian Pine in Turkey to Facilitate Harvesting and Management. Forests 2017, 8, 477. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Gómez-García, E. Estimating the Changes in Tree Carbon Stocks in Galician Forests (NW Spain) between 1972 and 2009. For. Ecol. Manag. 2020, 467, 118157. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Feng, Z.; Wang, Y.; Su, J.; Gao, K.; Li, J. Dispersal Limitation Dominates the Spatial Distribution of Forest Fuel Loads in Chongqing, China. Ecosyst. Health Sustain. 2023, 9, 0079. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the Geographical Environment and the Forest Carbon Sink Capacity in China Based on an Individual-Tree Growth-Rate Model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Chen, P.; Chen, X. Development of a Tree Growth Difference Equation and Its Application in Forecasting the Biomass Carbon Stocks of Chinese Forests in 2050. Forests 2019, 10, 582. [Google Scholar] [CrossRef]
- Bilgili, E.; Kucuk, O. Estimating Above-Ground Fuel Biomass in Young Calabrian Pine (Pinus brutia Ten.). Energy Fuels 2009, 23, 1797–1800. [Google Scholar]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Review of Allometric Equations for Major Land Covers in SE Asia: Uncertainty and Implications for above-and below-Ground Carbon Estimates. For. Ecol. Manag. 2016, 360, 323–340. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A Review of Biomass Equations for China’s Tree Species. Earth Syst. Sci. Data 2020, 12, 21–40. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Wang, X.; Zhou, X.; Gong, P. Integration of Multi-Resource Remotely Sensed Data and Allometric Models for Forest Aboveground Biomass Estimation in China. Remote Sens. Environ. 2019, 221, 225–234. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S. Aboveground Biomass Estimation of Small Diameter Woody Species of Tropical Dry Forest. New For. 2013, 44, 509–519. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.; Liu, G.; Yang, C.; Teskey, R.O. Additive Tree Biomass Equations for Betula Platyphylla Suk. Plantations in Northeast China. Ann. For. Sci. 2018, 75, 60. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Wang, C.; Gower, S.T. Aboveground and Belowground Biomass and Sapwood Area Allometric Equations for Six Boreal Tree Species of Northern Manitoba. Can. J. For. Res. 2002, 32, 1441–1450. [Google Scholar] [CrossRef]
- Daryaei, A.; Sohrabi, H. Additive Biomass Equations for Small Diameter Trees of Temperate Mixed Deciduous Forests. Scand. J. For. Res. 2016, 31, 394–398. [Google Scholar] [CrossRef]
- Nelson, A.S.; Weiskittel, A.R.; Wagner, R.G.; Saunders, M.R. Development and Evaluation of Aboveground Small Tree Biomass Models for Naturally Regenerated and Planted Species in Eastern Maine, USA. Biomass Bioenergy 2014, 68, 215–227. [Google Scholar] [CrossRef]
- Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de Las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree Above-Ground Biomass Allometries for Carbon Stocks Estimation in the Natural Forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Zeng, W.; Tang, S. Modeling Compatible Single-Tree Aboveground Biomass Equations for Masson Pine (Pinus Massoniana) in Southern China. J. For. Res. 2012, 23, 593–598. [Google Scholar] [CrossRef]
- Liu, B.; Bu, W.; Zang, R. Improved Allometric Models to Estimate the Aboveground Biomass of Younger Secondary Tropical Forests. Glob. Ecol. Conserv. 2023, 41, e02359. [Google Scholar] [CrossRef]
- Cole, T.G.; Ewel, J.J. Allometric Equations for Four Valuable Tropical Tree Species. For. Ecol. Manag. 2006, 229, 351–360. [Google Scholar] [CrossRef]
- Zhou, X.; Brandle, J.R.; Schoeneberger, M.M.; Awada, T. Developing Above-Ground Woody Biomass Equations for Open-Grown, Multiple-Stemmed Tree Species: Shelterbelt-Grown Russian-Olive. Ecol. Model. 2007, 202, 311–323. [Google Scholar] [CrossRef]
- Cui, Y.; Bi, H.; Liu, S.; Hou, G.; Wang, N.; Ma, X.; Zhao, D.; Wang, S.; Yun, H. Developing Additive Systems of Biomass Equations for Robinia pseudoacacia L. in the Region of Loess Plateau of Western Shanxi Province, China. Forests 2020, 11, 1332. [Google Scholar] [CrossRef]
- Rutishauser, E.; Noor’an, F.; Laumonier, Y.; Halperin, J.; Hergoualc’h, K.; Verchot, L. Generic Allometric Models Including Height Best Estimate Forest Biomass and Carbon Stocks in Indonesia. For. Ecol. Manag. 2013, 307, 219–225. [Google Scholar] [CrossRef]
- Picard, N.; Rutishauser, E.; Ploton, P.; Ngomanda, A.; Henry, M. Should Tree Biomass Allometry Be Restricted to Power Models? For. Ecol. Manag. 2015, 353, 156–163. [Google Scholar] [CrossRef]
- Xiong, N.; Qiao, Y.; Ren, H.; Zhang, L.; Chen, R.; Wang, J. Comparison of Parameter Estimation Methods Based on Two Additive Biomass Models with Small Samples. Forests 2023, 14, 1655. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, M.; Liu, Z.; Li, P.; Xie, B.; Peng, C. Dynamic Allometric Scaling of Tree Biomass and Size. Nat. Plants 2021, 7, 42–49. [Google Scholar] [CrossRef]
- Zheng, X.-J.; Wang, Y.-G.; Wu, X.; Ren, W.; Wu, Y.; Li, Y.; Cao, X.; Ma, J.; Zhou, H. An Expanded Allometric Model for Crowns of Four Co-Existing Desert Shrubs. Trees 2019, 33, 1423–1433. [Google Scholar] [CrossRef]
- Bertsimas, D.; King, A. Logistic Regression: From Art to Science. Stat. Sci. 2017, 32, 367–384. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, C.; Zhou, J.; Li, Y.; Gao, G.; Fu, B. Logistic Model Outperforms Allometric Regression to Estimate Biomass of Xerophytic Shrubs. Ecol. Indic. 2021, 132, 108278. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Birdsey, R.A.; Pan, Y. Biomass and NPP Estimation for the Mid-Atlantic Region (USA) Using Plot-level Forest Inventory Data. Ecol. Appl. 2001, 11, 1174–1193. [Google Scholar] [CrossRef]
- Xiao, C.-W.; Ceulemans, R. Allometric Relationships for Below-and Aboveground Biomass of Young Scots Pines. For. Ecol. Manag. 2004, 203, 177–186. [Google Scholar] [CrossRef]
- Mugasha, W.A.; Eid, T.; Bollandsås, O.M.; Malimbwi, R.E.; Chamshama, S.A.O.; Zahabu, E.; Katani, J.Z. Allometric Models for Prediction of Above-and Belowground Biomass of Trees in the Miombo Woodlands of Tanzania. For. Ecol. Manag. 2013, 310, 87–101. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Pearson Education: Delhi, India, 2003; ISBN 81-7758-684-X. [Google Scholar]
- Tang, S.; Wang, Y. A Parameter Estimation Program for the Error-in-Variable Model. Ecol. Model. 2002, 156, 225–236. [Google Scholar] [CrossRef]
- Zeng, W.; Tang, S. Using Measurement Error Modeling Method to Establish Compatible Single-Tree Biomass Equations System; Forest Research: Beijing, China, 2010; Volume 23, pp. 797–803. [Google Scholar]
- Liu, Q.; Peng, D.; Huang, G.; Zeng, W.; Wang, X. Compatible standing tree volume and above-ground biomass equations for spruce (Picea asperata) in northeastern China. J. Beijing For. Univ. 2015, 37, 8–15. (In Chinese) [Google Scholar]
- Zheng, X.; Yi, L.; Li, Q. Developing biomass estimation models of young trees in typical plantation on the Qinghai-Tibet Plateau, China. Chin. J. Appl. Ecol. 2022, 33, 2923–2935. (In Chinese) [Google Scholar]
- Fu, L.; Lei, Y.; Wang, G.; Bi, H.; Tang, S.; Song, X. Comparison of Seemingly Unrelated Regressions with Error-in-Variable Models for Developing a System of Nonlinear Additive Biomass Equations. Trees 2016, 30, 839–857. [Google Scholar] [CrossRef]
- Fang, J.; Yoda, K. Climate and Vegetation in China II. Distribution of Main Vegetation Types and Thermal Climate. Ecol. Res. 1989, 4, 71–83. [Google Scholar] [CrossRef]
- Zianis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe; FI: Helsinki, Finland, 2005; ISBN 951-40-1983-0. [Google Scholar]
- Henry, M.; Picard, N.; Trotta, C.; Manlay, R.; Valentini, R.; Bernoux, M.; Saint André, L. Estimating Tree Biomass of Sub-Saharan African Forests: A Review of Available Allometric Equations. Silva Fenn. 2011, 45, 477–569. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Henningsen, A.; Hamann, J.D. Systemfit: A Package for Estimating Systems of Simultaneous Equations in R. J. Stat. Softw. 2008, 23, 1–40. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Wang, C. Biomass Allometric Equations for 10 Co-Occurring Tree Species in Chinese Temperate Forests. For. Ecol. Manag. 2006, 222, 9–16. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. A Compatible System of Biomass Equations for Three Conifer Species in Northeast, China. For. Ecol. Manag. 2014, 329, 306–317. [Google Scholar] [CrossRef]
- Poorter, H.; Jagodzinski, A.M.; Ruiz-Peinado, R.; Kuyah, S.; Luo, Y.; Oleksyn, J.; Usoltsev, V.A.; Buckley, T.N.; Reich, P.B.; Sack, L. How Does Biomass Distribution Change with Size and Differ among Species? An Analysis for 1200 Plant Species from Five Continents. New Phytol. 2015, 208, 736–749. [Google Scholar] [CrossRef]
- Muller-Landau, H.C.; Condit, R.S.; Chave, J.; Thomas, S.C.; Bohlman, S.A.; Bunyavejchewin, S.; Davies, S.; Foster, R.; Gunatilleke, S.; Gunatilleke, N. Testing Metabolic Ecology Theory for Allometric Scaling of Tree Size, Growth and Mortality in Tropical Forests. Ecol. Lett. 2006, 9, 575–588. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Li, F. Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests 2016, 7, 136. [Google Scholar] [CrossRef]
- Wang, X.; Fang, J.; Tang, Z.; Zhu, B. Climatic Control of Primary Forest Structure and DBH–Height Allometry in Northeast China. For. Ecol. Manag. 2006, 234, 264–274. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, D.-L.; Huang, G.-S.; Zeng, W.-S. Developing Aboveground Biomass Equations Both Compatible with Tree Volume Equations and Additive Systems for Single-Trees in Poplar Plantations in Jiangsu Province, China. Forests 2016, 7, 32. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, L.; Chen, X.; Cheng, Z.; Ma, K.; Li, Z. Construction of Compatible and Additive Individual-Tree Biomass Models for Pinus Tabulaeformis in China. Can. J. For. Res. 2017, 47, 467–475. [Google Scholar] [CrossRef]
- Shao, J. Linear Model Selection by Cross-Validation. J. Am. Stat. Assoc. 1993, 88, 486–494. [Google Scholar] [CrossRef]
- Kozak, A.; Kozak, R. Does Cross Validation Provide Additional Information in the Evaluation of Regression Models? Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
Tree Species | N | D (Mean ± S.D.) | H (Mean ± S.D.) | Ba (Mean ± S.D.) | Bb (Mean ± S.D.) | Bt (Mean ± S.D.) |
---|---|---|---|---|---|---|
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | 104 | 3.0 ± 1.0 | 4.4 ± 1.4 | 2.095 ± 1.425 | 0.631 ± 0.540 | 2.727 ± 1.778 |
Populus × tomentosa Carrière | 63 | 3.1 ± 1.0 | 4.5 ± 1.4 | 1.650 ± 1.184 | 0.445 ± 0.389 | 2.095 ± 1.513 |
Tree Species | Component | Model | a0 | a1 | a2 | AIC |
---|---|---|---|---|---|---|
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | Ba | (1) | 6.0309 | 4.1417 | −1.1056 | 160.28 |
Ba | (2) | 0.0385 | −0.034 | 0.215 | 166.39 | |
Ba | (3) | 0.2085 | 2.0017 | NA | 164.41 | |
Bb | (1) | 1.4627 | 3.5013 | −1.0489 | 123.81 | |
Bb | (2) | −0.2264 | 0.2456 | 0.0122 | 125.17 | |
Bb | (3) | 0.107 | 1.5734 | NA | 123.23 | |
Bt | (1) | 7.4355 | 3.9978 | −1.0944 | 202.02 | |
Bt | (2) | −0.1882 | 0.212 | 0.2272 | 210.81 | |
Bt | (3) | 0.3099 | 1.8962 | NA | 208.64 | |
Populus × tomentosa Carrière | Ba | (1) | 16.5001 | 4.9433 | −0.8015 | 54.30 |
Ba | (2) | 1.4302 | −1.1264 | 0.3487 | 55.26 | |
Ba | (3) | 0.0877 | 2.4293 | NA | 56.36 | |
Bb | (1) | 4.6766 | 4.5959 | −0.6928 | 24.74 | |
Bb | (2) | 0.0914 | −0.0682 | 0.053 | 24.78 | |
Bb | (3) | 0.038 | 2.0698 | NA | 22.81 | |
Bt | (1) | 22.3301 | 4.9061 | −0.7718 | 114.68 | |
Bt | (2) | 1.5216 | −1.1946 | 0.4017 | 115.44 | |
Bt | (3) | 0.124 | 2.3484 | NA | 114.84 |
Tree Species | Component | Model | a0 | a1 | a2 | AIC |
---|---|---|---|---|---|---|
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | Ba | (4) | 0.2157 | 2.0291 | −0.0442 | 166.14 |
Ba | (5) | −1.6713 | 0.6432 | NA | 220.91 | |
Bb | (4) | 0.1879 | 2.0841 | −0.7946 | 117.52 | |
Bb | (5) | −2.299 | 0.4976 | NA | 135.52 | |
Bt | (4) | 0.3538 | 2.0019 | −0.1724 | 206.67 | |
Bt | (5) | −1.2791 | 0.6106 | NA | 273.25 | |
Populus × tomentosa Carrière | Ba | (4) | 0.0649 | 2.2219 | 0.3585 | 41.19 |
Ba | (5) | −2.6711 | 0.8104 | NA | 67.90 | |
Bb | (4) | 0.0268 | 1.8741 | 0.3782 | 22.78 | |
Bb | (5) | −3.6567 | 0.7321 | NA | 22.82 | |
Bt | (4) | 0.0905 | 2.1431 | 0.3649 | 106.15 | |
Bt | (5) | −2.3654 | 0.7943 | NA | 120.52 |
Species | Dimension | Model | Total Biomass | Proportional Function | ||||
---|---|---|---|---|---|---|---|---|
a0 | a1 | a2 | b0 | b1 | b2 | |||
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | Univariate | 1 | 7.4355 | 3.9978 | −1.0944 | 0.5107 | −0.4223 | / |
Bivariate | 4 | 0.3538 | 2.0019 | −0.1724 | 0.9139 | −0.0397 | −0.6976 | |
Populus × tomentosa Carrière | Univariate | 1 | 22.3301 | 4.9061 | −0.7718 | 0.3929 | −0.2906 | / |
Bivariate | 4 | 0.0905 | 2.1431 | 0.3649 | 0.3879 | −0.3167 | 0.0305 |
Species | Dimension | Model | Aboveground Biomass | Model | Belowground Biomass | ||||
---|---|---|---|---|---|---|---|---|---|
b0 | b1 | b2 | c0 | c1 | c2 | ||||
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | Univariate | 1 | 5.9573 | 4.1662 | −1.1197 | 3 | 0.1086 | 1.5628 | / |
Bivariate | 4 | 0.2153 | 2.0213 | −0.0366 | 4 | 0.1867 | 2.0909 | −0.7964 | |
Populus × tomentosa Carrière | Univariate | 1 | 12.2232 | 4.7389 | −0.8437 | 3 | 0.0374 | 2.0816 | / |
Bivariate | 4 | 0.0642 | 2.2329 | 0.3555 | 4 | 0.0247 | 1.9306 | 0.3798 |
Species | Dimension | Additive Method | Total Biomass | Aboveground Biomass | Belowground Biomass | |||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
Betula pendula subsp. mandshurica (Regel) Ashburner & McAll | Univariate | 1 | 0.8756 | 0.6272 | 0.8683 | 0.5247 | 0.3899 | 0.4257 |
Univariate | 2 | 0.8749 | 0.6289 | 0.8681 | 0.5252 | 0.3795 | 0.4293 | |
Bivariate | 1 | 0.8795 | 0.6174 | 0.8748 | 0.5091 | 0.4221 | 0.4164 | |
Bivariate | 2 | 0.8804 | 0.6150 | 0.8753 | 0.5106 | 0.4239 | 0.4157 | |
Populus × tomentosa Carrière | Univariate | 1 | 0.8610 | 0.5643 | 0.9128 | 0.3552 | 0.4943 | 0.2809 |
Univariate | 2 | 0.8604 | 0.5655 | 0.9127 | 0.3584 | 0.4941 | 0.281 | |
Bivariate | 1 | 0.8786 | 0.5273 | 0.9292 | 0.3229 | 0.5101 | 0.2788 | |
Bivariate | 2 | 0.8786 | 0.5272 | 0.9293 | 0.3227 | 0.5100 | 0.2789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Feng, Z.; Wang, Z.; Hu, L.; Ma, T.; Yang, X.; Fu, H.; Li, J. Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China. Forests 2024, 15, 991. https://doi.org/10.3390/f15060991
Wang S, Feng Z, Wang Z, Hu L, Ma T, Yang X, Fu H, Li J. Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China. Forests. 2024; 15(6):991. https://doi.org/10.3390/f15060991
Chicago/Turabian StyleWang, Shan, Zhongke Feng, Zhichao Wang, Lili Hu, Tiantian Ma, Xuanhan Yang, Hening Fu, and Jinshan Li. 2024. "Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China" Forests 15, no. 6: 991. https://doi.org/10.3390/f15060991
APA StyleWang, S., Feng, Z., Wang, Z., Hu, L., Ma, T., Yang, X., Fu, H., & Li, J. (2024). Construction of Additive Allometric Biomass Models for Young Trees of Two Dominate Species in Beijing, China. Forests, 15(6), 991. https://doi.org/10.3390/f15060991