Interrelationships and Environmental Influences of Photosynthetic Capacity and Hydraulic Conductivity in Desert Species Populus pruinosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
2.3. Measurement of Photosynthetic Traits
2.4. Determination of Hydraulic Traits
2.5. Establishment of PTNs
2.6. Data Analysis
3. Results
3.1. Variability and Interrelationships of Functional Traits
3.2. Central traits and Comprehensive Profile of PTNs
3.3. Environmental Drivers That Affected Functional Traits and Their Linkages with Traits
4. Discussion
4.1. Variability and Interrelationships of Functional Traits
4.2. Trait Network Analysis in Plant Adaptability Research
4.3. Interplay between Functional Traits and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, N.P.; Liu, C.C.; Piao, S.L.; Sack, L.; Xu, L.; Luo, Y.Q.; He, J.S.; Han, X.G.; Zhou, G.S.; Zhou, X.H.; et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 2018, 34, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Zheng, R.; Yang, L.; Tan, T.H.; Li, H.B.; Liu, M. Elevation gradient distribution of indices of tree population in a montane forest: The role of leaf traits and the environment. For. Ecosyst. 2022, 9, 100012. [Google Scholar] [CrossRef]
- Wolf, A.; Anderegg, W.R.L.; Pacala, S.W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. USA 2016, 113, E7222–E7230. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, A.D.; Elmendorf, S.C.; Beamish, A.L.; Vellend, M.; Henry, G.H.R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 2015, 21, 4651–4661. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 2015, 205, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.T.; Xiang, W.H.; Schäfer, K.V.R.; Lei, P.F.; Deng, X.W.; Forrester, D.I.; Fang, X.; Zeng, Y.L.; Ouyang, S.; Chen, L.; et al. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Sci. Total Environ. 2022, 828, 154517. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. J. Ecol. 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- He, P.C.; Gleason, S.M.; Wright, I.J.; Weng, E.S.; Liu, H.; Zhu, S.D.; Lu, M.Z.; Luo, Q.; Li, R.H.; Wu, G.L.; et al. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Chang. Biol. 2020, 26, 1833–1841. [Google Scholar] [CrossRef] [PubMed]
- Bucci, S.J.; Silletta, L.M.C.; Garré, A.; Cavallaro, A.; Efron, S.T.; Arias, N.S.; Goldstein, G.; Fabían, G.; Scholz, F.G. Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant Cell Environ. 2019, 42, 1603–1614. [Google Scholar] [CrossRef]
- Kleyer, M.; Trinogga, J.; Cebrián-Piqueras, M.A.; Trenkamp, A.; Fløjgaard, C.; Ejrnæs, R.; Bouma, T.J.; Minden, V.; Maier, M.; Mantilla-Contreras, J.; et al. Trait correlation network analysis identifies biomass allocation traits stem specific length as hub traits in herbaceous perennial plants. J. Ecol. 2019, 107, 829–842. [Google Scholar] [CrossRef]
- Carlquist, S. Living cells in wood 3. Overview; functional anatomy of the parenchyma network. Bot. Rev. 2018, 84, 242–294. [Google Scholar] [CrossRef]
- Eamus, D. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol. Evol. 1999, 14, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Huc, R.; Ferhi, A.; Guehl, J.M. Pioneer and late stage tropical rainforest tree species (French Guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia 1994, 99, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, K.; Mulkey, S.S.; Wright, S.J. Seasonal leaf phenotypes in the canopy of a tropical dry forest: Photosynthetic characteristics and associated traits. Oecologia 1997, 109, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Creek, D.; Blackman, C.J.; Brodribb, T.J.; Choat, B.; Tissue, D.T. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant Cell Environ. 2018, 41, 2869–2881. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.T.; Zhang, X.; Li, Z.J.; Han, X.L.; Zhang, S.H. Differences in the Functional Traits of Populus euphratica Leaves in Different Developmental Stages. Plants 2023, 12, 2262. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A.; et al. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Ingibjörg, I.S.; Halbritter, A.H.; Christiansen, C.T.; Althuizen IH, J.; Haugum, S.V.; Henn, J.J.; Björnsdóttir, K.; Maitner, B.S.; Malhi, Y.; Michaletz, S.T.; et al. Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming. Ecol. Monogr. 2023, 93, e1555. [Google Scholar] [CrossRef]
- He, N.P.; Li, Y.; Liu, C.C.; Xu, L.; Li, M.X.; Zhang, J.H.; He, J.S.; Tang, Z.Y.; Han, X.G.; Ye, Q.; et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.C.; Xu, L.; Li, M.X.; Zhang, J.H.; He, N.P. Leaf Trait Networks Based on Global Date: Representing Variation and Adaptation in Plants. Front. Plant Sci. 2021, 12, 710530. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.C.; Sack, L.; Xu, L.; Li, M.X.; Zhang, J.H.; He, N.P. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecol. Lett. 2022, 25, 1442–1457. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B. The world-wide “fast–slow” plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Li, L.; McCormack, M.L.; Ma, C.G.; Kong, D.L.; Zhang, Q.; Chen, X.Y.; Zeng, H.; Ülo Niinemets, Ü.; Guo, D.L. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 2015, 18, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Messier, J.; Lechowicz, M.J.; McGill, B.J.; Violle, C.; Enquist, B.J. Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. J. Ecol. 2017, 105, 1775–1790. [Google Scholar] [CrossRef]
- Flores-Moreno, H.; Fazayeli, F.; Banerjee, A.; Datta, A.; Kattge, J.; Butler, E.E.; Atkin, O.K.; Wythers, K.; Chen, M.; Anand, M.; et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 2019, 28, 1806–1826. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, X.M.; Zeng, F.J.; Foetzki, A.; Thomas, F.M.; Li, X.M.; Runge, M.; He, X.Y. Water relations on Alhagi sparsifolia in the southern fringe of Taklamakan Desert. J Integr Plant Biol. 2002, 44, 1219–1224. [Google Scholar]
- Chen, G.G.; Yue, D.X.; Zhou, Y.Y.; Wang, D.; Wang, H.; Hui, C.; Guo, J.J. Driving factors of community-level plant functional traits and species distributions in the desert-wetland ecosystem of the Shule River Basin, China. Land Degrad Dev. 2020, 32, 323–337. [Google Scholar] [CrossRef]
- Yin, Q.L.; Wang, L.; Lei, M.L.; Dang, H.; Quan, J.X.; Tian, T.T.; Chai, Y.F.; Yue, M. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Sci. Total Environ. 2018, 621, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.F.; Li, X.; Su, Y.H.; Lu, H. Seasonal fluctuations and temperature dependence in photosynthetic parameters and stomatal conductance at the leaf scale of Populus euphratica Oliv. Tree Physiol. 2011, 31, 178–195. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejia-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Peñuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Medi-terranean forest. Glob. Chang. Biol. 2014, 21, 1213–1225. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S.; Vose, J.M.; Volin, J.C.; Gresham, C.; Bowman, W.D. Relationships of leaf dark respiration to leaf nitro-gen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia 1998, 114, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.D.; Devitt, D.A.; Sala, A.; Cleverly, J.R.; Busch, D.E. Water relations of riparian plants from warm desert regions. Wetlands 1998, 18, 687–696. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chen, Y.N.; Xu, C.C.; Li, W.H. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China. Environ. Sci. Pollut. Res. 2016, 23, 17404–17412. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.; McColl, K.A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 2021, 11, 331–337. [Google Scholar] [CrossRef]
- Fang, L.D.; Ning, Q.R.; Guo, J.J.; Gong, X.Y.; Zhu, J.J.; Hao, G.Y. Hydraulic limitation underlies the dieback of Populus pseudo-simonii trees in water-limited areas of northern China. Forest Ecol. Manag. 2021, 483, 118764. [Google Scholar] [CrossRef]
- Santiago, L.S.; Goldstein, G.; Meinzer, F.C.; Fisher, J.B.; Machado, K.; Woodruff, D.; Jones, T. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 2004, 140, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.S.; Donnelly, J.R.; Tyree, M.T. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ. 1988, 11, 35–40. [Google Scholar] [CrossRef]
- Mencuccini, M.; Rosas, T.; Rowland, L.; Choat, B.; Cornelissen, H.; Jansen, S.; Kramer, K.; Lapenis, A.; Manzoni, S.; Niinemets, Ü. Leaf economics and plant hydraulics drive leaf: Wood area ratios. New Phytol. 2019, 224, 1544–1556. [Google Scholar] [CrossRef] [PubMed]
- Cruiziat, P.; Cochard, H.; Améglio, T. Hydraulic architecture of trees: Main concepts and results. Ann. For. Sci. 2002, 59, 723–752. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rosas, T.; Mencuccini, M.; Barba, J.; Cochard, H.; Saura-Mas, S.; Martínez-Vilalta, J. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytol. 2019, 223, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Crist, T.O.; Chase, J.M.; Vellend, M.; Inouye, B.D.; Freestone, A.L.; Sanders, N.J.; Cornell, H.V.; Comita, L.S.; Davies, K.F. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 2011, 14, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Kuppler, J.; Albert, C.H.; Ames, G.M.; Armbruster, W.S.; Boenisch, G.; Boucher, F.C.; Campbell, D.R.; Carneiro, L.T.; Chacón-Madrigal, E.; Enquist, B.J. Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness. Glob. Ecol. Biogeogr. 2020, 29, 992–1007. [Google Scholar] [CrossRef]
- Siefert, A.; Ritchie, M.E. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment. Oecologia 2016, 181, 245–255. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, F.; Fiore-Donno, A.M.; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. USA 2020, 117, 28140–28149. [Google Scholar] [CrossRef] [PubMed]
- Carmona, C.P.; Bello, F.D.; Azcárate, F.M.; Mason, N.W.H.; Peco, B. Trait hierarchies intraspecific variability drive competitive interactions in Mediterranean annual plants. J. Ecol. 2019, 107, 2078–2089. [Google Scholar] [CrossRef]
- Breshears, D.D.; Myers, O.B.; Meyer, C.W.; Barnes, F.J.; Zou, C.B.; Allen, C.D.; Pockman, W.T. Tree die-off in response to global change-type drought: Mortality insights from a decade of plant water potential measurements. Front. Ecol. Environ. 2009, 7, 185–189. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, C.K.; Zhou, Z.H.; Li, Z.M. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. Funct. Plant Biol. 2016, 43, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Simonin, K.A.; Limm, E.B.; Dawson, T.E. Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain. New Phytol. 2012, 193, 939–947. [Google Scholar] [CrossRef]
- Sack, L.; Cowan, P.D.; Jaikumar, N.; Holbrook, N.M. The “hydrology” of leaves: Co-ordination of structure and function in temperate woody species. Plant Cell Environ. 2003, 26, 1343–1356. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wang, H.; I Prentice, C.; Harrison, S.; Wright, I.J. Coordination of plant hydraulic and photosynthetic traits: Confronting optimality theory with field measurements. New Phytol. 2021, 232, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Pocock, M.J.O.; Evans, D.M.; Fontaine, C.; Harvey, M.; Julliard, R.; McLaughlin, Ó.; Silvertown, J.; Tamaddoni-Nezhad, A.; White, P.C.L.; Bohan, D.A. Chapter Two—The Visualisation of Ecological Networks, and Their Use as a Tool for Engagement, Advocacy and Management. Adv. Ecol. Res. 2016, 54, 41–85. [Google Scholar] [CrossRef]
- McDowell, N.G.; Brodribb, T.J.; Nardini, A. Hydraulics in the 21st century. New Phytol. 2019, 224, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Pratt, R.B.; Jacobsen, A.L. Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics. Plant Cell Environ. 2017, 40, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.D.; Cao, K.F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 2009, 204, 295–304. [Google Scholar] [CrossRef]
- Skelton, R.P.; Brodribb, T.J.; Choat, B. Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 2017, 214, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.X.; Wang, S.; Wei, F.L.; Wu, X.T.; Zhou, S.; Wang, L.X.; Li, Z.D.; Chen, P.; Fu, B.J. The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks. Ecol. Indic. 2022, 139, 108894. [Google Scholar] [CrossRef]
- Liu, C.C.; Li, Y.; He, N.P. Differential adaptation of lianas and trees in wet and dry forests revealed by trait correlation networks. Ecol. Indic. 2022, 135, 108564. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.L.; Chen, A.P.; Huntingford, C.; Fu, B.J.; Li, L.Z.X.; Huang, J.P.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Mina, M.; Messier, C.; Duveneck, M.; Fortin, M.; Aquilu´e, N. Network analysis can guide resilience-based management in forest landscapes under global change. Ecol. Appl. 2021, 31, e02221. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.D.; Rich, R.; Pastore, M.A.; Worm, K. Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nat. Geosci. 2020, 13, 787–793. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.B.; Han, X.G.; Deng, Y. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Glob. Ecol. Biogeogr. 2018, 27, 570–580. [Google Scholar] [CrossRef]
- Morris, H.; Gillingham, M.A.F.; Plavcová, L.; Gleason, S.M.; Olson, M.E.; Coomes, D.A.; Fichtler, E.; Klepsch, M.M.; Martínez-Cabrera, H.I.; McGlinn, D.J. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ. 2018, 41, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cheng, S.D.; Zhou, J.; Tigabu, M.; Ma, X.Q.; Li, M. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances. BMC Plant Biol. 2023, 23, 92. [Google Scholar] [CrossRef] [PubMed]
- Apgaua, D.M.; Tng, D.Y.; Cernusak, L.A.; Cheesman, A.W.; Santos, R.M.; Edwards, W.J.; Laurance, S.G.W. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 2017, 31, 582–591. [Google Scholar] [CrossRef]
- Niu, C.Y.; Meinzer, F.C.; Hao, G.Y. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: The role of positive xylem pressure, wood type and tree stature. Funct. Ecol. 2017, 31, 1550–1560. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, F.; Tyree, M.T. Seasonality of cavitation and frost fatigue in Acer mono Maxim. Plant Cell Environ. 2018, 41, 1278–1286. [Google Scholar] [CrossRef]
- Deans, R.M.; Brodribb, T.J.; Busch, F.A.; Farquhar, G.D. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations. Nat. Plants 2020, 6, 1116–1125. [Google Scholar] [CrossRef]
- Chen, Y.P.; Chen, Y.N.; Xu, C.C.; Li, W.H. Groundwater depth affects the daily course of gas exchange parameters of Populus euphratica in arid areas. Environ. Earth Sci. 2012, 66, 433–440. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, X.J.; Li, Y.; Xu, G.Q. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environ. Exp. Bot. 2019, 158, 63–72. [Google Scholar] [CrossRef]
- Horton, J.L.; Kolb, T.E.; Hart, S.C. Responses of riparian trees to interannual variation in ground water depth in a semi-arid river basin. Plant Cell Environ. 2001, 24, 293–304. [Google Scholar] [CrossRef]
- Horton, J.L.; Thomas, E.K.; Stephen, C.H. Physiological response to groundwater depth varies among species and with river flow regulation. Ecol. Appl. 2001, 11, 1046–1059. [Google Scholar] [CrossRef]
- Zhu, C.G.; Chen, Y.N.; Li, W.H.; Chen, Y.P.; Ma, J.X.; Fu, A.H. Effects of groundwater decline on Populus euphratica at hyper-arid regions: The lower reaches of the Tarim River in Xinjiang, China. Fresenius Environ. Bull. 2011, 20, 3326–3337. Available online: https://www.researchgate.net/publication/286168612_Effects_of_groundwater_decline_on_Populus_euphratica_at_hyper-arid_regions_The_lower_reaches_of_the_Tarim_River_in_Xinjiang_China (accessed on 27 November 2023).
Zone | Site | GD (m) | Altitude (m) | Longitude (°) | Latitude (°) | MAT (°C) | MAP (mm) | AI |
---|---|---|---|---|---|---|---|---|
Cele, Hotan | A | 3.9 | 1400 | 81.02 | 36.93 | 12.63 | 33 | 0.0222 |
Minfeng, Hotan | B | 3.7 | 1292 | 82.79 | 37.22 | 11.65 | 28 | 0.0184 |
Moyu, Hotan | C | 6.8 | 1279 | 79.63 | 37.58 | 12.67 | 32 | 0.0203 |
Shule, Kashgar | D | 7.9 | 1270 | 76.17 | 39.17 | 11.94 | 76 | 0.0493 |
Maigaiti, Kashgar | E | 6 | 1145 | 78.25 | 39.36 | 12.45 | 39 | 0.0248 |
Bachu, Kashgar | F | 5.9 | 1127 | 78.31 | 39.79 | 12.55 | 51 | 0.0316 |
Keping, Aksu | G | 4.9 | 1059 | 79.52 | 40.22 | 11.90 | 49 | 0.0299 |
Yuli, Bayingolin | H | 7.7 | 894 | 85.48 | 41.08 | 11.75 | 48 | 0.0300 |
Shaya, Aksu | I | 3.4 | 952 | 82.78 | 41.22 | 11.66 | 118 | 0.0702 |
Luntai, Bayingolin | J | 6.1 | 920 | 84.38 | 41.23 | 11.24 | 80 | 0.0433 |
Qapqal, Ili | K | 6 | 543 | 80.68 | 43.84 | 9.73 | 217 | 0.1432 |
Abbreviation | Definition | Units |
---|---|---|
Tr | Transpiration rate | mmol H2O m−2 s−1 |
Pn | Net photosynthetic rate | μmol CO2 m−2 s−1 |
Gs | Stomatal conductance | μmol H2O m−2 s−1 |
Ci | Intercellular carbon dioxide concentration | μmol CO2 m−2 s−1 |
WUE | Water-use efficiency | μmol CO2 μmol−1 H2O |
LDMC | Leaf dry matter content | g g−1 |
LMA | Leaf mass per area | g m−2 |
TLMR | Branch–leaf mass ratio | g g−1 |
Ks | Sapwood-specific conductivity | kg·m−1 s−1 Mpa−1 |
Ksmax | Maximum sapwood-specific conductivity | kg·m−1 s−1 Mpa−1 |
Kw | Wood-specific conductivity | kg·m−1 s−1 Mpa−1 |
Kwmax | Maximum wood-specific conductivity | kg·m−1 s−1 Mpa−1 |
PLC | Percent loss of hydraulic conductivity | % |
Kl | Leaf-specific conductivity | kg·m−1 s−1 Mpa−1 |
Hv | Huber value | cm2 cm−2 |
δ13C | Carbon isotope signature | ‰ |
Site | D | AL | AC | Modularity |
---|---|---|---|---|
A | 5.92 | 2.32 | 0.48 | 0.68 |
B | 5.47 | 2.07 | 0.58 | 0.51 |
C | 3.18 | 1.50 | 0.49 | 0.57 |
D | 4.51 | 2.11 | 0.42 | 0.54 |
E | 4.12 | 1.64 | 0.63 | 0.67 |
F | 2.86 | 1.27 | 0.66 | 0.59 |
G | 3.19 | 1.40 | 0.69 | 0.27 |
H | 2.25 | 1.07 | 0.62 | 0.69 |
I | 3.15 | 1.46 | 0.54 | 0.43 |
J | 2.35 | 1.20 | 0.55 | 0.70 |
K | 4.94 | 2.20 | 0.66 | 0.58 |
Environmental Factors | Explanatory Rate (%) | F Value | p Value | |
---|---|---|---|---|
Functional traits | BIO1 | 20 | 2.2 | 0.03 |
AI | 14 | 1.7 | 0.10 | |
GD | 12.4 | 1.6 | 0.13 | |
BIO12 | 9.6 | 1.3 | 0.31 | |
BIO13 | 8.6 | 1.2 | 0.37 | |
BIO3 | 7.2 | 0.9 | 0.52 | |
BIO15 | 6.5 | 0.8 | 0.57 | |
BIO8 | 5.1 | 0.6 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhai, J.; Wang, J.; Si, J.; Li, J.; Ge, X.; Li, Z. Interrelationships and Environmental Influences of Photosynthetic Capacity and Hydraulic Conductivity in Desert Species Populus pruinosa. Forests 2024, 15, 1094. https://doi.org/10.3390/f15071094
Zhang J, Zhai J, Wang J, Si J, Li J, Ge X, Li Z. Interrelationships and Environmental Influences of Photosynthetic Capacity and Hydraulic Conductivity in Desert Species Populus pruinosa. Forests. 2024; 15(7):1094. https://doi.org/10.3390/f15071094
Chicago/Turabian StyleZhang, Jinlong, Juntuan Zhai, Jie Wang, Jianhua Si, Jingwen Li, Xiaokang Ge, and Zhijun Li. 2024. "Interrelationships and Environmental Influences of Photosynthetic Capacity and Hydraulic Conductivity in Desert Species Populus pruinosa" Forests 15, no. 7: 1094. https://doi.org/10.3390/f15071094
APA StyleZhang, J., Zhai, J., Wang, J., Si, J., Li, J., Ge, X., & Li, Z. (2024). Interrelationships and Environmental Influences of Photosynthetic Capacity and Hydraulic Conductivity in Desert Species Populus pruinosa. Forests, 15(7), 1094. https://doi.org/10.3390/f15071094