Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Soil Sampling
2.3. Laboratory Measurements and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Hydrological Characteristics of Shaded and Sunny Slopes
3.2. Soil Physicochemical Properties and Trace Element Contents on Shaded and Sunny Slopes
3.3. Relationship between Soil Hydrological Properties and Soil Characteristics on Shaded and Sunny Slopes
3.4. Implications for Soil and Water Conservation and Vegetation Restoration in Semi-Arid Regions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, X.; Wu, X.; Chen, X.; Song, Q.; Xue, X. Integrating Topography and Soil Properties for Spatial Soil Moisture Storage Modeling. Water 2017, 9, 647. [Google Scholar] [CrossRef]
- Gao, Z.; Niu, F.; Wang, Y.; Lin, Z.; Luo, J.; Liu, M. Root-Induced Changes to Soil Water Retention in Permafrost Regions of the Qinghai-Tibet Plateau, China. J. Soils Sediments 2018, 18, 791–803. [Google Scholar] [CrossRef]
- Dai, L.; Yuan, Y.; Guo, X.; Du, Y.; Ke, X.; Zhang, F.; Li, Y.; Li, Q.; Lin, L.; Zhou, H.; et al. Soil Water Retention in Alpine Meadows under Different Degradation Stages on the Northeastern Qinghai-Tibet Plateau. J. Hydrol. 2020, 590, 125397. [Google Scholar] [CrossRef]
- Deng, L.; Yan, W.; Zhang, Y.; Shangguan, Z. Severe Depletion of Soil Moisture Following Land-Use Changes for Ecological Restoration: Evidence from Northern China. For. Ecol. Manag. 2016, 366, 1–10. [Google Scholar] [CrossRef]
- Mei, X.; Zhu, Q.; Ma, L.; Zhang, D.; Liu, H.; Xue, M. The Spatial Variability of Soil Water Storage and Its Controlling Factors during Dry and Wet Periods on Loess Hillslopes. Catena 2018, 162, 333–344. [Google Scholar] [CrossRef]
- Pan, T.; Hou, S.; Wu, S.; Liu, Y.; Liu, Y.; Zou, X.; Herzberger, A.; Liu, J. Variation of Soil Hydraulic Properties with Alpine Grassland Degradation in the Eastern Tibetan Plateau. Hydrol. Earth Syst. Sci. 2017, 21, 2249–2261. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, G.-L.; Yang, J.-L.; Li, D.-C.; Zhao, Y.-G.; Liu, F.; Yang, R.-M.; Yang, F. Organic Matter Controls of Soil Water Retention in an Alpine Grassland and Its Significance for Hydrological Processes. J. Hydrol. 2014, 519, 3086–3093. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Yang, W.; Sun, Z.; Zhao, J. Variation in Soil Hydrological Properties on Shady and Sunny Slopes in the Permafrost Region, Qinghai–Tibetan Plateau. Environ. Earth Sci. 2019, 78, 1–11. [Google Scholar] [CrossRef]
- Geroy, I.J.; Gribb, M.M.; Marshall, H.-P.; Chandler, D.G.; Benner, S.G.; McNamara, J.P. Aspect Influences on Soil Water Retention and Storage. Hydrol. Process. 2011, 25, 3836–3842. [Google Scholar] [CrossRef]
- Huang, L.; Shao, M. Advances and Perspectives on Soil Water Research in China’s Loess Plateau. Earth-Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Selvakumar, G.; Joshi, P.; Mishra, P.K.; Bisht, J.K.; Gupta, H.S. Mountain Aspect Influences the Genetic Clustering of Psychrotolerant Phosphate Solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr. Microbiol. 2009, 59, 432–438. [Google Scholar] [CrossRef]
- Begum, F.; Bajracharya, R.M.; Sharma, S.; Sitaula, B.K. Influence of Slope Aspect on Soil Physico-Chemical and Biological Properties in the Mid Hills of Central Nepal. Int. J. Sustain. Dev. World Ecol. 2010, 17, 438–443. [Google Scholar] [CrossRef]
- Gong, X.; Brueck, H.; Giese, K.M.; Zhang, L.; Sattelmacher, B.; Lin, S. Slope Aspect Has Effects on Productivity and Species Composition of Hilly Grassland in the Xilin River Basin, Inner Mongolia, China. J. Arid Environ. 2008, 72, 483–493. [Google Scholar] [CrossRef]
- Halim, A.; Normaniza, O. The Effects of Plant Density of Melastoma Malabathricum on the Erosion Rate of Slope Soil at Different Slope Orientations. Int. J. Sediment Res. 2015, 30, 131–141. [Google Scholar] [CrossRef]
- Su, L.; Wang, J.; Qin, X.; Wang, Q. Approximate Solution of a One-Dimensional Soil Water Infiltration Equation Based on the Brooks-Corey Model. Geoderma 2017, 297, 28–37. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of Slope on Infiltration: A Review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Fiori, A.; Romanelli, M.; Cavalli, D.J.; Russo, D. Numerical Experiments of Streamflow Generation in Steep Catchments. J. Hydrol. 2007, 339, 183–192. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, S.; Liu, G.B.; Zhang, C.S. Effects of Slope Aspect on Soil Chemical and Microbial Properties during Natural Recovery on Abandoned Cropland in the Loess Plateau, China. Adv. Mater. Res. 2012, 356, 2422–2429. [Google Scholar] [CrossRef]
- Gebrelibanos, T.; Assen, M. Effects of slope aspect and vegetation types on selected soil properties in a dryland Hirmi watershed and adjacent agro-ecosystem, northern highlands of Ethiopia. Afr. J. Ecol. 2014, 52, 292–299. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil Structure and Management: A Review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Jiao, J.; Zhang, Z.; Bai, W.; Jia, Y.; Wang, N. Assessing the Ecological Success of Restoration by Afforestation on the Chinese Loess Plateau. Restor. Ecol. 2012, 20, 240–249. [Google Scholar] [CrossRef]
- Chen, H.; Shao, M.; Li, Y. Soil Desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Jun, L.; Bing, C.; Xiaofang, L.; Yujuan, Z.; Yangjing, C.; Bin, J.; Wei, H.; Jimin, C.; Ming’an, S. Effects of Deep Soil Desiccation on Artificial Forestlands in Different Vegetation Zones on the Loess Plateau of China. Acta Ecol. Sin. 2008, 28, 1429–1445. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z. Vertical Distribution and Influencing Factors of Soil Water Content within 21-m Profile on the Chinese Loess Plateau. Geoderma 2013, 193, 300–310. [Google Scholar] [CrossRef]
- Donohue, R.J.; McVICAR, T.R.; Roderick, M.L. Climate-related Trends in Australian Vegetation Cover as Inferred from Satellite Observations, 1981–2006. Glob. Chang. Biol. 2009, 15, 1025–1039. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Ouyang, W.; Skidmore, A.K.; Toxopeus, A.G. Vegetation NDVI Linked to Temperature and Precipitation in the Upper Catchments of Yellow River. Environ. Model. Assess. 2012, 17, 389–398. [Google Scholar] [CrossRef]
- Schultz, P.A.; Halpert, M.S. Global Correlation of Temperature, NDVI and Precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.; Liu, W.; Flanagan, D.C. Spatial Distribution and Temporal Trends of Extreme Temperature and Precipitation Events on the Loess Plateau of China during 1961–2007. Quat. Int. 2010, 226, 92–100. [Google Scholar] [CrossRef]
- Xin, Z.; Yu, X.; Li, Q.; Lu, X.X. Spatiotemporal Variation in Rainfall Erosivity on the Chinese Loess Plateau during the Period 1956–2008. Reg. Environ. Chang. 2011, 11, 149–159. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Wang, J.; Shi, Y. Drought Variation Trends in Different Subregions of the Chinese Loess Plateau over the Past Four Decades. Agric. Water Manag. 2012, 115, 167–177. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Plant-Soil Interactions in Mediterranean Forest and Shrublands: Impacts of Climatic Change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Zarafshar, M.; Rousta, M.J.; Matinizadeh, M.; Talebi, K.S.; Bordbar, S.K.; Alizadeh, T.; Nouri, E.; Bader, M.K.-F. Scattered Wild Pistachio Trees Profoundly Modify Soil Quality in Semi-Arid Woodlands. CATENA 2023, 224, 106983. [Google Scholar] [CrossRef]
- Ma, X.; Chen, H.; Nie, Y. Common Species Maintain a Large Root Radial Extent and a Stable Resource Use Status in Soil-Limited Environments: A Case Study in Subtropical China. Front. Plant Sci. 2020, 11, 1260. [Google Scholar] [CrossRef] [PubMed]
- Kooch, Y.; Haghverdi, K.; Nouraei, A.; Francaviglia, R. Soil Properties Are Affected by Vegetation Types in a Semi-Arid Mountain Landscape. Pedobiologia 2024, 102, 150932. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Dreimanis, A. Quantitative Gasometric Determination of Calcite and Dolomite by Using Chittick Apparatus: ERRATUM. J. Sediment. Res. 1963, 33, 520–529. [Google Scholar] [CrossRef]
- Velasco-Molina, M.; Berns, A.E.; Macías, F.; Knicker, H. Biochemically Altered Charcoal Residues as an Important Source of Soil Organic Matter in Subsoils of Fire-Affected Subtropical Regions. Geoderma 2016, 262, 62–70. [Google Scholar] [CrossRef]
- Dai, L.; Guo, X.; Ke, X.; Du, Y.; Zhang, F.; Cao, G. The Variation in Soil Water Retention of Alpine Shrub Meadow under Different Degrees of Degradation on Northeastern Qinghai-Tibetan Plateau. Plant Soil 2021, 458, 231–244. [Google Scholar] [CrossRef]
- Dai, L.; Fu, R.; Guo, X.; Du, Y.; Zhang, F.; Cao, G. Variations in and Factors Controlling Soil Hydrological Properties across Different Slope Aspects in Alpine Meadows. J. Hydrol. 2023, 616, 128756. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y. Response of Forest Distribution to Past Climate Change: An Insight into Future Predictions. Chin. Sci. Bull. 2013, 58, 4426–4436. [Google Scholar] [CrossRef]
- Ya-ling, C.; Yu, S.; Zhen-ming, W.; Wei, M. Calculation of Temperature Differences between the Sunny Slopes and the Shady Slopes along Railways in Permafrost Regions on Qinghai–Tibet Plateau. Cold Reg. Sci. Technol. 2008, 53, 346–354. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.A.; Wang, Q.J.; Fan, J.; Reichardt, K. Spatial Variability of Soil Hydraulic Properties on a Steep Slope in the Loess Plateau of China. Sci. Agric. 2008, 65, 268–276. [Google Scholar] [CrossRef]
- Wang, L.; Wei, S.; Horton, R.; Shao, M. Effects of Vegetation and Slope Aspect on Water Budget in the Hill and Gully Region of the Loess Plateau of China. CATENA 2011, 87, 90–100. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing North or South: Does Slope Aspect Impact Forest Stand Characteristics and Soil Properties in a Semiarid Trans-Himalayan Valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O.; Buss, W. A Meta-Analysis on Biochar’s Effects on Soil Water Properties—New Insights and Future Research Challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef] [PubMed]
- Akoto, O.; Yakubu, S.; Ofori, L.A.; Bortey-Sam, N.; Boadi, N.O.; Horgah, J.; Sackey, L.N. Multivariate Studies and Heavy Metal Pollution in Soil from Gold Mining Area. Heliyon 2023, 9, e12661. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.D.; Chahal, D.S.; Singh, P.K. Raj-Kumar Forms of Iron and Their Association with Soil Properties in Four Soil Taxonomic Orders of Arid and Semi-arid Soils of Punjab, India. Commun. Soil Sci. Plant Anal. 2008, 39, 2550–2567. [Google Scholar] [CrossRef]
- Hailemariam, M.B.; Woldu, Z.; Asfaw, Z.; Lulekal, E. Impact of Elevation Change on the Physicochemical Properties of Forest Soil in South Omo Zone, Southern Ethiopia. Appl. Environ. Soil Sci. 2023, 2023, e7305618. [Google Scholar] [CrossRef]
- Quichimbo, P.; Jiménez, L.; Veintimilla, D.; Tischer, A.; Günter, S.; Mosandl, R.; Hamer, U. Forest Site Classification in the Southern Andean Region of Ecuador: A Case Study of Pine Plantations to Collect a Base of Soil Attributes. Forests 2017, 8, 473. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Wang, G.; Zhang, Z. Soil Physicochemical Properties and Microorganisms Jointly Regulate the Variations of Soil Carbon and Nitrogen Cycles along Vegetation Restoration on the Loess Plateau, China. Plant Soil 2024, 494, 413–436. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; An, S.; Sun, H.; Bhople, P.; Chen, Z. Soil Physicochemical and Microbial Characteristics of Contrasting Land-Use Types along Soil Depth Gradients. CATENA 2018, 162, 345–353. [Google Scholar] [CrossRef]
- Dong, X.X.; Zhang, L.L.; Wu, Z.J.; Li, D.P.; Shang, Z.C.; Gong, P. Effects of the Nitrification Inhibitor DMPP on Soil Bacterial Community in a Cambisol in Northeast China. J. Soil Sci. Plant Nutr. 2013, 13, 580–591. [Google Scholar] [CrossRef]
- Xu, M.; Li, Q.; Wilson, G. Degradation of Soil Physicochemical Quality by Ephemeral Gully Erosion on Sloping Cropland of the Hilly Loess Plateau, China. Soil Tillage Res. 2016, 155, 9–18. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Liu, D.; An, S.-S. Effects of Slope Aspect on Soil Nitrogen and Microbial Properties in the Chinese Loess Region. CATENA 2015, 125, 135–145. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Acosta-Martínez, V.; Blum, W.E.H. Soil Microbial Parameters and Stability of Soil Aggregate Fractions under Different Grassland Communities on the Loess Plateau, China. Biologia 2009, 64, 424–427. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Berhe, A.A.; Carrillo, Y.; Cavagnaro, T.R.; Chen, D.; Chen, Q.-L.; Román Dobarco, M.; Dijkstra, F.A.; Field, D.J.; Grundy, M.J.; et al. Ensuring Planetary Survival: The Centrality of Organic Carbon in Balancing the Multifunctional Nature of Soils. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4308–4324. [Google Scholar] [CrossRef]
- Cui, R.; Wang, C.; Cheng, F.; Ma, X.; Cheng, X.; He, B.; Chen, D. Effects of Successive Planting of Eucalyptus on Soil Physicochemical Properties 1–3 Generations after Converting Masson Pine Forests into Eucalyptus Plantations. Pol. J. Environ. Stud. 2023, 32, 4503–4514. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, M.; Qi, L.; Zhao, C.; Zhang, W.; Zhang, Y.; Wen, W.; Yuan, J. Coupled Relationship between Soil Physicochemical Properties and Plant Diversity in the Process of Vegetation Restoration. Forests 2022, 13, 648. [Google Scholar] [CrossRef]
- Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y. Slope Aspect Influences Plant Biomass, Soil Properties and Microbial Composition in Alpine Meadow on the Qinghai-Tibetan Plateau. J. Soil Sci. Plant Nutr. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Wu, G.-L.; Liu, Z.-H.; Zhang, L.; Chen, J.-M.; Hu, T.-M. Long-Term Fencing Improved Soil Properties and Soil Organic Carbon Storage in an Alpine Swamp Meadow of Western China. Plant Soil 2010, 332, 331–337. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil Organic Carbon and Total Nitrogen Stocks as Affected by Topographic Aspect and Vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar] [CrossRef]
- Zimmermann, B.; Elsenbeer, H. Spatial and Temporal Variability of Soil Saturated Hydraulic Conductivity in Gradients of Disturbance. J. Hydrol. 2008, 361, 78–95. [Google Scholar] [CrossRef]
- Folgarait, P.J.; Thomas, F.; Desjardins, T.; Grimaldi, M.; Tayasu, I.; Curmi, P.; Lavelle, P.M. Soil Properties and the Macrofauna Community in Abandoned Irrigated Rice Fields of Northeastern Argentina. Biol. Fertil. Soils 2003, 38, 349–357. [Google Scholar] [CrossRef]
- Uteau, D.; Pagenkemper, S.K.; Peth, S.; Horn, R. Root and Time Dependent Soil Structure Formation and Its Influence on Gas Transport in the Subsoil. Soil Tillage Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Mao, N.; Huang, L.; Shao, M. Profile Distribution of Soil Saturated Hydraulic Conductivity and Controlling Factors under Different Vegetations on Slope in Loess Region. Soils 2019, 51, 381–389. [Google Scholar] [CrossRef]
- Liang, X.F.; Zhao, S.W.; Zhang, Y.; Hua, J. Effects of Vegetation Rehabilitation on Soil Saturated Hydraulic Conductivity in Ziwuling Forest Area. Acta Ecol. Sin. 2009, 29, 636–642. [Google Scholar] [CrossRef]
- Hirmas, D.R.; Giménez, D.; Nemes, A.; Kerry, R.; Brunsell, N.A.; Wilson, C.J. Climate-Induced Changes in Continental-Scale Soil Macroporosity May Intensify Water Cycle. Nature 2018, 561, 100–103. [Google Scholar] [CrossRef]
- Ming, F.; Chen, L.; Li, D.; Wei, X. Estimation of Hydraulic Conductivity of Saturated Frozen Soil from the Soil Freezing Characteristic Curve. Sci. Total Environ. 2020, 698, 134132. [Google Scholar] [CrossRef]
- Stockmann, U.; Jang, H.J.; Minasny, B.; McBratney, A.B. The Effect of Soil Moisture and Texture on Fe Concentration Using Portable X-Ray Fluorescence Spectrometers. In Digital Soil Morphometrics; Hartemink, A.E., Minasny, B., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- You, Y.; Wu, X.; Han, L.; Lu, Y.; Zhou, J.; Rebi, A.; Dong, Q.; Wang, L.; Zhang, P. Soil Gravel Content and Plant Species Configuration Control Vegetation Restoration in Qinghai-Tibet Plateau. Land Degrad. Dev. 2024, 35, 1763–1775. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-Mediated Changes in Soil Quality and Plant Growth in a Three Year Field Trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Xu, H.; Qu, Q.; Li, P.; Guo, Z.; Wulan, E.; Xue, S. Stocks and Stoichiometry of Soil Organic Carbon, Total Nitrogen, and Total Phosphorus after Vegetation Restoration in the Loess Hilly Region, China. Forests 2019, 10, 27. [Google Scholar] [CrossRef]
- Wu, H.; Hu, B.; Yan, J.; Cheng, X.; Yi, P.; Kang, F.; Han, H. Mixed Plantation Regulates Forest Floor Water Retention and Temperature Sensitivity in Restored Ecosystems on the Loess Plateau, China. CATENA 2023, 222, 106838. [Google Scholar] [CrossRef]
- Yang, Y.; Donohue, R.J.; McVicar, T.R. Global Estimation of Effective Plant Rooting Depth: Implications for Hydrological Modeling. Water Resour. Res. 2016, 52, 8260–8276. [Google Scholar] [CrossRef]
- Ran, L.; Lu, X.; Xu, J. Effects of Vegetation Restoration on Soil Conservation and Sediment Loads in China: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1384–1415. [Google Scholar] [CrossRef]
- Leykun, S.; Teklay, A.; Gurebiyaw, K.; Dile, Y.T.; Bayabil, H.K.; Ashenafi, M. Impacts of Soil and Water Conservation Measures on Soil Physicochemical Properties in the Jibgedel Watershed, Ethiopia. Environ. Monit. Assess. 2023, 195, 447. [Google Scholar] [CrossRef]
- Saeidi, T.; Mosaddeghi, M.R.; Afyuni, M.; Ayoubi, S.; Sauer, D. Modeling the Effect of Slope Aspect on Temporal Variation of Soil Water Content and Matric Potential Using Different Approaches by HYDRUS-1D. Geoderma Reg. 2023, 35, e00724. [Google Scholar] [CrossRef]
Aspect | Latitude | Longitude | Altitude (m) | Vegeration Coverage (%) | Woodland Type |
---|---|---|---|---|---|
Shaded slope | 35°56′40″ N | 104°8′27″ E | 1925 | 95 | Cupressus funebris forest |
35°56′45″ N | 104°8′38″ E | 1923 | 90 | Mixed deciduous forest | |
35°56′47″ N | 104°8′36″ E | 1909 | 90 | Mixed deciduous forest | |
35°56′52″ N | 104°8′40″ E | 1913 | 85 | Mixed deciduous forest | |
35°56′56″ N | 104°8′41″ E | 1861 | 85 | Shrubbery | |
35°56′57″ N | 104°8′30″ E | 1752 | 85 | Shrubbery | |
Sunny slope | 35°56′39″ N | 104°8′17″ E | 1931 | 95 | Platycladus orientalis forest |
35°56′34″ N | 104°8′14″ E | 1928 | 88 | Populus alba forest | |
35°56′39″ N | 104°8′22″ E | 1885 | 85 | Shrubbery | |
35°56′36″ N | 104°8′26″ E | 1844 | 90 | Shrubbery | |
35°56′34″ N | 104°8′31″ E | 1793 | 85 | Shrubbery | |
35°56′32″ N | 104°8′49″ E | 1721 | 85 | Populus alba forest |
Slope | Min | Max | Mean | SD | CV (%) | Background Value a | |
---|---|---|---|---|---|---|---|
pH | Shaded | 8.02 | 9.04 | 8.58 | 0.25 | 2.93 | 8.4 |
Sunny | 7.98 | 9.95 | 8.68 | 0.34 | 3.88 | ||
EC (μS/cm) | Shaded | 143.4 | 1822.0 | 802.9 | 506.0 | 63.0 | NA |
Sunny | 107.8 | 1871.0 | 323.1 | 333.9 | 103.3 | ||
SOM (g/kg) | Shaded | 0.002 | 0.042 | 0.023 | 0.011 | 48.0 | 8.0 |
Sunny | 0.031 | 0.087 | 0.055 | 0.012 | 21.1 | ||
CaCO3 (%) | Shaded | 13.77 | 16.07 | 15.50 | 0.0072 | 4.67 | 11.8 |
Sunny | 13.84 | 16.11 | 15.42 | 0.0057 | 3.68 | ||
K (mg/kg) | Shaded | 173 | 246 | 212.7 | 13.7 | 6.4 | NA |
Sunny | 192 | 252 | 215.3 | 12.6 | 5.8 | ||
Ca (mg/kg) | Shaded | 656 | 1229 | 867.1 | 121.3 | 14.0 | NA |
Sunny | 648 | 1031 | 793.4 | 78.2 | 9.9 | ||
Fe (mg/kg) | Shaded | 330 | 438 | 387.1 | 26.1 | 6.7 | 28.1 |
Sunny | 332 | 473 | 384.9 | 26.3 | 6.8 | ||
Cr (mg/kg) | Shaded | 64.2 | 79.0 | 71.1 | 4.8 | 6.8 | 70.2 |
Sunny | 55.9 | 113.0 | 74.4 | 10.1 | 13.6 | ||
Mn (mg/kg) | Shaded | 647.8 | 760.6 | 719.0 | 32.6 | 4.5 | 464 |
Sunny | 639.7 | 872.3 | 736.2 | 51.3 | 7.0 | ||
Ni (mg/kg) | Shaded | 30.3 | 46.2 | 37.7 | 3.3 | 8.7 | 35.2 |
Sunny | 31.2 | 47.1 | 37.0 | 3.4 | 9.2 | ||
Cu (mg/kg) | Shaded | 24.7 | 44.5 | 31.4 | 3.5 | 11.2 | 20.1 |
Sunny | 25.4 | 36.2 | 29.9 | 2.6 | 8.5 | ||
Zn (mg/kg) | Shaded | 58.2 | 121.7 | 71.5 | 8.7 | 12.1 | 68.5 |
Sunny | 62.0 | 97.1 | 72.8 | 5.2 | 7.1 | ||
Pb (mg/kg) | Shaded | 19.0 | 45.1 | 23.1 | 3.7 | 16.0 | 18.8 |
Sunny | 20.3 | 39.6 | 23.5 | 3.0 | 12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Chen, Z.; Wang, S.; Liang, T.; Gao, Z.; Dong, Y. Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands. Forests 2024, 15, 1136. https://doi.org/10.3390/f15071136
Liu Q, Chen Z, Wang S, Liang T, Gao Z, Dong Y. Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands. Forests. 2024; 15(7):1136. https://doi.org/10.3390/f15071136
Chicago/Turabian StyleLiu, Qi, Zhaoming Chen, Shengli Wang, Tiantian Liang, Zhongyuan Gao, and Yinwen Dong. 2024. "Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands" Forests 15, no. 7: 1136. https://doi.org/10.3390/f15071136
APA StyleLiu, Q., Chen, Z., Wang, S., Liang, T., Gao, Z., & Dong, Y. (2024). Changes in Soil Hydrological Retention Properties and Controlling Factors on Shaded and Sunny Slopes in Semi-Arid Alpine Woodlands. Forests, 15(7), 1136. https://doi.org/10.3390/f15071136