Natural Factors Rather Than Anthropogenic Factors Control the Greenness Pattern of the Stable Tropical Forests on Hainan Island during 2000–2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.2.1. Dataset
2.2.2. Land Use Data
2.2.3. Extraction of Forest NDVI
2.3. Methodology
2.3.1. Mann–Kendall Test and Theil–Sen Median Trend Analysis
2.3.2. Moran’s I
2.3.3. MGWR Model
2.3.4. BRT Model
3. Results
3.1. Spatiotemporal Pattern of NDVI
3.1.1. Temporal Pattern of NDVI
3.1.2. Spatial Trends of NDVI in Forests on Hainan Island
3.2. Spatial Heterogeneity of NDVI
3.2.1. Spatial Autocorrelation Test of NDVI
3.2.2. Comparative Analysis of the OLS, GWR and MGWR Models
3.2.3. Spatial Impacts of NDVI on Natural and Anthropogenic Factors
3.3. Nonlinear Response of Greenness Pattern to Driving Factors and Thresholds
3.4. Projected NDVI under Three SSP-RCP Scenarios
4. Discussion
4.1. Dynamics of Greenness Pattern in the Forests of Hainan Island
4.2. Response of Greenness Pattern to Natural Factors
4.3. The Implications of Anthropogenic Factors for Greenness Pattern
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Zhang, F.; Duan, P.; Yung Jim, C.; Weng Chan, N.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation Cover Changes in China Induced by Ecological Restoration-Protection Projects and Land-Use Changes from 2000 to 2020. CATENA 2022, 217, 106530. [Google Scholar] [CrossRef]
- Xu, B.; Mao, X.; Li, X.; Wei, X.; Zhang, Z.; Tang, W.; Yu, H.; Wu, Y. Anthropogenic Activities Dominated the Spatial and Temporal Changes of Normalized Difference Vegetation Index (NDVI) in the Hehuang Valley in the Northeastern Qinghai Province between 2000 and 2020. Front. Environ. Sci. 2024, 12, 1384032. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, J.; Wang, C.; Liu, W.; Yang, Z.; Liu, H.; Bai, C. Greening or Browning? The Macro Variation and Drivers of Different Vegetation Types on the Qinghai-Tibetan Plateau from 2000 to 2021. Front. Plant. Sci. 2022, 13, 1045290. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.; Chen, Y.; Mindje Kayumba, P.; Wang, X.; Liu, C.; Long, Y.; Sun, F. Biophysical Impacts of Vegetation Dynamics Largely Contribute to Climate Mitigation in High Mountain Asia. Agric. For. Meteorol. 2022, 327, 109233. [Google Scholar] [CrossRef]
- Yang, Z.; Gong, J.; Wang, S.; Jin, T.; Wang, Y. Shifts Bidirectional Dependency between Vegetation Greening and Soil Moisture over the Past Four Decades in China. Sci. Total Environ. 2023, 897, 166388. [Google Scholar] [CrossRef] [PubMed]
- Higgins, S.I.; Conradi, T.; Muhoko, E. Shifts in Vegetation Activity of Terrestrial Ecosystems Attributable to Climate Trends. Nat. Geosci. 2023, 16, 147–153. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, K.; Wu, S.; Ma, D.; Zhao, D.; Yin, Y.; Dai, E. Past and Future Effects of Climate Change on Spatially Heterogeneous Vegetation Activity in China. Earths Future 2017, 5, 679–692. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, Q.; Zhang, Z.; Shao, W.; Zhang, E.; Kang, T.; Xiao, X.; Liu, H.; Luo, H. Characteristics of Spatial and Temporal Dynamics of Vegetation and Its Response to Climate Extremes in Ecologically Fragile and Climate Change Sensitive Areas—A Case Study of Hexi Region. CATENA 2024, 239, 107910. [Google Scholar] [CrossRef]
- Hawinkel, P.; Swinnen, E.; Lhermitte, S.; Verbist, B.; Van Orshoven, J.; Muys, B. A Time Series Processing Tool to Extract Climate-Driven Interannual Vegetation Dynamics Using Ensemble Empirical Mode Decomposition (EEMD). Remote Sens. Environ. 2015, 169, 375–389. [Google Scholar] [CrossRef]
- Yang, L.; Guan, Q.; Lin, J.; Tian, J.; Tan, Z.; Li, H. Evolution of NDVI Secular Trends and Responses to Climate Change: A Perspective from Nonlinearity and Nonstationarity Characteristics. Remote Sens. Environ. 2021, 254, 112247. [Google Scholar] [CrossRef]
- Bhuyan, M.; Singh, B.; Vid, S.; Jeganathan, C. Analysing the Spatio-Temporal Patterns of Vegetation Dynamics and Their Responses to Climatic Parameters in Meghalaya from 2001 to 2020. Environ. Monit. Assess. 2022, 195, 94. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Wang, N.; Cheng, H.; Liu, X.; Niu, Z. Impacts of Climate Change and Anthropogenic Activities on the Normalized Difference Vegetation Index of Desertified Areas in Northern China. J. Geogr. Sci. 2023, 33, 483–507. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Zhang, Y.; Lü, D.; Wang, C.; Lü, Y.; Wu, X. Spatiotemporal Patterns and Driving Factors of Ecological Vulnerability on the Qinghai-Tibet Plateau Based on the Google Earth Engine. Remote Sens. 2022, 14, 5279. [Google Scholar] [CrossRef]
- Wang, L.; Hu, F.; Miao, Y.; Zhang, C.; Zhang, L.; Luo, M. Changes in Vegetation Dynamics and Relations with Extreme Climate on Multiple Time Scales in Guangxi, China. Remote Sens. 2022, 14, 2013. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, M.; Dong, J. The Use of Random Forest to Identify Climate and Human Interference on Vegetation Coverage Changes in Southwest China. Ecol. Indic. 2022, 144, 109463. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, X.; Zhang, Y.; Qing, H.; Li, C.; Liu, Q.; Cai, J.; Wei, C. An Integrated Simulation Framework for NDVI Pattern Variations with Dual Society-Nature Drives: A Case Study in Baiyangdian Wetland, North China. Ecol. Indic. 2024, 158, 111584. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Q.-Y.; Lu, Y.-G.; Zhao, C.; Huang, W.-T.; Xu, M.; Feng, Y.-X. Identification of Ecologically Sensitive Zones Affected by Climate Change and Anthropogenic Activities in Southwest China through a NDVI-Based Spatial-Temporal Model. Ecol. Indic. 2024, 158, 111482. [Google Scholar] [CrossRef]
- Bao, T.; Li, J.; Chang, I.-S.; Jin, E.; Wu, J.; Burenjargal; Bao, Y. The Influence of Ecological Engineering Projects on Dust Events: A Case Study in the Northern China. Environ. Impact Assess. Rev. 2022, 96, 106847. [Google Scholar] [CrossRef]
- Yang, K.; Sun, W.; Luo, Y.; Zhao, L. Impact of Urban Expansion on Vegetation: The Case of China (2000–2018). J. Environ. Manag. 2021, 291, 112598. [Google Scholar] [CrossRef] [PubMed]
- Pillay, R.; Venter, M.; Aragon-Osejo, J.; González-del-Pliego, P.; Hansen, A.J.; Watson, J.E.; Venter, O. Tropical Forests Are Home to over Half of the World’s Vertebrate Species. Front. Ecol. Environ. 2022, 20, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T. The Impacts of Droughts in Tropical Forests. Trends Plant Sci. 2016, 21, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Valjarević, A.; Milanović, M.; Gultepe, I.; Filipović, D.; Lukić, T. Updated Trewartha Climate Classification with Four Climate Change Scenarios. Geogr. J. 2022, 188, 506–517. [Google Scholar] [CrossRef]
- Gould, W.A.; Álvarez-Berríos, N.L.; Parrotta, J.A.; McGinley, K. Chapter 10—Climate Change and Tropical Forests. In Future Forests; McNulty, S.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 203–219. ISBN 978-0-323-90430-8. [Google Scholar]
- Ismaeel, A.; Tai, A.P.K.; Santos, E.G.; Maraia, H.; Aalto, I.; Altman, J.; Doležal, J.; Lembrechts, J.J.; Camargo, J.L.; Aalto, J.; et al. Patterns of Tropical Forest Understory Temperatures. Nat. Commun. 2024, 15, 549. [Google Scholar] [CrossRef] [PubMed]
- Sayer, E.J.; Leitman, S.F.; Wright, S.J.; Rodtassana, C.; Vincent, A.G.; Bréchet, L.M.; Castro, B.; Lopez, O.; Wallwork, A.; Tanner, E.V.J. Tropical Forest Above-Ground Productivity Is Maintained by Nutrients Cycled in Litter. J. Ecol. 2024, 112, 690–700. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Sanford, R.L. Nutrient Cycling in Moist Tropical Forest. Annu. Rev. Ecol. Syst. 1986, 17, 137–167. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, J.; Li, S.; Li, S. Spatial Pattern of Non-Stationarity and Scale-Dependent Relationships between NDVI and Climatic Factors—A Case Study in Qinghai-Tibet Plateau, China. Ecol. Indic. 2012, 20, 170–176. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, K.; Wu, S. Investigating the Spatially Heterogeneous Relationships between Climate Factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef]
- Jin, G.; Deng, X.; Zhao, X.; Guo, B.; Yang, J. Spatiotemporal Patterns in Urbanization Efficiency within the Yangtze River Economic Belt between 2005 and 2014. J. Geogr. Sci. 2018, 28, 1113–1126. [Google Scholar] [CrossRef]
- Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-Economic and Climatic Changes Lead to Contrasting Global Urban Vegetation Trends. Glob. Environ. Change 2021, 71, 102385. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation Dynamics and the Relations with Climate Change at Multiple Time Scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Wang, B.; Xu, G.; Li, P.; Li, Z.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation Dynamics and Their Relationships with Climatic Factors in the Qinling Mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Guo, E.; Wang, Y.; Wang, C.; Sun, Z.; Bao, Y.; Mandula, N.; Jirigala, B.; Bao, Y.; Li, H. NDVI Indicates Long-Term Dynamics of Vegetation and Its Driving Forces from Climatic and Anthropogenic Factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Yuan, E.; Zhou, Q.; Yan, W.; Peng, D.; Wang, Y.; Yang, X.; Li, P. The Impact of Socioeconomic Factors on Vegetation Restoration in Karst Regions: A Perspective beyond Climate and Ecological Engineering. Ecol. Eng. 2024, 206, 107332. [Google Scholar] [CrossRef]
- Basit, I.; Faizi, F.; Mahmood, K.; Faizi, R.; Ramzan, S.; Parvez, S.; Mushtaq, F. Assessment of Vegetation Dynamics under Changed Climate Situation Using Geostatistical Modeling. Theor. Appl. Climatol. 2024, 155, 3371–3386. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying Vegetation Restoration Effectiveness and Driving Factors on Different Micro-Topographic Types of Hilly Loess Plateau: From the Perspective of Ecological Resilience. J. Environ. Manage. 2021, 289, 112562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dai, L.; Yan, Y.; Han, X.; Teng, Y.; Li, M.; Zhu, Y.; Zhang, Y. Multiscale Geographically Weighted Regression-Based Analysis of Vegetation Driving Factors and Mining-Induced Quantification in the Fengfeng District, China. Ecol. Inform. 2024, 80, 102506. [Google Scholar] [CrossRef]
- Wu, J.; Hou, Y.; Cui, Z. Coupled InVEST–MGWR Modeling to Analyze the Impacts of Changing Landscape Patterns on Habitat Quality in the Fen River Basin. Sci. Rep. 2024, 14, 13084. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and Impacts of Changes in China’s Drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Q.; Guan, Q.; Zhang, Z.; Yan, Y.; Mi, J.; Yang, E. Quantifying the Nonlinear Response of Vegetation Greening to Driving Factors in Longnan of China Based on Machine Learning Algorithm. Ecol. Indic. 2023, 151, 110277. [Google Scholar] [CrossRef]
- Araujo, H.F.P.; Canassa, N.F.; Machado, C.C.C.; Tabarelli, M. Human Disturbance Is the Major Driver of Vegetation Changes in the Caatinga Dry Forest Region. Sci. Rep. 2023, 13, 18440. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Guan, Q.; Zhang, Z.; Liu, H.; Du, Q.; Yuan, T. Investigating the Underlying Drivers of Vegetation Dynamics in Cold-Arid Mountainous. CATENA 2024, 237, 107831. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Dai, S.; Li, M.; Liu, E.; Li, Y.; Xie, Z. NDVI-Based Analysis of the Influence of Climate Changes and Human Activities on Vegetation Variation on Hainan Island. J. Indian Soc. Remote Sens. 2021, 49, 1755–1767. [Google Scholar] [CrossRef]
- Chen, J.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Jiang, H. Intercomparison of AVHRR GIMMS3g, Terra MODIS, and SPOT-VGT NDVI Products over the Mongolian Plateau. Remote Sens. 2019, 11, 2030. [Google Scholar] [CrossRef]
- Gu, Z.; Duan, X.; Shi, Y.; Li, Y.; Pan, X. Spatiotemporal Variation in Vegetation Coverage and Its Response to Climatic Factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, 3; Confidence Regions for the Parameters of Polynomial Regression Equations: (Proceedings Knaw, _5_3(1950), Nr 9, Indagationes Mathematicae, _1_2(1950), P 467-482); Stichting Mathematisch Centrum, Statistische Afdeling: Amsterdam, The Netherlands, 1950. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Guo, P.; Zhao, X.; Shi, J.; Huang, J.; Jia, T.; Zhang, R.; Chen, J.; Wang, Q.; Zeng, J. The Influence of Temperature and Precipitation on the Vegetation Dynamics of the Tropical Island of Hainan. Theor. Appl. Climatol. 2021, 143, 429–445. [Google Scholar] [CrossRef]
- Yu, B.; Chao, X.; Zhang, J.; Xu, W.; Ouyang, Z. Effectiveness of Nature Reserves for Natural Forests Protection in Tropical Hainan: A 20 Year Analysis. Chin. Geogr. Sci. 2016, 26, 208–215. [Google Scholar] [CrossRef]
- Han, N.; Yu, M.; Jia, P.; Zhang, Y.; Hu, K. Influence of Human Activity Intensity on Habitat Quality in Hainan Tropical Rainforest National Park, China. Chin. Geogr. Sci. 2024, 34, 519–532. [Google Scholar] [CrossRef]
- Wang, W.; Pechacek, P.; Zhang, M.; Xiao, N.; Zhu, J.; Li, J. Effectiveness of Nature Reserve System for Conserving Tropical Forests: A Statistical Evaluation of Hainan Island, China. PLoS ONE 2013, 8, e57561. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial Autocorrelation in Land Use Type and Ecosystem Service Value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Han, F.; Wang, Z.; Wang, C. NDVI-Based Vegetation Dynamics and Their Response to Recent Climate Change: A Case Study in the Tianshan Mountains, China. Environ. Earth Sci. 2016, 75, 1189. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, L.; Huang, C.; Wang, M.; Yang, Y.; Wang, T.; Tan, W. Evolution of Vegetation Dynamics and Its Response to Climate in Ecologically Fragile Regions from 1982 to 2020: A Case Study of the Three Gorges Reservoir Area. CATENA 2022, 219, 106601. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Chen, Y.; Gang, C.; Shen, Y. Quantifying the Contributions of Climate Change and Human Activities to Vegetation Dynamic in China Based on Multiple Indices. Sci. Total Environ. 2022, 838, 156553. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, S.; Li, Y.; Liu, X.; Hu, K. Effects of Climate Change and Anthropogenic Activity on the Vegetation Greening in the Liaohe River Basin of Northeastern China. Ecol. Indic. 2023, 148, 110105. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, K.; Feng, Z.; Wu, K. Quantification and Driving Mechanism of Cultivated Land Fragmentation under Scale Differences. Ecol. Inform. 2023, 78, 102336. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, X.; Zhang, F.; Qiu, A.; Chen, L.; Huang, J.; Chen, S.; Zhang, S. Spatial Downscaling of NPP-VIIRS Nighttime Light Data Using Multiscale Geographically Weighted Regression and Multi-Source Variables. Remote Sens. 2022, 14, 6400. [Google Scholar] [CrossRef]
- Jin, B.; Geng, J.; Ke, S.; Pan, H. Analysis of Spatial Variation of Street Landscape Greening and Influencing Factors: An Example from Fuzhou City, China. Sci. Rep. 2023, 13, 21767. [Google Scholar] [CrossRef]
- Akinwumiju, A.S.; Olorunfemi, M.O. Influence of Geochemistry and Topography on Vegetation in Tropical Nigeria: Geochemistry and Soil Thickness Surpass Topographic Position. CATENA 2023, 231, 107277. [Google Scholar] [CrossRef]
- Wang, X.; Shi, S.; Zhao, X.; Hu, Z.; Hou, M.; Xu, L. Detecting Spatially Non-Stationary between Vegetation and Related Factors in the Yellow River Basin from 1986 to 2021 Using Multiscale Geographically Weighted Regression Based on Landsat. Remote Sens. 2022, 14, 6276. [Google Scholar] [CrossRef]
- Liu, J.; Xie, T.; Lyu, D.; Cui, L.; Liu, Q. Analyzing the Spatiotemporal Dynamics and Driving Forces of Ecological Environment Quality in the Qinling Mountains, China. Sustainability 2024, 16, 3251. [Google Scholar] [CrossRef]
- Li, M.; Yan, Q.; Li, G.; Yi, M.; Li, J. Spatio-Temporal Changes of Vegetation Cover and Its Influencing Factors in Northeast China from 2000 to 2021. Remote Sens. 2022, 14, 5720. [Google Scholar] [CrossRef]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-Based Vegetation Dynamics and Its Response to Climate Changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, M.; Gao, C.; Zhang, Y.; She, Q.; Long, L.; Tu, Y.; Yang, Y. Greening and Browning of the Coastal Areas in Mainland China: Spatial Heterogeneity, Seasonal Variation and Its Influential Factors. Ecol. Indic. 2020, 110, 105888. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.-Z.; Yang, J.-H.; Wu, J.-J. Vegetation Greening in More than 94% of the Yellow River Basin (YRB) Region in China during the 21st Century Caused Jointly by Warming and Anthropogenic Activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Kong, R.; Chang, J.; Tian, J.; Zhu, B.; Jiang, S.; Chen, X.; Xu, C.-Y. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sens. 2019, 11, 1451. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Restrepo-Coupe, N.; da Rocha, H.R.; Hutyra, L.R.; da Araujo, A.C.; Borma, L.S.; Christoffersen, B.; Cabral, O.M.R.; de Camargo, P.B.; Cardoso, F.L.; da Costa, A.C.L.; et al. What Drives the Seasonality of Photosynthesis across the Amazon Basin? A Cross-Site Analysis of Eddy Flux Tower Measurements from the Brasil Flux Network. Agric. For. Meteorol. 2013, 182–183, 128–144. [Google Scholar] [CrossRef]
- Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; et al. Drought Sensitivity of the Amazon Rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef] [PubMed]
- Tuoku, L.; Wu, Z.; Men, B. Impacts of Climate Factors and Human Activities on NDVI Change in China. Ecol. Inform. 2024, 81, 102555. [Google Scholar] [CrossRef]
- Xu, F.; Hu, B.; Li, J.; Cui, R.; Liu, Z.; Jiang, Z.; Yin, X. Reassessment of Heavy Metal Pollution in Riverine Sediments of Hainan Island, China: Sources and Risks. Environ. Sci. Pollut. Res. 2018, 25, 1766–1772. [Google Scholar] [CrossRef]
- Zhang, S.; Ju, H. The regional differences and influencing factors of tourism development on Hainan Island, China. PLoS ONE 2021, 16, e0258407. [Google Scholar] [CrossRef]
Datasets | Time | Spatial | Source |
---|---|---|---|
POP | 2000, 2005, 2010, 2015 | 1 km | https://www.resdc.cn/ (accessed on 3 June 2023) |
GDP | 2000, 2005, 2010, 2015 | 1 km | https://www.resdc.cn/ (accessed on 6 June 2023) |
TEM | 2000–2019 | 1 km | https://www.geodata.cn/ (accessed on 12 May 2023) |
PRE | 2000–2019 | 1 km | https://www.geodata.cn/ (accessed on 24 July 2023) |
PAR | 2000–2019 | 5 km | https://data.tpdc.ac.cn/ (accessed on 16 May 2023) |
SM | 2000–2019 | 1 km | https://data.tpdc.ac.cn/ (accessed on 5 June 2023) |
NDVI Change | Pixels | Proportion |
---|---|---|
Significant increase | 12,302 | 64.42% |
Significant decrease | 344 | 1.80% |
No significant change | 6451 | 33.78% |
Models | AICc | R2 | Adj. R2 |
---|---|---|---|
OLS | 28,194.124 | 0.423 | 0.423 |
GWR | 10,616.473 | 0.906 | 0.887 |
MGWR | 9286.789 | 0.929 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Yu, R. Natural Factors Rather Than Anthropogenic Factors Control the Greenness Pattern of the Stable Tropical Forests on Hainan Island during 2000–2019. Forests 2024, 15, 1334. https://doi.org/10.3390/f15081334
Zheng B, Yu R. Natural Factors Rather Than Anthropogenic Factors Control the Greenness Pattern of the Stable Tropical Forests on Hainan Island during 2000–2019. Forests. 2024; 15(8):1334. https://doi.org/10.3390/f15081334
Chicago/Turabian StyleZheng, Binbin, and Rui Yu. 2024. "Natural Factors Rather Than Anthropogenic Factors Control the Greenness Pattern of the Stable Tropical Forests on Hainan Island during 2000–2019" Forests 15, no. 8: 1334. https://doi.org/10.3390/f15081334
APA StyleZheng, B., & Yu, R. (2024). Natural Factors Rather Than Anthropogenic Factors Control the Greenness Pattern of the Stable Tropical Forests on Hainan Island during 2000–2019. Forests, 15(8), 1334. https://doi.org/10.3390/f15081334