High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Data Analysis
2.4. Soil Parameter Analysis
3. Results
3.1. Species Composition and Diversity
3.2. Soil Physico-Chemical Characteristics
4. Discussion
4.1. Species Composition and Diversity
4.2. Soil Physico-Chemical Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Name of Plants | Family | Invaded | Non-Invaded |
Acacia catechu (L.f.) Wild | Fabaceae | - | + |
Achyranthes aspera L. | Amaranthaceae | + | + |
Acmella sp. | Asteraceae | - | + |
Ageratum conyzoides L. | Asteraceae | + | + |
Ageratum houstonianum Mill. | Asteraceae | + | + |
Ageratina adenophora (Spreng.) R. King and H. Rob. | Asteraceae | + | + |
Alternanthera phyloxeroides (Mart.) Griseb | Amaranthaceae | - | + |
Anaphalis contorta (D. Don) Hook. f. | Asteraceae | - | + |
Artemisia indica Willd. | Asteraceae | + | + |
Arundo sp. | Poaceae | + | + |
Asparagus racemosus Willd. | Asparagaceae | + | - |
Axonopus Compressus (Sw.) P. Beauv. | Poaceae | - | + |
Azadirachta indica A. Juss. | Meliaceae | + | - |
Bidens pilosa L. | Asteraceae | + | + |
Boehmeria sp. | Urticaceae | + | + |
Bothriochloa ischaemum (L.) Keng | Poaceae | + | + |
Bothriochloa pertusa (L.) A. Camus | Poaceae | - | + |
Buddleja asiatica Lour. | Schrophulariaceae | - | + |
Callicarpa arborea Roxb. | Verbenaceae | - | + |
Callicarpa macrophylla Vahl | Verbenaceae | + | - |
Calotropis gigantea (L.) Dryand | Apocynaceae | + | - |
Cannabis sativa L. | Cannabaceae | + | + |
Cardiospermum halicacabum L. | Sapindaceae | - | + |
Castanopsis indica (Roxb.) Miq. | Fagaceae | - | + |
Chromolaena odorata (L.) R. M. King and H. Rob. | Asteraceae | + | + |
Chrysopogon aciculatus (Retz.) Trin. | Poaceae | - | + |
Cissampelos pareria L. | Menispermaceae | - | + |
Clerodendrum viscosum Vent. | Lamiaceae | + | + |
Coccinia grandis (L.) Voigt | Cucurbitaceae | + | - |
Colebrookea oppositifolia sm. | Lamiaceae | + | + |
Colocasia esculenta (L.) Schott | Araceae | + | + |
Commelina benghalensis (L.) | Commelinaceae | + | + |
Conyza bonariensis (L.) Cronquist | Asteraceae | - | + |
Corchorus aestuans L. | Tiliaceae | + | + |
Crassocephalum crepidiodes (Benth.) S. Moore | Asteraceae | + | + |
Cucumis callosus (Rottb.) Cogn. | Cucurbitaceae | + | - |
Curcuma aromatica Salisb. | Zingiberaceae | - | + |
Cyanotis cristata (L.) D. Don | Commelinaceae | - | + |
Cynodon dactylon (L.) Pers. | Poaceae | + | + |
Cynoglossum lanceolatum Forssk. | Boraginaceae | - | + |
Cyperus esculentus L. | Cyperaceae | + | + |
Cyperus rotundus L. | Cyperaceae | + | + |
Cyperus sp. | Cyperaceae | - | + |
Dalbergia sisso DC. | Fabaceae | + | + |
Desmodium heterocarpon (L.) DC. | Fabaceae | - | + |
Desmodium triflorum (L.) DC. | Fabaceae | + | + |
Digitaria ciliaris (Retz.) Koeler | Poaceae | + | + |
Digitaria setigera Roth | Poaceae | + | - |
Dioscorea bulbifera L. | Dioscoreaceae | + | + |
Drepanostachyum intermedium (Munro) Keng f. | Poaceae | - | + |
Drymaria diandra Blume | Caryophyllaceae | + | + |
Elephantopus scaber L. | Asteraceae | - | + |
Eulaliopsis binata (Retz.) C. E. Hubb | Poaceae | + | + |
Euphorbia hirta L. | Euphorbiaceae | + | + |
Evolvulus nummularius (L.) L. | Convolvulaceae | + | + |
Ficus hispida L. | Moraceae | + | + |
Ficus semicordata Buch.-Ham. ex J. E. Sm. | Moraceae | + | - |
Fimbristylis dichotoma (L.) Vahl. | Cyperaceae | + | + |
Flemingia macrophylla (Willd.) Merr. | Fabaceae | + | - |
Galinsoga perviflora Cav. | Asteraceae | + | + |
Gnaphalium affine D. Don. | Asteraceae | - | + |
Gonostegia pentandra (Roxb.) Miq. | Urticaceae | + | + |
Holarrhena pubescens (Buch.-Ham.) Wall. ex G. Don | Apocynaceae | + | + |
Hydrocotyle sibthorpioides Lam. | Apiaceae | - | + |
Hyptis suaveolens (L.) Poit. | Lamiaceae | + | + |
Imperata cylindrica (L.) P. Beauv. | Poaceae | + | + |
Ipomoea nil (L.) Roth | Convolvulaceae | - | + |
Ipomoea purpurea (L.) Roth | Convolvulaceae | + | - |
Ipomoea quamoclit L. | Convolvulaceae | + | + |
Justicia adhatoda L. | Acanthaceae | + | + |
Justicia simplex D. Don. | Acanthaceae | + | + |
Kyllinga brevifolia Rottb. | Cyperaceae | + | + |
Lantana camara L. | Verbenaceae | + | + |
Leea crispa Royen ex L. | Leeaceae | + | + |
Leucaena leucocephala (Lam.) de Wit | Fabaceae | + | - |
Leucas cephaloates (Roth) Spreng. | Lamiaceae | - | + |
Lindernia crustacea (L.) F. Muell. | Schrophulariaceae | - | + |
Maesa chisia Buch.-Ham. ex D. Don | Myrsinaceae | - | + |
Melastoma malabathricum L. | Melastomataceae | + | + |
Mikania micrantha Kunth. | Asteraceae | + | + |
Momordica charantia L. | Cucurbitaceae | + | + |
Mimosa pudica L. | Fabaceae | + | + |
Mimosa rubicaulis Lam. | Fabaceae | - | + |
Morus alba L. | Moraceae | + | + |
Murraya koenigii (L.) Spreng | Rutaceae | + | + |
Oplismenus hirtellus (L.) P.Beauv. | Poaceae | + | + |
Oxalis corniculata L. | Oxalidaceae | + | + |
Parthenium hysterophorus L. | Asteraceae | + | + |
Paspalidium flavidum (Retz.) A. Camus | Poaceae | + | + |
Paspalum scrobiculatum L. | Poaceae | + | + |
Paspalum sp. | Poaceae | - | + |
Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross | Polygonaceae | + | + |
Persicaria perfoliata (L.) H. Gross | Polygonaceae | - | + |
Phragmites karka (Retz.) Trin. ex Steud | Poaceae | + | + |
Phyllanthus urinaria L. | Euphorbiaceae | + | + |
Phyllanthus virgatus G. Forst | Euphorbiaceae | + | + |
Physalis angulata L. | Solanaceae | + | - |
Pinus roxburghii Sarg. | Pinaceae | + | - |
Piper longum L. | Piperaceae | + | - |
Plumbago zeylanica L. | Plumbaginaceae | - | + |
Pogonatherum paniceum (Lam.) Hack. | Poaceae | - | + |
Polygonum persicaria L. | Polygonaceae | + | + |
Polygonum sp. | Polygonaceae | + | + |
Prunus persica (L.) Batsch. | Rosaceae | - | + |
Reinwardtia indica Dumort. | Linaceae | - | + |
Ricinus communis L. | Euphorbiaceae | - | + |
Rubus ellipticus Sm. | Rosaceae | + | - |
Rubus sp. | Rosaceae | + | + |
Saccharum spontaneum L. | Poaceae | + | + |
Salvia sp. | Lamiaceae | + | + |
Sapium insigne (Royle) Benth. ex. Hook. f. | Euphorbiaceae | + | - |
Saraca asoca (Roxb.) Willd. | Fabaceae | - | + |
Schima wallichii (DC.) Korth. | Theaceae | - | + |
Senna occidentalis (L.) Roxb. | Fabaceae | + | + |
Senna tora (L.) Roxb. | Fabaceae | + | + |
Setaria glauca (L.) P. Beauv. | Poaceae | + | + |
Setaria pallidifusca (Schumach.) Stapf and C. E. Hubb. | Poaceae | + | + |
Shorea robusta Gaertn. | Dipterocarpaceae | + | + |
Sida acuta (L. fil.) Borss. Waalk. | Malvaceae | + | + |
Sida cordifolia L. | Malvaceae | + | + |
Sida rhombifolia L. | Malvaceae | + | + |
Solanum aculeatissimum Jacq. | Solanaceae | + | + |
Solanum nigrum L. | Solanaceae | + | - |
Spermacoce alata Aubl. | Rubiaceae | + | + |
Stephania glandulifera Miers | Menispermaceae | + | + |
Sambucus sp. | Sambucaceae | + | - |
Syzygium cumini (L.) Skeels | Myrtaceae | - | + |
Tetrastigma serrulatum (Roxb.) Planch. | Vitaceae | + | + |
Thysanolaena maxima (Roxb.) Kuntze | Poaceae | + | + |
Tinospora sinensis (Lour.) Merr. | Menispermaceae | - | + |
Tridax procumbens L. | Asteraceae | - | + |
Triumfetta pilosa Roth. | Malvaceae | + | + |
Urena lobata L. | Malvaceae | + | + |
Urtica dioca L. | Urticaceae | - | + |
Vetiveria sp. | Poaceae | + | + |
Woodfordia fruticosa (L.) Kurz. | Lythraceae | + | + |
Xanthium strumarium L. | Asteraceae | + | + |
Appendix B
Season | Simpson Index (1-D) | Shannon Index (H’) | Species Richness | |||
---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | |
Pre-monsoon | 0.72 ± 0.008 | 0.80 ± 0.008 | 1.80 ± 0.547 | 2.32 ± 0.737 | 8 ± 0.469 | 11 ± 0.476 |
p-value | <0.001 | <0.001 | <0.001 | |||
Monsoon | 0.81 ± 0.010 | 0.89 ± 0.009 | 1.88 ± 0.035 | 2.84 ± 0.013 | 11 ± 0.404 | 15 ± 0.564 |
p-value | <0.001 | <0.001 | <0.001 |
Season | Habitat | Shannon Index (H’) | Simpson Index (1-D) | Species Richness | |||
---|---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | ||
Pre-monsoon | Forest-edge | 2.02 ± 0.05 b | 2.14 ± 0.13 a | 0.74 ± 0.01 a | 0.77 ± 0.03 b | 10 ± 0.55 a | 13 ± 0.65 b |
Fallow land | 1.65 ± 0.10 b | 2.57 ± 0.14 ab | 0.71 ± 0.02 ab | 0.83 ± 0.04 bc | 8 ± 0.75 ab | 11 ± 0.59 b | |
Roadside | 1.73 ± 0.07 a | 2.26 ± 0.071 b | 0.68 ± 0.01 b | 0.80 ± 0.02 c | 7 ± 0.7 b | 9 ± 0.7 a | |
p-value | 0.011 | 0.048 | 0.007 | 0.008 | 0.009 | 0.003 | |
F-value | 5.57 | 3.49 | 6.30 | 5.97 | 5.93 | 7.86 | |
Monsoon | Forest-edge | 1.78 ± 0.02 a | 2.78 ± 0.02 b | 0.77 ± 0.01 a | 0.86 ± 0.016 b | 11 ± 0.59 b | 15 ± 1.07 a |
Fallow land | 2.11 ± 0.03 a | 2.92 ± 0.008 c | 0.84 ± 0.02 a | 0.88 ± 0.016 bc | 13 ± 0.82 bc | 17 ± 0.90 ab | |
Roadside | 1.76 ± 0.01 b | 2.82 ± 0.009 a | 0.83 ± 0.03 b | 0.93 ± 0.009 c | 10 ± 0.38 c | 14 ± 0.52 b | |
p-value | <0.001 | <0.001 | 0.015 | 0.005 | 0.019 | 0.015 | |
F-value | 76.72 | 55.33 | 5.13 | 6.82 | 4.76 | 5.10 |
Season | pH | SOC % | N % | K | P | |||||
---|---|---|---|---|---|---|---|---|---|---|
LI | NI | LI | NI | LI | NI | LI | NI | LI | NI | |
Pre-monsoon | 6.02 ± 0.139 | 6.15 ± 0.132 | 3.60 ± 0.119 | 3.29 ± 0.107 | 0.29 ± 0.016 | 0.24 ± 0.013 | 161.64 ± 8.55 | 185.52 ± 9.34 | 39.30 ± 2.21 | 30.62 ± 1.96 |
p-value | ns | 0.04 | <0.001 | <0.001 | <0.001 | |||||
Monsoon | 6.20 ± 0.113 | 6.38 ± 0.119 | 3.89 ± 0.128 | 3.43 ± 0.104 | 0.34 ± 0.022 | 0.27 ± 0.015 | 155.92 ± 14.45 | 172.78 ± 13.62 | 45.33 ± 3.13 | 37.61 ± 2.45 |
p-value | ns | 0.003 | <0.001 | 0.026 | 0.05 |
Season | Habitat | pH | SOC % | N % | K | P | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
LI | N | LI | NI | LI | NI | LI | NI | LI | NI | ||
Pre-monsoon | Forest-edge | 6.18 ± 0.24 a | 6.31 ± 0.21 b | 4.12 ± 0.20 a | 3.58 ± 0.17 b | 0.32 ± 0.02 a | 0.26 ± 0.02 b | 187.33 ± 6.21 a | 189.53 ± 5.64 b | 40.60 ± 2.93 a | 31.76 ± 2.92 b |
Fallow land | 6.44 ± 0.22 ab | 6.51 ± 0.20 bc | 3.49 ± 0.14 a | 3.38 ± 0.16 bc | 0.37 ± 0.02 b | 0.29 ± 0.01 c | 195.29 ± 2.45 b | 235.92 ± 11.38 c | 47.81 ± 4.27 ab | 37.46 ± 3.88 bc | |
Roadside | 5.51 ± 0.14 b | 5.69 ± 0.18 c | 3.24 ± 0.14 b | 2.96 ± 0.16 c | 0.22 ± 0.01 b | 0.17 ± 0.008 c | 109.04 ± 5.65 b | 137.16 ± 5.09 a | 30.58 ± 1.40 b | 23.5 ± 1.46 c | |
p-value | 0.012 | 0.023 | 0.004 | 0.043 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | 0.007 | |
F-value | 5.50 | 4.50 | 7.23 | 3.64 | 18.86 | 16.74 | 89.64 | 41.84 | 8.53 | 6.22 | |
Monsoon | Forest-edge | 6.31 ± 0.21 a | 6.47 ± 0.19 b | 4.49 ± 0.15 a | 3.54 ± 0.18 b | 0.40 ± 0.02 a | 0.34 ± 0.01 b | 242.45 ± 12.23 a | 252.08 ± 12.58 b | 48.47 ± 3.52 a | 37.0.7 ± 3.44 b |
Fallow land | 6.60 ± 0.11 b | 6.76 ± 0.23 bc | 3.76 ± 0.19 a | 3.70 ± 0.14 bc | 0.43 ± 0.02 b | 0.31 ± 0.01 c | 131.15 ± 10.03 a | 166.26 ± 13.92 c | 57.16 ± 3.72 b | 45.58 ± 5.04 bc | |
Roadside | 5.75 ± 0.09 b | 5.95 ± 0.07 c | 3.47 ± 0.15 b | 3.11 ± 0.13 c | 0.21 ± 0.01 b | 0.19 ± 0.009 c | 101.03 ± 16.43 b | 108.11 ± 6.80 a | 31.77 ± 4.63 b | 30.99 ± 2.94 c | |
p-value | 0.002 | 0.011 | <0.001 | 0.034 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.042 | |
F-value | 8.67 | 5.51 | 9.73 | 3.96 | 40.80 | 42.57 | 30.21 | 42.11 | 10.43 | 3.66 |
References
- CBD. Alien species that threaten ecosystems, habits or species. In Convention on Biological Diversity; Report on Consultations Regarding International Standards; FAO: Rome, Italy, 2008. [Google Scholar]
- Downey, P.O.; Rirchardson, D.M. Alien plant invasions and native plant extinctions: A six-threshold framework. AoB Plants 2016, 8, plw047. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Cassey, P.; Blackburn, T.M. Alien species as a driver of recent extinction. Biol. Lett. 2016, 12, 20150623. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and Their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Roy, H.E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B.S., Hulme, P.E., Ikeda, T., Sankaran, K.V., McGeoch, M.A., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2023. [Google Scholar] [CrossRef]
- Gibbons, S.M.; Lekberg, Y.; Mummey, D.L.; Sangwan, N.; Ramsey, P.W.; Gilbert, J.A. Invasive plants rapidly reshape soil properties in a grassland ecosystem. MSystems 2017, 2, e00178-16. [Google Scholar] [CrossRef] [PubMed]
- Le Maitre, D.C.; Richardson, D.M.; Chapman, R.A. Alien plant invasions in South Africa: Driving forces and the human dimension: Working for water. S. Afr. J. Sci. 2004, 100, 103–112. [Google Scholar]
- Brooks, M.L.; D’antonio, C.M.; Richardson, D.M.; Grace, J.B.; Keeley, J.E.; DiTomaso, J.M.; Hobbs, R.J.; Pellant, M.; Pyke, D. Effects of invasive alien plants on fire regimes. BioScience 2004, 54, 677–688. [Google Scholar] [CrossRef]
- Hejda, M.; Pyšek, P.; Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009, 97, 393–403. [Google Scholar] [CrossRef]
- Rodriguez, L.F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 2006, 8, 927–939. [Google Scholar] [CrossRef]
- Shrestha, B.B. Management of invasive alien plants in Nepal: Current practices and future prospects. In Tropical Ecosystems: Structure, Functions and Challenges in the Face of Global Change; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–68. [Google Scholar]
- Chaudhary, R.P.; Uprety, Y.; Rimal, S.K. Deforestation in Nepal: Causes, consequences and responses. Biol. Environ. Hazards Risks Disasters 2016, 12, 335–372. [Google Scholar]
- Shrestha, U.B.; Shrestha, B.B. Climate change amplifies plant invasion hotspots in Nepal. Divers. Distrib. 2019, 25, 1599–1612. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Shrestha, K.K. Invasions of alien plant species in Nepal: Patterns and process. Invasive Alien Species Obs. Issues Around World 2021, 2, 168–183. [Google Scholar] [CrossRef]
- Maharjan, S.; Joshi, S.; Shrestha, B.B.; Devkota, A.; Jha, P.K. Life History Traits and Invasion Success of Parthenium hysterophorus L. in Kathmandu Valley, Nepal. Nepal J. Sci. Technol. 2014, 15, 31–38. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Maren, I.E.; Subedi, S.C. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. J. Mt. Sci. 2014, 11, 688–696. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Pokhrel, K.; Paudel, N.; Poudel, S.; Shabbir, A.; Adkins, S.W. Distribution of Parthenium hysterophorus and one of its biological control agents (Coleoptera: Zygogramma bicolorata) in Nepal. Weed Res. 2019, 59, 467–478. [Google Scholar] [CrossRef]
- Bhatta, S.; Joshi, L.R.; Shrestha, B.B. Distribution and impact of invasive alien plant species in Bardia National Park, western Nepal. Environ. Conserv. 2020, 47, 197–205. [Google Scholar] [CrossRef]
- Thapa, L.B.; Kaewchumnong, K.; Sinkkonen, A.; Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 2020, 263, 151554. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Post, A.K.; Knapp, A.K. The importance of extreme rainfall events and their timing in a semi-arid grassland. J. Ecol. 2020, 108, 2431–2443. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species A Selection from the Global Invasive Species Database; The Invasive Species Specialist Group (ISSG): Rome Italy, 2000. [Google Scholar]
- Dobhal, P.K.; Kohli, R.K.; Batish, D.R. Evaluation of impact of Lantana camara L. invasion, on four major woody shrubs, along Nayar river of Pauri Garhwal in Uttarakhand Himalaya. Int. J. Biodivers. Conserv. 2010, 2, 166–172. [Google Scholar]
- Gooden, B.; French, K.; Turner, P.J.; Downey, P.O. Impact threshold for an alien plant invader, Lantana camara L., on native plant communities. Biol. Conserv. 2009, 142, 2631–2641. [Google Scholar] [CrossRef]
- Bhakat, R.K.; Maiti, P.P. Invasiveness and allelopathy as a threat to biodiversity. In Proceedings of the International Seminar on Multidisciplinary Approaches in Angiosperm Systematics, Kalyani, India, January 2012; pp. 748–751. [Google Scholar]
- Sharma, G.P.; Raghubanshi, A.S. Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Appl. Soil Ecol. 2009, 42, 134–140. [Google Scholar] [CrossRef]
- Fan, L.; Chen, Y.; Yuan, J.; Yang, Z. The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China. Geoderma 2010, 154, 370–378. [Google Scholar] [CrossRef]
- Osunkoya, O.O.; Perrett, C. Lantana camara L. (Verbenaceae) invasion effects on soil physicochemical properties. Biol. Fertil. Soils 2011, 47, 349–355. [Google Scholar] [CrossRef]
- Simba, Y.R.; Kamweya, A.M.; Mwangi, P.N.; Ochora, J.M. Impact of the invasive shrub, Lantana camara L. on soil properties in Nairobi National Park, Kenya. Int. J. Biol. Divers. Conserv. 2013, 5, 803–809. [Google Scholar]
- Ruwanza, S.; Shackleton, C.M. Effects of the invasive shrub Lantana camara on soil properties in the Eastern Cape, South Africa. Weed Biol. Manag. 2016, 16, 67–79. [Google Scholar] [CrossRef]
- Mahla, N.; Mlambo, D. Influence of two co-occurring invasive plant species on resident woody species and surface soil properties in Chipinge Safari Area, Zimbabwe. Trop. Ecol. 2019, 60, 129–139. [Google Scholar] [CrossRef]
- Ruwanza, S. Effects of Lantana camara invasion on vegetation diversity and composition in the Vhembe Biosphere Reserve, Limpopo Province of South Africa. Sci. Afr. 2020, 10, e00610. [Google Scholar] [CrossRef]
- Chacón, N.; Herrera, I.; Flores, S.; González, J.A.; Nassar, J.M. Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones. Biol. Fertil. Soils 2009, 45, 321–328. [Google Scholar] [CrossRef]
- Vitousek, P.M. Biological invasions and ecosystem processes: Towards an integration of population biology and ecosystem studies. Oikos 1990, 57, 7–13. [Google Scholar] [CrossRef]
- Kershaw, K.A. Quantitative and Dynamic Plant Ecology, 2nd ed.; Arnold, E., Krebs, C.J., Eds.; Ecological Methodology (No. QH541. 15. S72. K74 1999); Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Misra, R. Ecology Workbook; Oxford and IBH Publishing Company: Calcutta, India, 1968. [Google Scholar]
- Daubenmire, R. A canopy-coverage method of vegetation analysis. Northwest Sci. 1959, 33, 43–64. [Google Scholar]
- KATH (National Herbarium & Plant Laboratories). Flora of Nepal. 2019. Available online: https://kath.gov.np/Flora_of_Nepal (accessed on 15 April 2019).
- Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004; 256p. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Gupta, P.K. Methods in Environmental Analysis: Water, Soil and Air, 1st ed.; Updesh Purohit for Agrobios, India Jodhpur Agro House: Jodhpur, India, 2004; pp. 47–48. [Google Scholar]
- Black, C.A.; Evans, D.D.; White, J.L. Methods of soil analysis: Chemical and microbiological properties. Physical and mineralogical properties including statistics of measurement and sampling. Science 1965, 151, 982–983. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorous. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Ed.; Chemical and Microbiological Properties, ASA-SSSa, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- NARC. Methods of Soil Sample Collection and Analysis; Soil Science Division, Council of National Agriculture Research Center: Khumaltar, Nepal, 2013; 167p.
- Fetcher, N.; Strain, B.R.; Oberbauer, S.F. Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oecologia 1983, 58, 314–319. [Google Scholar] [CrossRef]
- Turton, S.M.; Duff, G.A. Light environments and floristic composition across an open forest-rainforest boundary in northeastern Queensland. Aust. J. Ecol. 1992, 17, 415–423. [Google Scholar] [CrossRef]
- Tilman, D. Resource Competition and Community Structure; Princeton University Press: Princeton, NJ, USA, 1982; Volume 28, pp. 1043–1045. [Google Scholar] [CrossRef]
- Sharma, G.P.; Raghubanshi, A.S. Tree population structure, regeneration and expected future composition at different levels of L. camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia 2006, 11, 25–37. [Google Scholar]
- Taylor SKumar, L.; Reid, N.; Kriticos, D.J. Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 2012, 7, e35565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Y.; Peng, S.; Zobel, K. Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 2014, 9, e105500. [Google Scholar] [CrossRef]
- Dobhal, P.K.; Kohli, R.K.; Batish, D.R. Impact of Lantana camara L. invasion on riparian vegetation of Nayar region in Garhwal Himalayas (Uttarakhand, India). J. Ecol. Nat. Environ. 2011, 3, 11–22. [Google Scholar]
- Aravindhan, V.; Rajendran, A. Impact of invasive species Lantana camara (L.) on the vegetation of Velliangiri Hills, the Southern Western Ghats, India. Glob. J. Environ. Res. 2014, 8, 35–40. [Google Scholar]
- Vila, M.; Weiner, J. Are invasive plant species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Levine, J.M.; D’Antonio, C.M. Elton revisited: A review of evidence linking diversity and invasibility. Oikos 1999, 87, 15–26. [Google Scholar] [CrossRef]
- Rouw, A.D. Chromolaena odorata in the farming systems of South-West Côte d’Ivoire. In Proceedings of the Distribution, Ecology and Management of Chromolaena odorata, 1996; ORSTOM, ICRAF and University of Guam, Mangilao, GUAM: Guam, Micronesia, 1996; pp. 76–87. [Google Scholar]
- Tjitrosemito, S. The management of Chromolaena odorata. In Proceedings of the Third International Chromolaena Workshop on Distribution, Ecology and Management of Chromolaena odorata, 1996; Robinson, H., Ed.; ORSTOM, ICRAF and University of Guam, Mangilao, GUAM: Guam, Micronesia, 1996; pp. 135–142. [Google Scholar]
- Adhikari, A.; Subedi, A.; Tiwari, A.; Shrestha, B.B. Impacts of road on plant invasions in the Middle Mountain region of central Nepal. J. Mt. Sci. 2024, 21, 619–632. [Google Scholar] [CrossRef]
- Starfinger, U.; Kowarik, I.; Rode, M.; Schepker, H. From desirable ornamental plant to pest to accepted addition to the Flora?—The perception of an alien tree species through the centuries. Biol. Invasions 2003, 5, 323–335. [Google Scholar] [CrossRef]
- Harper, K.A.; Macdonald, S.E.; Burton, P.J. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Guo, Q.; Brown, J.H. Temporal fluctuations and experimental effects in desert plant communities. Oecologia 1996, 107, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Osunkoya, O.O.; Perrett, C.; Fernando, C. Population viability analysis models for Lantana camara L. (Verbenaceae): A weed of national significance. In Proceedings of the 17th Australasian Weeds Conference, Christchurch, New Zealand, 26–30 September 2010; Zydenbos, S.M., Ed.; New Zealand Plant Protection Society: Auckland, New Zealand, 2010; pp. 91–94. [Google Scholar]
- Sharma, G.P.; Raghubanshi, A.S. Effect of Lantana camara L. cover on plant species depletion in the Vindhyan tropical dry deciduous forest of India. Appl. Ecol. Environ. Res. 2007, 5, 109–121. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Huang, N.; Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 2018, 23, 112–119. [Google Scholar] [CrossRef]
- Castillo, J.M.; Leira-Doce, P.; Carrión-Tacuri, J.; Munoz-Guacho, E.; Arroyo-Solís, A.; Curado, G.; Tye, A. Contrasting strategies to cope with drought by invasive and endemic species of Lantana in Galapagos. Biodivers. Conserv. 2007, 16, 2123–2136. [Google Scholar] [CrossRef]
- Dassonville, N.; Vanderhoeven, S.; Gruber, W.; Meerts, P. Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 2008, 14, 230–240. [Google Scholar] [CrossRef]
- Kumar, M.; Verma, A.K.; Garkoti, S.C. Lantana camara and Ageratina adenophora invasion alter the understory species composition and diversity of chir pine forest in central Himalaya, India. Acta Oecologica 2020, 109, 103–115. [Google Scholar] [CrossRef]
- Kumar, M.; Garkoti, S.C. Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecol. 2021, 222, 723–735. [Google Scholar] [CrossRef]
- Vitti, S.; Pellegrini, E.; Casolo, V.; Trotta, G.; Boscutti, F. Contrasting responses of native and alien plant species to soil properties shed new light on the invasion of dune systems. J. Plant Ecol. 2020, 13, 667–675. [Google Scholar] [CrossRef]
- Chatanga, P. Impacts of the Alien Species L. camara L. on Vegetation in Northern Gonarezhou National Park, Zimbabwe. Master’s Thesis, University of Zimbabwe, Harare, Zimbabwe, 2007; pp. 1–84. [Google Scholar]
- Thomas, S.E.; Ellison, C.A. A century of classical biological control of Lantana camara: Can pathogens make a significant difference. In Proceedings of the X International Symposium on Biological Control of Weeds, Bozeman, MT, USA, 4–14 July 1999; Montana State University: Bozeman, MT, USA, 2000; Volume 4, pp. 97–104. [Google Scholar]
- ISSG. One Hundred of the World Worst Invasive Allien Species. A Selection from the Global Invasive Database; ISSG: Auckland, New Zealand, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, C.K.; Tiwari, A.; Baniya, C.B.; Shrestha, B.B.; Jha, P.K. High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests 2024, 15, 1427. https://doi.org/10.3390/f15081427
Paudel CK, Tiwari A, Baniya CB, Shrestha BB, Jha PK. High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests. 2024; 15(8):1427. https://doi.org/10.3390/f15081427
Chicago/Turabian StylePaudel, Chandra Kumari, Achyut Tiwari, Chitra Bahadur Baniya, Bharat Babu Shrestha, and Pramod Kumar Jha. 2024. "High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal" Forests 15, no. 8: 1427. https://doi.org/10.3390/f15081427
APA StylePaudel, C. K., Tiwari, A., Baniya, C. B., Shrestha, B. B., & Jha, P. K. (2024). High Impacts of Invasive Weed Lantana camara on Plant Community and Soil Physico-Chemical Properties across Habitat Types in Central Nepal. Forests, 15(8), 1427. https://doi.org/10.3390/f15081427