The Genetic Response of Forest Birds to Urbanization: Variability in the Populations of Great and Blue Tits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- i.
- City center (Urb1)—high-urbanization-intensity areas with allowed < 3.5 UII.
- ii.
- Šilainiai (Urb2), Dainava (Urb3)—high-urbanization-intensity residential areas with prevalent high-rise apartment buildings of <1.2 UII. The allowed construction height of high-rise buildings is up to 50 m. Dainava is one of the most densely populated residential areas in Kaunas, distinguished by lower apartment building heights (5–9-floor buildings) and an abundance of green spaces with mature woody vegetation.
- iii.
- Vilijampolė (Urb4)—moderate-urbanization-intensity residential area with prevalent low-rise apartment buildings of <0.8 UII. Low-rise residential housing is interspersed between apartment building units.
- iv.
- Žaliakalnis (Urb5)—moderate urbanization intensity with prevalent low-rise residential buildings of <0.8 UII. The maximum allowed height of buildings is up to 13 m. Žaliakalnis is one of the greenest areas situated close to the city center. The neighborhood has an abundance of tree alleys of mature and diverse species of trees, green spaces located close to the streets, broadleaf woodlands in slopes and screes, and the largest city oak park in Europe (60.83 ha). The development of this urban area was planned based on a popular European garden city concept.
- i.
- Padauguva (For1) forest has an area of 57.20 km2. The prevalent soils are temporarily waterlogged and highly fertile. The majority of the forests are mixed with Norway spruce (Picea abies) (49.2%) and deciduous species such as birch (Betula spp.) (17.3%) and black alder (Alnus glutinosa) (16.7%). Less common mixtures include European aspen (Populus tremula) and grey alder (Alnus incana); 66.2% of the stands have dense understory vegetation.
- ii.
- Dubrava (For2) forest has an area of 57.50 km2. Its soils are infertile, dry, and sandy. The dominant tree species is Scots pine (Pinus sylvestris) (86.90%). Most of the stands are 101–120 years old; 27.96% of the stands have no understory layer, 28.59% have scarce shrubs, and moderately dense shrubs are observed in 43.45%.
- iii.
- Pravieniškės (For3) forest has an area of 50.70 km2. Most of the sites are fertile and temporarily waterlogged. The main tree species is Norway spruce (54.94%) while the remaining area is dominated by birch (41%); 45.98% of the stands have moderate-density understory vegetation.
2.2. Population Sampling and Genomic DNA Extraction
2.3. Microsatellite Analysis
2.4. Data Analysis
3. Results
3.1. SSR Marker Polymorphism
3.2. Population Genetic Diversity
3.3. Genetic Differentiation and Structure
4. Discussion
4.1. Genetic Diversity
4.2. Population Differentiation and Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef]
- Brazaitis, G.; Roberge, J.M.; Angelstam, P.; Marozas, V.; Pėtelis, K. Age-related effects of clear-cut–old forest edges on bird communities in Lithuania. Scand. J. For. Res. 2005, 20, 59–67. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Marcacci, G.; Westphal, C.; Wenzel, A.; Raj, V.; Nölke, N.; Tscharntke, T.; Grass, I. Taxonomic and functional homogenization of farmland birds along an urbanization gradient in a tropical megacity. Glob. Chang. Biol. 2021, 27, 4980–4994. [Google Scholar] [CrossRef]
- Elmqvist, T.; Zipperer, W.C.; Güneralp, B. Urbanization, habitat loss and biodiversity decline: Solution pathways to break the cycle. In Routledge Handbook of Urbanization and Global Environmental Change; Routledge: Oxford, UK, 2019; pp. 163–175. [Google Scholar]
- Young, H.S.; McCauley, D.J.; Galetti, M.; Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 333–358. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; La Sorte, F.A.; Aronson, M.F.; Goddard, M.A.; MacGregor-Fors, I.; Nilon, C.H.; Warren, P.S. Global patterns and drivers of urban bird diversity. In Ecology and Conservation of Birds in Urban Environments; Springer: Cham, Switzerland, 2017; pp. 13–33. [Google Scholar]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Garcês, A.; Pires, I.; Pacheco, F.A.; Fernandes, L.F.S.; Soeiro, V.; Lóio, S.; Prada, J.; Cortes, R.; Queiroga, F.L. Preservation of wild bird species in northern Portugal-Effects of anthropogenic pressures in wild bird populations (2008–2017). Sci. Total Environ. 2019, 650, 2996–3006. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.C.; Balmford, A.; Johnston, A.; Newson, S.E.; Donald, P.F. Variation in abundances of common bird species associated with roads. J. Appl. Ecol. 2020, 57, 1271–1282. [Google Scholar] [CrossRef]
- Barton, M.G.; Henderson, I.; Border, J.A.; Siriwardena, G. A review of the impacts of air pollution on terrestrial birds. Sci. Total Environ. 2023, 873, 162136. [Google Scholar] [CrossRef]
- Ciach, M.; Fröhlich, A. Habitat type, food resources, noise and light pollution explain the species composition, abundance and stability of a winter bird assemblage in an urban environment. Urban Ecosyst. 2017, 20, 547–559. [Google Scholar] [CrossRef]
- Morozov, N.S. The Role of Predators in Shaping Urban Bird Populations: 1. Who Succeeds in Urban Landscapes? Biol. Bull. 2022, 49, 1057–1080. [Google Scholar] [CrossRef]
- Byrkjedal, I.; Lislevand, T.; Vogler, S. Do passerine birds utilise artificial light to prolong their diurnal activity during winter at northern latitudes? Ornis Nor. 2012, 35, 37–42. [Google Scholar] [CrossRef]
- Russ, A.; Rüger, A.; Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 2015, 156, 123–131. [Google Scholar] [CrossRef]
- Morrison, M.L. Bird populations as indicators of environmental change. In Current Ornithology; Springer: Boston, MA, USA, 1986; Volume 3, pp. 429–451. [Google Scholar]
- Canterbury, G.E.; Martin, T.E.; Petit, D.R.; Petit, L.J.; Bradford, D.F. Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conserv. Biol. 2000, 14, 544–558. [Google Scholar] [CrossRef]
- Morelli, F.; Reif, J.; Díaz, M.; Tryjanowski, P.; Ibáñez-Álamo, J.D.; Suhonen, J.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Møller, A.P.; Bussière, R.; et al. Top ten bird indicators of high environmental quality in European cities. Ecol. Indic. 2021, 133, 108397. [Google Scholar] [CrossRef]
- Cox, D.T.; Shanahan, D.F.; Hudson, H.L.; Plummer, K.E.; Siriwardena, G.M.; Fuller, R.A.; Anderson, K.; Hancock, S.; Gaston, K.J. Doses of neighborhood nature: The benefits for mental health of living with nature. AIBS Bull. 2017, 67, 147–155. [Google Scholar] [CrossRef]
- Cox, D.T.; Hudson, H.L.; Plummer, K.E.; Siriwardena, G.M.; Anderson, K.; Hancock, S.; Devine-Wright, P.; Gaston, K.J. Covariation in urban birds providing cultural services or disservices and people. J. Appl. Ecol. 2018, 55, 2308–2319. [Google Scholar] [CrossRef]
- Sekercioglu, C.H. Increasing awareness of avian ecological function. Trends Ecol. Evol. 2006, 21, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Cox, D.T.; Canavelli, S.B.; García, D.; Hughes, B.; Maas, B.; Martínez, D.; Ogada, D.; Inger, R. Population abundance and ecosystem service provision: The case of birds. BioScience 2018, 68, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Birds and ecosystem services. Curr. Biol. 2022, 32, R1163–R1166. [Google Scholar] [CrossRef]
- Marzluff, J.M. Worldwide urbanization and its effects on birds. In Avian Ecology and Conservation in an Urbanizing World; Springer: Boston, MA, USA, 2001; pp. 19–47. [Google Scholar]
- Møller, A.P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 2009, 159, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Jokimäki, J.; Suhonen, J.; Kaisanlahti-Jokimäki, M.L. Urbanization and species occupancy frequency distribution patterns in core zone areas of European towns. Eur. J. Ecol. 2016, 2, 23–43. [Google Scholar] [CrossRef]
- Kark, S.; Iwaniuk, A.; Schalimtzek, A.; Banker, E. Living in the city: Can anyone become an ‘urban exploiter’? J. Biogeogr. 2007, 34, 638–651. [Google Scholar] [CrossRef]
- Palacio, F.X. Urban exploiters have broader dietary niches than urban avoiders. Ibis 2020, 162, 42–49. [Google Scholar] [CrossRef]
- Šálek, M.; Grill, S.; Riegert, J. Nest-site selection of an avian urban exploiter, the Eurasian magpie Pica pica, across the urban-rural gradient. J. Vertebr. Biol. 2020, 70, 20086.1–20086.11. [Google Scholar] [CrossRef]
- Møller, A.P.; Díaz, M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 2018, 64, 623–630. [Google Scholar] [CrossRef]
- Bisikirskienė, L.; Brazaitis, G.; Šimkevičius, K.; Brazaitytė, G. How Are Urban Birds Affected by Surrounding Forests and Agricultural Landscapes? Forests 2023, 14, 2119. [Google Scholar] [CrossRef]
- Concepción, E.D.; Moretti, M.; Altermatt, F.; Nobis, M.P.; Obrist, M.K. Impacts of urbanisation on biodiversity: The role of species mobility, degree of specialisation and spatial scale. Oikos 2015, 124, 1571–1582. [Google Scholar] [CrossRef]
- Donihue, C.M.; Lambert, M.R. Adaptive evolution in urban ecosystems. Ambio 2015, 44, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.; Munshi-South, J. Evolution of life in urban environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [PubMed]
- Szulkin, M.; Munshi-South, J.; Charmantier, A. (Eds.) Urban Evolutionary Biology; Oxford University Press: Cary, NC, USA, 2020. [Google Scholar]
- Diamond, S.E.; Martin, R.A. Evolution in cities. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 519–540. [Google Scholar] [CrossRef]
- Jagiello, Z.; Dylewski, Ł.; Tobolka, M.; Aguirre, J.I. Life in a polluted world: A global review of anthropogenic materials in bird nests. Environ. Pollut. 2019, 251, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Capilla-Lasheras, P.; Thompson, M.J.; Sánchez-Tójar, A.; Haddou, Y.; Branston, C.J.; Réale, D.; Charmantier, A.; Dominoni, D.M. A global meta-analysis reveals higher variation in breeding phenology in urban birds than in their non-urban neighbours. Ecol. Lett. 2022, 25, 2552–2570. [Google Scholar] [CrossRef]
- Thompson, M.J.; Capilla-Lasheras, P.; Dominoni, D.M.; Réale, D.; Charmantier, A. Phenotypic variation in urban environments: Mechanisms and implications. Trends Ecol. Evol. 2022, 37, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, J.S.; Ness, R.W.; Cohan, B.; Fitzpatrick, C.R.; Innes, S.G.; Koch, S.; Miles, L.S.; Munim, S.; Peres-Neto, P.R.; Prashad, C.; et al. Global urban environmental change drives adaptation in white clover. Science 2022, 375, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Peñuela, M.; Rondón, F.; González, R.; Cárdenas, H. Transcontinental genetic inference of urban pigeon populations using phenotypic markers. Avian Biol. Res. 2019, 12, 152–162. [Google Scholar] [CrossRef]
- Carlen, E.; Munshi-South, J. Widespread genetic connectivity of feral pigeons across the Northeastern megacity. Evol. Appl. 2021, 14, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Salmón, P.; Jacobs, A.; Ahrén, D.; Biard, C.; Dingemanse, N.J.; Dominoni, D.M.; Helm, B.; Lundberg, M.; Senar, J.C.; Sprau, P.; et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 2021, 12, 2983. [Google Scholar] [CrossRef]
- Official Statistics Portal. Available online: https://osp.stat.gov.lt/infografikas-kaunas-2023 (accessed on 6 January 2024).
- Kaunas City Municipal. Kaunas City Municipality Master Plan 2013–2023. Available online: https://www.kaunas.lt/wp-content/uploads/sites/13/2015/06/02pagrindinisvienaslapas10000-1.jpg (accessed on 18 February 2023).
- Ministry of Environment of the Republic of Lithuania. Order of the Approval of Territorial Planning Norms. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/f2b240507a7411e38df3da592f4236cc?jfwid=q8i88mfws (accessed on 12 April 2024).
- Kaunas City Municipal. Kaunas City Municipality Master Plan 2013–2023, p. 14. Available online: https://www.kaunas.lt/wp-content/uploads/sites/8/2015/06/aiskinamasis-rastas.pdf (accessed on 12 April 2024).
- Lambeck, R.J. Focal species: A multi-species umbrella for nature conservation: Especies Focales: Una Sombrilla Multiespecífica para Conservar la Naturaleza. Conserv. Biol. 1997, 11, 849–856. [Google Scholar] [CrossRef]
- Logminas, V.; Nedzinskas, V.; Drobelis, E. Lietuvos fauna. In Paukščiai 2; Mokslas: Vilnius, Lietuva, 1991; ISBN 5-420-00398-8. [Google Scholar]
- Laine, V.N.; Gossmann, T.I.; Schachtschneider, K.M.; Garroway, C.J.; Madsen, O.; Verhoeven, K.J.; de Jager, V.; Megens, H.-J.; Warren, W.C.; Minx, P.; et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat. Commun. 2016, 7, 10474. [Google Scholar] [CrossRef] [PubMed]
- Gosler, A.; Clement, P.; Christie, D.A. Great Tit (Parus major). In Handbook of the Birds of the World Alive; Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., de Juana, E., Eds.; Lynx Edicions: Barcelona, Spain, 2013. [Google Scholar]
- Gosler, A.; Clement, P.; Christie, D.A. Common Blue Tit (Cyanistes caeruleus). In Handbook of the Birds of the World Alive; Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., de Juana, E., Eds.; Lynx Edicions: Barcelona, Spain, 2013. [Google Scholar]
- Song, W.K. Home range analysis of Great Tit (Parus major) before and after Fledging in an Urban Park. J. Korean Soc. Environ. Restor. Technol. 2020, 23, 97–106. [Google Scholar]
- Saladin, V.; Bonfils, D.; Binz, T.; Richner, H. Isolation and characterization of 16 microsatellite loci in the Great Tit Parus major. Mol. Ecol. Notes 2003, 3, 520–522. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices. Version 2.9.3. J. Hered. 2001, 86, 485–486. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. Genepop (Version-1.2) population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Oosterhout, C.V.; Hutchinson, W.F.; Wills, D.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Brookfield, J.F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 1996, 5, 453–455. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Belkhir, K.; Borsa, P.; Chikhi, L.; Raufaste, N.; Catch, F. GENETIX Software under Windows TM for the Genetics of the Populations. Montpellier (France): Laboratory Genome, Populations, Interactions, CNRS UMR 5000, University of Montpellier II. 2004. Available online: https://kimura.univ-montp2.fr/genetix/ (accessed on 9 May 2023).
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Markowski, M.; Minias, P.; Bańbura, M.; Glądalski, M.; Kaliński, A.; Skwarska, J.; Wawrzyniak, J.; Zieliński, P.; Bańbura, J. Genetic structure of urban and non-urban populations differs between two common parid species. Sci. Rep. 2021, 11, 10428. [Google Scholar] [CrossRef]
- Postma, E.D.; Tex, R.-J.; Noordwijk, A.J.; Mateman, A.C. Neutral markers mirror small-scale quantitative genetic diferentiation in an avian island population. Biol. J. Linn. Soc. 2009, 97, 867–875. [Google Scholar] [CrossRef]
- García-Navas, V.; Ortego, J.; Sanz, J.J. Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): Implications for the evolution of mate choice. Proceedings. Biol. Sci. 2009, 276, 2931–2940. [Google Scholar] [CrossRef] [PubMed]
- Fargevieille, A.; Grégoire, A.; Charmantier, A.; Del Rey Granado, M.; Doutrelant, C. Assortative mating by colored ornaments in blue tits: Space and time matter. Ecol. Evol. 2017, 7, 2069–2078. [Google Scholar] [CrossRef]
- Björklund, M.; Ruiz, I.; Senar, J.C. Genetic differentiation in the urban habitat: The great tits (Parus major) of the parks of Barcelona city. Biol. J. Linn. Soc. 2010, 99, 9–19. [Google Scholar] [CrossRef]
- Lemoine, M.; Lucek, K.; Perrier, C.; Saladin, V.; Adriaensen, F.; Barba, E.; Belda, E.J.; Charmantier, A.; Cichoń, M.; Eeva, T.; et al. Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biol. J. Linn. Soc. 2016, 118, 668–685. [Google Scholar] [CrossRef]
- Ortego, J.; Garcia-Navas, V.; Ferrer, E.S.; Sanz, J.J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit Cyanistes caeruleus. Anim. Behav. 2011, 82, 131–137. [Google Scholar] [CrossRef]
- Abramovs, N.; Brass, A.; Tassabehji, M. Hardy-Weinberg equilibrium in the large scale genomic sequencing era. Front. Genet. 2020, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Illera, J.C.; Atienza, J.C. Foraging shifts by the Blue Tit (Parus caeruleus) in relation to arthropod availability in a mixed woodland during the spring-summer period. Ardeola 1995, 42, 39–48. [Google Scholar]
- da Silva, L.P.; Alves, J.; da Silva, A.A.; Ramos, J.A.; Fonseca, C. Variation in the abundance and reproductive characteristics of Great Tits Parus major in forest and monoculture plantations. Acta Ornithol. 2012, 47, 146–154. [Google Scholar] [CrossRef]
- Wawrzyniak, J.; Glądalski, M.; Kaliński, A.; Bańbura, M.; Markowski, M.; Skwarska, J.; Zieliński, P.; Bańbura, J. Differences in the breeding performance of great tits Parus major between a forest and an urban area: A longterm study on first clutches. Eur. Zool. J. 2020, 87, 294–309. [Google Scholar] [CrossRef]
- Dierschke, F.V. Die Sommervogelbestände nordwestdeutscher Kiefernforsten. Vogelwelt 1973, 94, 201–225. [Google Scholar]
- Kurlavičius, P. Biotopičeskoje Raspredelenije ptic v Agronasaždenijach; Mokslas: Vilnius, Lietuva, 1986. [Google Scholar]
- Flade, M. Die Brutvogelgemeinschaften Mittel-und Norddeutschlands: Grundlagen für den Gebrauch Vogelkundlicher Daten in der Landschaftsplanung; IHW: Eching, Germany, 1994; ISBN 393016700X/9783930167005. [Google Scholar]
- Gil-Tena, A.; Saura, S.; Brotons, L. Effects of forest composition and structure on bird species richness in a Mediterranean context: Implications for forest ecosystem management. For. Ecol. Manag. 2007, 242, 470–476. [Google Scholar] [CrossRef]
- Harris, R.J.; Reed, J.M. Behavioral barriers to non-migratory movements of birds. In Annales Zoologici Fennici; Finnish Zoological and Botanical Publishing Board: Helsinki, Finland, 2002; pp. 275–290. [Google Scholar]
- Naka, L.N.; Costa, B.M.D.S.; Lima, G.R.; Claramunt, S. Riverine barriers as obstacles to dispersal in Amazonian birds. Front. Ecol. Evol. 2022, 10, 846975. [Google Scholar] [CrossRef]
- Tremblay, M.A.; St Clair, C.C. Permeability of a heterogeneous urban landscape to the movements of forest songbirds. J. Appl. Ecol. 2011, 48, 679–688. [Google Scholar] [CrossRef]
- Miles, L.S.; Rivkin, L.R.; Johnson, M.T.; Munshi-South, J.; Verrelli, B.C. Gene flow and genetic drift in urban environments. Mol. Ecol. 2019, 28, 4138–4151. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Domaratzki, M.; Kinnunen, R.P.; Bowman, J.; Garroway, C.J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. R. Soc. B 2020, 287, 20192497. [Google Scholar] [CrossRef] [PubMed]
- Gallé, L.; Margóczi, K.; Kovács, É.; Györffy, G.; Körmöczi, L.; Németh, L. River valleys: Are they ecological corridors. Tiscia 1995, 29, 53–58. [Google Scholar]
- Storfer, A.; Murphy, M.A.; Evans, J.S.; Goldberg, C.S.; Robinson, S.; Spear, S.F.; Dezzani, R.; Delmelle, E.; Vierling, L.; Waits, L.P. Putting the ‘landscape’in landscape genetics. Heredity 2007, 98, 128–142. [Google Scholar] [CrossRef] [PubMed]
- Evans, K.L.; Hatchwell, B.J.; Parnell, M.; Gaston, K.J. A conceptual framework for the colonisation of urban areas: The blackbird Turdus merula as a case study. Biol. Rev. 2010, 85, 643–667. [Google Scholar] [CrossRef] [PubMed]
- Bea, A.; Svazas, S.; Grishanov, G.; Kozulin, A.; Stanevicius, V.; Astafieva, T.; Olano, I.; Raudonikis, L.; Butkauskas, D.; Sruoga, A. Woodland and urban populations of the woodpigeon Columba palumbus in the eastern Baltic region. Ardeola 2011, 58, 315–321. [Google Scholar] [CrossRef]
- Møller, A.P. Behavioural and ecological predictions of urbanization. Avian Ecology and Conservation in an Urbanizing World. In Avian Urban Ecology: Behavioural and Physiological Adaptations; InGil, D., Brumm, H., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 54–68. [Google Scholar]
- Tomiałojć, L. Impact of Nest Predators on Migratory Woodpigeons Columba palumbus in Central Europe—Breeding Densities and Nesting Success in Urban Versus Natural Habitats. Acta Ornithol. 2021, 55, 139–154. [Google Scholar] [CrossRef]
- Perrier, C.; Lozano Del Campo, A.; Szulkin, M.; Demeyrier, V.; Gregoire, A.; Charmantier, A. Great tits and the city: Distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evol. Appl. 2017, 11, 593–613. [Google Scholar] [CrossRef]
- Porlier, M.; Garant, D.; Perret, P.; Charmantier, A. Habitat-linked population genetic differentiation in the blue tit Cyanistes caeruleus. J. Hered. 2012, 103, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, K.J. Identifying the Number of Population Clusters with Structure: Problems and Solutions; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
Great tit, n = 126 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Locus | Allele Range, bp | Na | NG | Ar | He | Ho | Fis | PIC | HWE p-Value | fn |
PmaTAGAn86 | 142–214 | 13 | 28 | 6.009 | 0.790 | 0.833 | −0.099 | 0.799 | 0.643 | 0.031 |
PmaTGAn42 | 254–310 | 9 | 24 | 5.574 | 0.726 | 0.762 | −0.087 | 0.789 | 0.007 ** | −0.006 |
PmaCAn1 | 107–139 | 13 | 30 | 6.662 | 0.704 | 0.833 | −0.226 | 0.810 | 0.066 | 0.0199 |
PmaC25 | 305–346 | 14 | 33 | 6.566 | 0.733 | 0.771 | −0.098 | 0.834 | 0.628 | 0.030 |
PmaGAn30 | 291–309 | 7 | 17 | 4.219 | 0.661 | 0.637 | −0.009 | 0.669 | 0.302 | 0.041 |
PmaGAn40 | 408–422 | 5 | 8 | 2.622 | 0.255 | 0.294 | −0.140 | 0.327 | 0.532 | 0.022 |
PmaTAGAn71 | 174–266 | 9 | 20 | 4.990 | 0.701 | 0.748 | −0.129 | 0.746 | 0.653 | 0.035 |
PmaD22 | 392–480 | 16 | 47 | 7.902 | 0.841 | 0.896 | −0.109 | 0.879 | 0.080 | −0.007 |
PmaGAn27 | 189–258 | 19 | 61 | 8.916 | 0.849 | 0.948 | −0.167 | 0.911 | 0.000 ** | −0.022 |
PmaTGAn45 | 289–360 | 8 | 19 | 4.606 | 0.689 | 0.791 | −0.191 | 0.721 | 0.004 ** | −0.034 |
Mean | 11.3 | 28.7 | 5.807 | 0.695 | 0.751 | −0.125 | 0.748 | |||
Blue tit, n = 92 | ||||||||||
Locus | Allele Range, bp | Na | NG | Ar | He | Ho | Fis | PIC | HWE p-Value | fn |
PmaTAGAn86 | 142–214 | 13 | 17 | 4.925 | 0.674 | 0.464 | 0.192 | 0.759 | 0.000 ** | 0.219 |
PmaTGAn42 | 258–290 | 12 | 29 | 5.903 | 0.780 | 0.874 | −0.169 | 0.848 | 0.0447 | −0.004 |
PmaCAn1 | 107–139 | 7 | 6 | 2.548 | 0.543 | 1.000 | −0.873 | 0.506 | 0.000 ** | −0.289 |
PmaC25 | 305–337 | 11 | 21 | 4.335 | 0.678 | 0.873 | −0.347 | 0.731 | 0.002 ** | −0.056 |
PmaGAn30 | 295–309 | 8 | 12 | 3.642 | 0.552 | 0.550 | −0.036 | 0.567 | 0.004 ** | 0.066 |
PmaGAn40 | 414–422 | 6 | 11 | 3.268 | 0.415 | 0.441 | −0.099 | 0.517 | 0.0695 | 0.012 |
PmaTAGAn71 | 174–206 | 19 | 41 | 6.809 | 0.828 | 0.873 | −0.114 | 0.895 | 0.8657 | 0.034 |
PmaD22 | 392–456 | 28 | 48 | 7.740 | 0.794 | 0.675 | 0.058 | 0.934 | 0.000 ** | 0.157 |
PmaGAn27 | 189–258 | 14 | 37 | 6.085 | 0.812 | 0.937 | −0.214 | 0.850 | 0.0419 | −0.026 |
PmaTGAn45 | 289–319 | 23 | 33 | 7.222 | 0.771 | 0.765 | −0.060 | 0.909 | 0.1725 | 0.064 |
Mean | - | 14.1 | 25 | 5.248 | 0.685 | 0.745 | −0.166 | 0.752 |
Sampling Sites | N | Ar | Ap | He | Ho | Fis | PIC | HWE p-Value |
---|---|---|---|---|---|---|---|---|
Great tit, n = 126 | ||||||||
For1 | 34 | 5.366 | 7 | 0.738 | 0.743 | 0.009 | 0.715 | 0.120 |
For2 | 36 | 5.327 | 10 | 0.757 | 0.770 | −0.019 | 0.724 | 0.357 |
For3 | 17 | 4.523 | 5 | 0.660 | 0.694 | −0.053 | 0.624 | 0.117 |
Urb1 | 10 | 4.220 | 3 | 0.609 | 0.746 | −0.224 | 0.579 | 0.000 ** |
Urb2 | 8 | 4.654 | 1 | 0.711 | 0.875 | −0.249 | 0.660 | 0.019 |
Urb3 | 11 | 3.850 | 1 | 0.610 | 0.750 | −0.208 | 0.577 | 0.000 ** |
Urb5 | 8 | 4.356 | 2 | 0.598 | 0.680 | −0.144 | 0.578 | 0.686 |
Mean | 4.614 | 4.14 | 0.669 | 0.751 | −0.125 | 0.637 | 0.000 ** | |
Blue tit, n = 92 | ||||||||
For1 | 25 | 4.572 | 14 | 0.689 | 0.687 | −0.017 | 0.687 | 0.000 ** |
Urb1 | 7 | 2.868 | 3 | 0.583 | 0.857 | −0.479 | 0.499 | 0.000 ** |
Urb2 | 30 | 4.499 | 9 | 0.721 | 0.725 | −0.045 | 0.687 | 0.969 |
Urb4 | 7 | 3.093 | 3 | 0.552 | 0.717 | −0.296 | 0.502 | 0.004 ** |
Urb5 | 23 | 5.046 | 20 | 0.749 | 0.740 | 0.007 | 0.740 | 0.003 ** |
Mean | 4.221 | 9.8 | 0.659 | 0.745 | −0.166 | 0.623 |
Source of Variation | df | Sum of Squares | Variance Components | Percentage of Variation | F-Statistics | Value | p-Value |
---|---|---|---|---|---|---|---|
Among sampling sites | 6 | 83.986 | 0.317 | 8% | Fst | 0.080 | p < 0.001 |
Among individuals within sampling sites | 117 | 414.296 | 0.000 | 0% | Fis | −0.024 | 0.955 |
Within individuals | 124 | 460.500 | 3.714 | 92% | Fit | 0.058 | p < 0.001 |
Total | 247 | 958.782 | 4.030 | 100% |
Source of Variation | df | Sum of Squares | Variance Components | Percentage of Variation | F-Statistics | Value | p-Value |
---|---|---|---|---|---|---|---|
Among sampling sites | 4 | 58.667 | 0.318 | 8% | Fst | 0.080 | p < 0.001 |
Among individuals within sampling sites | 87 | 327.333 | 0.104 | 3% | Fis | 0.028 | 0.074 |
Within individuals | 92 | 327.000 | 3.554 | 89% | Fit | 0.106 | p < 0.001 |
Total | 183 | 713.000 | 3.976 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisikirskienė, L.; Griciuvienė, L.; Aleksandravičienė, A.; Brazaitytė, G.; Paulauskas, A.; Brazaitis, G. The Genetic Response of Forest Birds to Urbanization: Variability in the Populations of Great and Blue Tits. Forests 2024, 15, 1445. https://doi.org/10.3390/f15081445
Bisikirskienė L, Griciuvienė L, Aleksandravičienė A, Brazaitytė G, Paulauskas A, Brazaitis G. The Genetic Response of Forest Birds to Urbanization: Variability in the Populations of Great and Blue Tits. Forests. 2024; 15(8):1445. https://doi.org/10.3390/f15081445
Chicago/Turabian StyleBisikirskienė, Loreta, Loreta Griciuvienė, Asta Aleksandravičienė, Gailenė Brazaitytė, Algimantas Paulauskas, and Gediminas Brazaitis. 2024. "The Genetic Response of Forest Birds to Urbanization: Variability in the Populations of Great and Blue Tits" Forests 15, no. 8: 1445. https://doi.org/10.3390/f15081445
APA StyleBisikirskienė, L., Griciuvienė, L., Aleksandravičienė, A., Brazaitytė, G., Paulauskas, A., & Brazaitis, G. (2024). The Genetic Response of Forest Birds to Urbanization: Variability in the Populations of Great and Blue Tits. Forests, 15(8), 1445. https://doi.org/10.3390/f15081445