Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Stand Characteristics
2.2. Sample Plots and Field Data Measurements
2.3. Estimation and Valuation of Ecosystem Services (ESs)
2.3.1. Air Pollution Removal
2.3.2. Carbon Stock and Sequestration
2.3.3. Energy Savings
2.3.4. Oxygen Production
2.3.5. Avoided Runoff
2.3.6. Replacement and Functional Values
2.3.7. Statistical Analysis
3. Results
3.1. Estimated and Valued Ecosystem Services
3.1.1. Air Pollution Removal
3.1.2. Carbon Sequestration (Cseq) and Stock (C Stocks)
3.1.3. Oxygen Production
3.1.4. Trees and Building Energy Savings
3.1.5. Avoided Runoff
3.2. Replacement and Functional Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belmeziti, A.; Cherqui, F.; Kaufmann, B. Improving the multi-functionality of urban green spaces: Relations between components of green spaces and urban services. Sustain. Cities Soc. 2018, 43, 1–10. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Green Infrastructure and Health. Annu. Rev. Public Health 2021, 42, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Pulighe, G.; Fava, F.; Lupia, F. Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning. Ecosyst. Serv. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Suchocka, M.; Heciak, J.; Błaszczyk, M.; Adamczyk, J.; Gaworski, M.; Gawłowska, A.; Mojski, J.; Kalaji, H.M.; Kais, K.; Kosno-Jończy, J.; et al. Comparison of Ecosystem Services and Replacement Value calculations performed for urban trees. Ecosyst. Serv. 2023, 63, 101553. [Google Scholar] [CrossRef]
- Elbakidze, M.; Dawson, L.; Milberg, P.; Mikusiński, G.; Hedblom, M.; Kruhlov, I.; Yamelynets, T.; Schaffer, C.; Johansson, K.-E.; Grodzynskyi, M. Multiple factors shape the interaction of people with urban greenspace: Sweden as a case study. Urban For. Urban Green. 2022, 74, 127672. [Google Scholar] [CrossRef]
- Ignatieva, M. Evolution of the approaches to planting design of parks and gardens as main greenspaces of green infrastructure. In Urban Services to Ecosystems: Green Infrastructure Benefits from the Landscape to the Urban Scale; Springer: Cham, Switzerland, 2021; pp. 435–452. [Google Scholar]
- Huang, J.; Wang, X.; Zhang, D.; Zhang, Z.; Yan, J.; Xia, F. Trade-offs under pressure? Development of urban green space under economic growth and governance. J. Clean. Prod. 2023, 427, 139261. [Google Scholar] [CrossRef]
- Ramaiah, M.; Avtar, R. Urban Green Spaces and Their Need in Cities of Rapidly Urbanizing India: A Review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef]
- Kang, S.-W.; Lee, M.-S.; Jung, J.-C. Analysis of sustainable urban forms for climate change adaptation and mitigation. Environ. Sustain. Indic. 2024, 22, 100337. [Google Scholar] [CrossRef]
- Grassi, G.; Conchedda, G.; Federici, S.; Viñas, R.A.; Korosuo, A.; Melo, J.; Rossi, S.; Sandker, M.; Somogyi, Z.; Vizzarri, M.; et al. Carbon fluxes from land 2000–2020: Bringing clarity to countries’ reporting. Earth Syst. Sci. Data 2022, 14, 4643–4666. [Google Scholar] [CrossRef]
- Luyssaert, S.; Marie, G.; Valade, A.; Chen, Y.Y.; Njakou Djomo, S.; Ryder, J.; Otto, J.; Naudts, K.; Lansø, A.S.; Ghattas, J.; et al. Trade-offs in using European forests to meet climate objectives. Nature 2018, 562, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, W.; Yun, H.; Xu, W.; Hu, B.; He, M.; Mo, X.; Zhang, L. Is urban green space a carbon sink or source?—A case study of China based on LCA method. Environ. Impact Assess. Rev. 2022, 94, 106766. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.; Zhang, C.; Zhang, J. The economic benefits of rainwater-runoff reduction by urban green spaces: A case study in Beijing, China. J. Environ. Manag. 2012, 100, 65–71. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Orta-Ortiz, M.S.; Geneletti, D. What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services. Environ. Impact Assess. Rev. 2022, 95, 106802. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Kiss, M.; Takács, Á.; Pogácsás, R.; Gulyás, Á. The role of ecosystem services in climate and air quality in urban areas: Evaluating carbon sequestration and air pollution removal by street and park trees in Szeged (Hungary). Morav. Geogr. Rep. 2015, 23, 36–46. [Google Scholar] [CrossRef]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef]
- Izadbin, N.; Mahmoudzadeh, H.; Ghorbani, R. An elucidation of comparative political ecology in urban areas regarding the allocation of urban green infrastructure. Int. J. Hum. Cap. Urban Manag. 2024, 9, 299–316. [Google Scholar]
- Konijnendijk, C. Changing governance of green spaces. In Rethinking Urban Green Spaces; Edward Elgar Publishing: Cheltenham, UK, 2024; pp. 72–84. [Google Scholar]
- Mamajonova, N.; Oydin, M.; Usmonali, T.; Olimjon, A.; Madina, A.; Margʻuba, M. The Role of Green Spaces in Urban Planning Enhancing Sustainability and Quality of Life. Hold. Reason. 2024, 2, 346–358. [Google Scholar]
- UN. World Population Prospects 2019; Department of Economic and Social Affairs: New York, NY, USA, 2019; p. 141. [Google Scholar]
- Jia, X.; Han, H.; Feng, Y.; Song, P.; He, R.; Liu, Y.; Wang, P.; Zhang, K.; Du, C.; Ge, S.; et al. Scale-dependent and driving relationships between spatial features and carbon storage and sequestration in an urban park of Zhengzhou, China. Sci. Total Environ. 2023, 894, 164916. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Hong, I.; Oh, I. South Korea’s 2050 carbon neutrality policy. East Asian Policy 2021, 13, 33–46. [Google Scholar] [CrossRef]
- Cho, S.; Jeong, Y.-S.; Huh, J.-H. Is South Korea’s 2050 Carbon-Neutral scenario sufficient for meeting greenhouse gas emissions reduction goal? Energy Sustain. Dev. 2024, 80, 101447. [Google Scholar] [CrossRef]
- Kim, J.; Kang, Y.; Kim, D.; Son, S.; Kim, E.J. Carbon Storage and Sequestration Analysis by Urban Park Grid Using i-Tree Eco and Drone-Based Modeling. Forests 2024, 15, 683. [Google Scholar] [CrossRef]
- Cilliers, S.; Cilliers, J.; Lubbe, R.; Siebert, S. Ecosystem services of urban green spaces in African countries—Perspectives and challenges. Urban Ecosyst. 2012, 16, 681–702. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef]
- Raum, S.; Hand, K.; Hall, C.; Edwards, D.; O’Brien, L.; Doick, K. Achieving impact from ecosystem assessment and valuation of urban greenspace: The case of i-Tree Eco in Great Britain. Landsc. Urban Plan. 2019, 190, 103590. [Google Scholar] [CrossRef]
- Martin, N.; Chappelka, A.; Keever, G.; Loewenstein, E. A 100% Tree Inventory Using i-Tree Eco Protocol: A Case Study at Auburn University, Alabama, U.S. Arboric. Urban For. 2011, 37, 207–212. [Google Scholar] [CrossRef]
- Kim, J.-H.; Ra, J.-H.; Lee, S.-J.; Kwon, O.-S.; Cho, H.-J.; Lee, E.-J. Fragmentation analysis of Daejeon City’s green biotope using landscape index and visualization method. J. Korean Soc. Environ. Restor. Technol. 2016, 19, 29–44. [Google Scholar] [CrossRef]
- Cho, H.-J.; Lee, E.-J. The assessment and restoration plan for fragmented points of mountain range in Daejeon. J. Korean Soc. For. Sci. 2015, 104, 622–631. [Google Scholar] [CrossRef]
- Carayugan, M.B.; An, J.Y.; Han, S.H.; Park, B.B. Litterfall and element fluxes in secondary successional forests of South Korea. Ecol. Indic. 2023, 156, 111096. [Google Scholar] [CrossRef]
- US Forest Service Northern Research Station (NRS). i-Tree Eco User’s Manual v 6.0; US Forest Service Northern Research Station (NRS): Washington, DC, USA, 2016.
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Nowak, D.J. Assessing Urban Forest Effects and Values: Toronto’s Urban Forest; US Department of Agriculture, Forest Service, Northern Research Station: Asheville, NC, USA, 2013.
- Nowak, D.; Walton, J.; Stevens, J.; Crane, D.; Hoehn, R. Effect of Plot and Sample Size on Timing and Precision of Urban Forest Assessments. Arboric. Urban For. 2008, 34, 386–390. [Google Scholar] [CrossRef]
- Cimburova, Z.; Barton, D.N. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 2020, 55, 126801. [Google Scholar] [CrossRef]
- USFS. i-Tree Eco Field Guide. 2021. Available online: https://www.itreetools.org/documents/274/EcoV6.FieldManual.2021.10.06.pdf (accessed on 6 June 2024).
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ. Model. Softw. 2011, 26, 804–816. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Lin, J.; Kroll, C.; Nowak, D. Ecosystem Service-Based Sensitivity Analyses of i-Tree Eco. Arboric. Urban For. 2020, 46, 287–306. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. i-Tree Eco Dry Deposition Model Descriptions; Citeseer: Princeton, NJ, USA, 2012. [Google Scholar]
- Hosker, R., Jr.; Lindberg, S.E. Atmospheric deposition and plant assimilation of gases and particles. Atmos. Environ. 1982, 16, 889–910. [Google Scholar] [CrossRef]
- Nowak, D.J. Understanding i-Tree: 2021 Summary of Programs and Methods; General Technical Report NRS-200-2021; US Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2021; 100p.
- Lovett, G.M. Atmospheric Deposition of Nutrients and Pollutants in North America: An Ecological Perspective. Ecol. Appl. 1994, 4, 629–650. [Google Scholar] [CrossRef]
- Zinke, P.J. Forest interception studies in the United States. In Forest Hydrology; Pergamon Press: Oxford, UK, 1967; pp. 137–161. [Google Scholar]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Hirabayashi, S. i-Tree Eco Biogenic Emissions Model Descriptions; United States Forest Service: Syracuse, NY, USA, 2012.
- Nyelele, C.; Kroll, C.N.; Nowak, D.J. Present and future ecosystem services of trees in the Bronx, NY. Urban For. Urban Green. 2019, 42, 10–20. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Baoquan, J.; Liu, X.; Li, T.; Zhang, W.; Liu, W. Spatial variation analysis of urban forest vegetation carbon storage and sequestration in built-up areas of Beijing based on i-Tree Eco and Kriging. Urban For. Urban Green. 2021, 66, 127413. [Google Scholar] [CrossRef]
- Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; US Department of Agriculture, Forest Service: Washington, DC, USA, 1994; pp. 83–94. [Google Scholar]
- Lauwers, L.; Barton, D.N.; Blumentrath, S.; Often, A.; Nowell, M. Accounting for Urban Trees. Updating the VAT03 Compensation Value Model. NINA Report. 2017, p. 1453. Available online: https://www.researchgate.net/profile/David-Barton-11/publication/322742320_Accounting_for_urban_trees_Revising_the_VAT03_compensation_value_model/links/5a6c85980f7e9bd4ca6b69f2/Accounting-for-urban-trees-Revising-the-VAT03-compensation-value-model.pdf (accessed on 4 June 2024).
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Wong, N.H.; Jusuf, S.K.; Syafii, N.I.; Chen, Y.; Hajadi, N.; Sathyanarayanan, H.; Manickavasagam, Y.V. Evaluation of the impact of the surrounding urban morphology on building energy consumption. Sol. Energy 2011, 85, 57–71. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R. Potential energy savings in buildings by an urban tree planting programme in California. Urban For. Urban Green. 2003, 2, 73–86. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Gardner, S.L.; Vargas, K.E.; Xiao, Q. Northeast Community Tree Guide: Benefits, Costs, and Strategic Planting; General Technical Report PSW-GTR-202; US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2007; 106p.
- Nowak, D.; Hoehn, R.; Crane, D. Oxygen Production by Urban Trees in the United States. Arboric. Urban For. 2007, 33, 220–226. [Google Scholar] [CrossRef]
- Qaro, S.-A.M.; Akrawee, Z.M. Economic Evaluation Air Pollution Removal and Oxygen Production based on I-Tree program for Atrush Forest/Kurdistan Region of Iraq. Acad. J. Nawroz Univ. 2020, 9, 87–96. [Google Scholar] [CrossRef]
- Nowak, D.J. Understanding i-Tree: Summary of Programs and Methods; General Technical Report NRS-200; US Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2020; 100p.
- Ghosh, S.; Yung, S. Carbon and Economic Benefits Of urban Trees in Two Sydney transport Corridor Case Studies. Ecocity World Summit 2017. 2017. Available online: https://opus.lib.uts.edu.au/handle/10453/121458 (accessed on 10 June 2024).
- Hirabayashi, S. i-Tree Eco United States County-Based Hydrologic Estimates; US Department of Agriculture Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research: Washington, DC, USA, 2015.
- Peper, P.J.; McPherson, E.G.; Simpson, J.R.; Gardner, S.L.; Vargas, K.E.; Xiao, Q. New York City, New York Municipal Forest Resource Analysis; Technical Report; US Department of Agriculture Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research: Washington, DC, USA, 2007; Volume 65.
- Nowak, D.; Crane, D.; Dwyer, J. Compensatory Value of Urban Trees in the United States. Arboric. Urban For. 2002, 28, 194–199. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services as productive inputs. Econ. Policy 2007, 22, 178–229. [Google Scholar] [CrossRef]
- Horváthová, E.; Badura, T.; Duchková, H. The value of the shading function of urban trees: A replacement cost approach. Urban For. Urban Green. 2021, 62, 127166. [Google Scholar] [CrossRef]
- Huyler, A.; Chappelka, A.H.; Loewenstein, E.F. UFORE model analysis of the structure and function of the urban forest in Auburn, Alabama. In Proceedings of the Emerging Issues Along Urban-Rural Interfaces III: Linking Science and Society Conference Proceedings, Atlanta, GA, USA, 11–14 April 2010; pp. 18–23. [Google Scholar]
- Russo, A.; Chan, W.T.; Cirella, G.T. Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications. Land 2021, 10, 788. [Google Scholar] [CrossRef]
- Wu, W. Graduate Program in Sustainability Science Global Leadership Initiative Graduate School of Frontier Sciences; University of Tokyo: Tokyo, Japan, 2023. [Google Scholar]
- Coates, J.; Mar, K.A.; Ojha, N.; Butler, T.M. The influence of temperature on ozone production under varying NOx conditions—A modelling study. Atmos. Chem. Phys. 2016, 16, 11601–11615. [Google Scholar] [CrossRef]
- Wani, R.F.C.; Shah, I.M. Impact of Environmental Pollution on Diversity of Insects: A Case Study of Some Major Insect Orders. 2024. Available online: https://www.researchgate.net/profile/Ishteyaq_Shah/publication/379862334_Impact_of_Environmental_Pollution_on_Diversity_of_Insects_A_Case_Study_of_Some_Major_Insect_Orders/links/661ea77b43f8df018d1431f3/Impact-of-Environmental-Pollution-on-Diversity-of-Insects-A-Case-Study-of-Some-Major-Insect-Orders.pdf (accessed on 10 June 2024).
- Kleeman, M.J. A preliminary assessment of the sensitivity of air quality in California to global change. Clim. Chang. 2007, 87, 273–292. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 2003, 23, 865–877. [Google Scholar] [CrossRef]
- Oulmi, A.; Aissaoui, M. Canopy temperature and chlorophyll content as plant traits indicators for durum wheat (Triticum durum Desf.) superior lines selection under semi-arid conditions. Agric. Sci. Technol. 2022, 14, 114–122. [Google Scholar] [CrossRef]
- Kim, J.-C.; Kim, K.-J.; Kim, D.-S.; Han, J.-S. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea. Chemosphere 2005, 59, 1685–1696. [Google Scholar] [CrossRef]
- Lim, Y.-J.; Armendariz, A.; Son, Y.-S.; Kim, J.-C. Seasonal variations of isoprene emissions from five oak tree species in East Asia. Atmos. Environ. 2011, 45, 2202–2210. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, J.-C.; Park, C.-R.; Son, Y.-S. Emission characteristics of biogenic volatile organic compounds from representative plant species of the Korean peninsula—Focused on aldehydes. Atmos. Res. 2020, 236, 104840. [Google Scholar] [CrossRef]
- Rani, B.; Singh, U.; Chuhan, A.; Sharma, D.; Maheshwari, R. Photochemical smog pollution and its mitigation measures. J. Adv. Sci. Res. 2011, 2, 28–33. [Google Scholar]
- Grantz, D.; Garner, J.; Johnson, D. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Nowak, D.J. Comprehensive national database of tree effects on air quality and human health in the United States. Environ. Pollut. 2016, 215, 48–57. [Google Scholar] [CrossRef]
- Lin, J.; Kroll, C.N.; Nowak, D.J. An uncertainty framework for i-Tree eco: A comparative study of 15 cities across the United States. Urban For. Urban Green. 2021, 60, 127062. [Google Scholar] [CrossRef]
- Gardens, R. i-Tree Ecosystem Analysis. 2021. Available online: https://www.itreetools.org/documents/696/LWalsh_i-tree_Russell_Gardens_Eco_Written_report.pdf (accessed on 24 June 2024).
- Turner-Skoff, J.B.; Cavender, N. The benefits of trees for livable and sustainable communities. Plants People Planet 2019, 1, 323–335. [Google Scholar] [CrossRef]
- Lanza, K. Stone, B., Jr. Climate adaptation in cities: What trees are suitable for urban heat management? Landsc. Urban Plan. 2016, 153, 74–82. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing vegetation barriers for urban air pollution abatement: A practical review for appropriate plant species selection. Npj Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, S.; Zhao, S. Valuing urban green spaces in mitigating climate change: A city-wide estimate of aboveground carbon stored in urban green spaces of China’s Capital. Glob. Change Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Mahdavi, A.; Mirzaei, M. Estimation of leaf biomass, leaf carbon sequestration and leaf area index of Cercis siliquastrum L. in forest reserve, Ilam. J. Plant Res. (Iran. J. Biol.) 2020, 33, 215–226. [Google Scholar]
- Padmakumar, B.; Sreekanth, N.; Shanthiprabha, V.; Paul, J.; Sreedharan, K.; Augustine, T.; Jayasooryan, K.; Rameshan, M.; Mohan, M.; Ramasamy, E.; et al. Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. iForest-Biogeosciences For. 2018, 11, 534–541. [Google Scholar] [CrossRef]
- Campbell, E.; Marks, R.; Conn, C. Spatial modeling of the biophysical and economic values of ecosystem services in Maryland, USA. Ecosyst. Serv. 2020, 43, 101093. [Google Scholar] [CrossRef]
- Brander, L.M.; Koetse, M.J. The value of urban open space: Meta-analyses of contingent valuation and hedonic pricing results. J. Environ. Manag. 2011, 92, 2763–2773. [Google Scholar] [CrossRef]
- Bockarjova, M.; Botzen, W.J.W.; Koetse, M.J. Economic valuation of green and blue nature in cities: A meta-analysis. Ecol. Econ. 2019, 169, 106480. [Google Scholar] [CrossRef]
- Krstić, B.; Borišev, M.K.; Kastori, R.R.; Orlović, S.S. The importance of urban vegetation in the carbon cycle and oxygen release. Zb. Matice Srp. Za Prir. Nauk. 2023, 21–28. [Google Scholar] [CrossRef]
- Duncan, M.S.; Dasgupta, R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci. 2017, 10, 387–392. [Google Scholar] [CrossRef]
- Riley, C.B.; Gardiner, M.M. Examining the distributional equity of urban tree canopy cover and ecosystem services across United States cities. PLoS ONE 2020, 15, e0228499. [Google Scholar] [CrossRef]
- Khodakarami, L.; Pourmanafi, S.; Soffianian, A.R.; Lotfi, A. Modeling Spatial Distribution of Carbon Sequestration, CO2 Absorption, and O2 Production in an Urban Area: Integrating Ground-Based Data, Remote Sensing Technique, and GWR Model. Earth Space Sci. 2022, 9, e2022EA002261. [Google Scholar] [CrossRef]
- Yakir, D. Oxygen-18 of leaf water: A crossroad for plant-associated isotopic signals. In Stable Isotopes; Garland Science: New York, NY, USA, 2020; pp. 147–168. [Google Scholar]
- Naselli-Flores, L.; Padisák, J. Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia 2022, 850, 2691–2706. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, P.; Song, H.; Zeng, X. Determinants of net primary productivity: Low-carbon development from the perspective of carbon sequestration. Technol. Forecast. Soc. Chang. 2021, 172, 121006. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; De Stefano, C.; Rallo, R.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Takeo, J.; Suehiro, A.; Nakamura, Y. Research on relaxation effect of outdoor warm temperature environment by the shade of a tree: Part 2 in the case of greenway. In Annual Research Meeting Chugoku Chapter; Architectural Institute of Japan Architectural Institute of Japan: Tokyo, Japan, 2009. [Google Scholar]
- Balter, J.; Ganem, C.; Discoli, C. On high-rise residential buildings in an oasis-city: Thermal and energy assessment of different envelope materiality above and below tree canopy. Energy Build. 2016, 113, 61–73. [Google Scholar] [CrossRef]
- Hwang, W.H.; Wiseman, P.E.; Thomas, V.A. Enhancing the energy conservation benefits of shade trees in dense residential developments using an alternative tree placement strategy. Landsc. Urban Plan. 2017, 158, 62–74. [Google Scholar] [CrossRef]
- Maleki, B.A. Shading: Passive cooling and energy conservation in buildings. Int. J. Tech. Phys. Probl. Eng. (IJTPE) 2011, 3, 72–79. [Google Scholar]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2002, 116 (Suppl. 1), S119–S126. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-M.; Li, J.-J.; Zhang, L.; Schwegler, B. Effects of tree shading and transpiration on building cooling energy use. Energy Build. 2018, 159, 382–397. [Google Scholar] [CrossRef]
- Ross, S.; Jean-Philippe, S.; Clatterbuck, W.; Giffen, N.; Herold, J.; Zobel, J. i-Tree Eco Analysis of Landscape Vegetation on Remediated Areas of Oak Ridge National Laboratory. Open J. For. 2020, 10, 412–427. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, P.; Shen, H. Competition intensity affects growing season nutrient dynamics in Korean pine trees and their microhabitat soil in mixed forest. For. Ecol. Manag. 2023, 539, 121018. [Google Scholar] [CrossRef]
- Asl, S.R. Examining the Impact of Nature-Based Solutions on Flood Vulnerability and Loss in Small Urbanizing Regions: A Case Study of the Philadelphia Metropolitan Area; Temple University: Philadelphia, PA, USA, 2023. [Google Scholar]
- Brune, M. Urban Trees under Climate Change. Potential Impacts of Dry Spells and Heat Waves in Three German Regions in the 2050s. 2016, p. 24. Available online: https://www.climate-service-center.de/imperia/md/content/csc/report24.pdf (accessed on 10 June 2024).
Species | Tree Density (tree/ha) | Canopy Cover (m2) | LAI (m2) | Basal Area (m2) | Cseq (Mg/yr) |
---|---|---|---|---|---|
Pinus densiflora Siebold & Zucc. | 59 | 439.4 | 1243.6 | 1.80 | 0.19 |
Pinus rigida Mill. | 40 | 470.1 | 1053.6 | 1.20 | 0.17 |
Junipers chinensis L. | 26 | 23.1 | 69.6 | 0.20 | 0.15 |
Acer palmatum Thunb. | 20 | 190.8 | 989.8 | 0.60 | 0.07 |
Liriodendron tulipifera L. | 16 | 98.9 | 824.8 | 0.30 | 0.13 |
Quercus aliena Blume | 12 | 62.9 | 227.7 | 0.60 | 0.06 |
Zelkova serrata (Thunb.) Makino | 12 | 132.8 | 858.8 | 0.30 | 0.07 |
Chionanthus retusus Lindl. & Paxton | 11 | 20.0 | 70.1 | 0.09 | 0.03 |
Pinus koraiensis Siebold & Zucc. | 10 | 144.9 | 1201.7 | 0.20 | 0.03 |
Quercus acutissima Carruth. | 10 | 272.5 | 1891.7 | 0.60 | 0.22 |
Abies holophylla Maxim. | 7 | 23.3 | 138.2 | 0.10 | 0.01 |
Metasequoia glyptostroboides Hu & Cheng | 7 | 106.8 | 1100.9 | 0.60 | 0.06 |
Acer buergerianum Miq. | 5 | 55.0 | 566.5 | 0.20 | 0.07 |
Ginkgo biloba L. | 5 | 29.4 | 176.1 | 0.10 | 0.01 |
Acer pseudosieboldianum (Pax) Komarov | 5 | 20.1 | 35.9 | 0.20 | 0.06 |
Distylium sp. | 5 | 13.4 | 29.4 | 0.08 | 0.05 |
Quercus variabilis Blume | 5 | 47.9 | 254.5 | 0.10 | 0.05 |
Prunus serrulata Lindl. | 5 | 84.5 | 471.0 | 0.20 | 0.06 |
Prunus sargentii Rehder | 5 | 92.6 | 361.0 | 0.50 | 0.14 |
Lespedeza bicolor Turcz. | 3 | 4.8 | 5.7 | 0.08 | 0.01 |
Magnolia kobus DC. | 3 | 1.5 | 22.7 | 0.08 | 0.03 |
Pinus strobus L. | 3 | .6 | 1.8 | 0.06 | 0.01 |
Prunus mume (Siebold) Siebold & Zucc. | 3 | 22.9 | 68.9 | 0.20 | 0.01 |
Cercis chinensis Bunge | 3 | 4.0 | 5.9 | 0.09 | 0.01 |
Alnus incana (L.) Moench | 2 | 19.2 | 40.3 | 0.08 | 0.01 |
Fraxinus chinensis Roxb. ssp. | 2 | 29.0 | 121.8 | 0.10 | 0.03 |
Ulmus parvifolia Jacq. | 2 | 40.7 | 142.4 | 0.10 | 0.06 |
Species | Oxygen Production (kg) | Carbon Storage (Mg) | Number of Trees | Leaf Area (ha) |
---|---|---|---|---|
Quercus acutissima Carruth. | 460.87 | 8.0 | 10 | 0.48 |
Juniperus chinensis L. | 383.29 | 1.7 | 26 | 0.02 |
Liriodendron tulipitera L. | 318.37 | 2.5 | 16 | 0.22 |
Zelkova serrata (Thunb.) Makino | 157.84 | 1.7 | 12 | 0.19 |
Acer buergerianum Miq. | 155.20 | 2.0 | 5 | 0.15 |
Acer pseudosieboldianum (Pax) Komarov | 154.08 | 1.4 | 5 | 0.01 |
Ulmus parvifolia Jacq. | 143.14 | 0.5 | 2 | 0.03 |
Distylium sp. | 139.97 | 0.4 | 5 | 0.01 |
Prunus serrulata Lindl. | 129.06 | 3.4 | 5 | 0.12 |
Acer palmatum Thunb. | 118.66 | 5.1 | 20 | 0.25 |
Quercus variabilis Blume | 101.84 | 1.5 | 5 | 0.06 |
Metasequoia glyptostroboides Hu & Cheng | 96.41 | 2.5 | 7 | 0.25 |
Chionanthus retusus Lindl. & Paxton | 72.85 | 0.2 | 11 | 0.02 |
Magnolia kobus DC. | 66.83 | 0.2 | 3 | 0.01 |
Fraxinus chinensis Roxb. ssp. | 64.07 | 0.3 | 2 | 0.02 |
Pinus koraiensis Siebold & Zucc. | 52.74 | 1.1 | 10 | 0.32 |
Quercus aliena Blume | 40.81 | 2.0 | 12 | 0.06 |
Ginkgo biloba L. | 32.60 | 0.4 | 5 | 0.05 |
Lespedeza bicolor Turcz. | 26.15 | 0.01 | 3 | 0.00 |
Cercis chinensis Bunge | 12.14 | 0.01 | 3 | 0.00 |
Heating | Cooling | Total | |
---|---|---|---|
MBTU a | 68.409 | N/A | 68.409 |
MWH b | 0.519 | 1.166 | 1.685 |
Carbon avoided (Mg) | 1.597 | 0.178 | 1.775 |
Heating | Cooling | Total | |
---|---|---|---|
MBTU a | 0.44 | N/A | 0.44 |
MWH b | 29.66 | 66.61 | 96.27 |
Carbon avoided (Mg) | 272.53 | 30.41 | 302.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hintural, W.P.; Jeon, H.J.; Kim, S.Y.; Go, S.; Park, B.B. Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco. Forests 2024, 15, 1446. https://doi.org/10.3390/f15081446
Hintural WP, Jeon HJ, Kim SY, Go S, Park BB. Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco. Forests. 2024; 15(8):1446. https://doi.org/10.3390/f15081446
Chicago/Turabian StyleHintural, Wencelito Palis, Hee Jeong Jeon, Seo Young Kim, San Go, and Byung Bae Park. 2024. "Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco" Forests 15, no. 8: 1446. https://doi.org/10.3390/f15081446
APA StyleHintural, W. P., Jeon, H. J., Kim, S. Y., Go, S., & Park, B. B. (2024). Quantifying Regulating Ecosystem Services of Urban Trees: A Case Study of a Green Space at Chungnam National University Using i-Tree Eco. Forests, 15(8), 1446. https://doi.org/10.3390/f15081446