Needle Biomass Turnover Rate in Scots Pine Stands of Different Ages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Selection
2.3. Tree Measurements
2.4. Sample Collection and Laboratory Procedures
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
- The average annual needle litter production of the 20 sampled Scots pine stands was 2008 kg·ha−1·year−1, similar to the values reported for this tree species in other temperate forests in Europe.
- The average needle biomass turnover rate for the sampled Scots pine stands aged 26 to 90 years was 23.4%. This parameter can be used to estimate needle litterfall and may be applicable to conditions corresponding to those of temperate forests in Central and Western Europe.
- We could not support the hypothesis that the needle biomass turnover rate for Scots pine depends on the age of the stand.
- The needle biomass turnover rate showed a positive correlation with crown length and a negative correlation with stand density. However, due to the very weak correlations, further research is needed to confirm these relationships.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson-Teixeira, K.J.; Herrmann, V.; Banbury Morgan, R.; Bond-Lamberty, B.; Cook-Patton, S.C.; Ferson, A.E.; Muller-Landau, H.C.; Wang, M.M.H. Carbon cycling in mature and regrowth forests globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Marland, G. The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 1996, 10, 275–300. [Google Scholar] [CrossRef]
- Ericsson, T. Nutrient cycling in energy forest plantations. Biomass Bioenergy 1994, 6, 115–121. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Jassal, R.S. Long term aboveground litterfall production in boreal jack pine (Pinus banksiana) and black spruce (Picea mariana) stands along the Boreal Forest Transect Case Study in western central Canada. Écoscience 2014, 21, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Westman, C.J.; Berg, B.; Kutsch, W.; Wang, G.Z.; Man, R.; Ilvesniemi, H. Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Glob. Ecol. Biogeogr. 2004, 13, 105–114. [Google Scholar] [CrossRef]
- Moroni, M.T.; Zhu, X. Litter-fall and decomposition in harvested and un-harvested boreal forests. For. Chron. 2012, 88, 613–621. [Google Scholar] [CrossRef]
- Ukonmaanaho, L.; Merilä, P.; Nöjd, P.; Nieminen, T.M. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environ. Res. 2008, 13, 67–91. [Google Scholar]
- Gairola, S.; Rawal, R.S.; Dhar, U. Patterns of litterfall and return of nutrients across anthropogenic disturbance gradients in three subalpine forests of west Himalaya, India. J. For. Res. 2009, 14, 73–80. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Dong, W.; Liu, S. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol. Complex. 2014, 20, 240–247. [Google Scholar] [CrossRef]
- Semwal, R.L.; Maikhuri, R.K.; Rao, K.S.; Sen, K.K.; Saxena, K.G. Leaf litter decomposition and nutrient release patterns of six multipurpose tree species of central Himalaya, India. Biomass Bioenergy 2003, 24, 3–11. [Google Scholar] [CrossRef]
- Peterson, F.S.; Sexton, J.; Lajtha, K. Scaling litter fall in complex terrain: A study from the western Cascades Range, Oregon. For. Ecol. Manag. 2013, 306, 118–127. [Google Scholar] [CrossRef]
- González-Rodríguez, H.; López Hernández, J.; Ramírez-Lozano, R.; Gómez-Meza, M.; Silva, I.; Sarquís-Ramírez, J.; Mora-Olivo, A. Litterfall deposition and nutrient return in pine-oak forests and scrublands in northeastern Mexico. Madera Bosques 2019, 25, e2531514. [Google Scholar] [CrossRef]
- Starr, M.; Saarsalmi, A.; Hokkanen, T.; Merilä, P.; Helmisaari, H.-S. Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. For. Ecol. Manag. 2005, 205, 215–225. [Google Scholar] [CrossRef]
- Brichta, J.; Vacek, S.; Vacek, Z.; Cukor, J.; Mikeska, M.; Bílek, L.; Šimůnek, V.; Gallo, J.; Brabec, P. Importance and potential of Scots pine (Pinus sylvestris L.) in 21st century. Cent. Eur. For. J. 2023, 69, 3–20. [Google Scholar] [CrossRef]
- Oleksyn, J.; Tjoelker, M.G.; Reich, P.B. Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fenn. 1998, 32, 129–140. [Google Scholar] [CrossRef]
- Uri, V.; Kukumägi, M.; Aosaar, J.; Varik, M.; Becker, H.; Aun, K.; Nikopensius, M.; Uri, M.; Buht, M.; Sepaste, A.; et al. Litterfall dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula) stands in Estonia. For. Ecol. Manag. 2022, 520, 120417. [Google Scholar] [CrossRef]
- Finér, L. Variation in the amount and quality of litterfall in a Pinus sylvestris L. stand growing on a bog. For. Ecol. Manag. 1996, 80, 1–11. [Google Scholar] [CrossRef]
- Çömez, A.; Tolunay, D.; Güner, Ş.T. Litterfall and the effects of thinning and seed cutting on carbon input into the soil in Scots pine stands in Turkey. Eur. J. For. Res. 2019, 138, 1–14. [Google Scholar] [CrossRef]
- Blanco, J.A.; Imbert, J.B.; Castillo, F.J. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For. Ecol. Manag. 2006, 237, 342–352. [Google Scholar] [CrossRef]
- Berg, B.; Meentemeyer, V. Litter fall in some European coniferous forests as dependent on climate: A synthesis. Can. J. For. Res. 2001, 31, 292–301. [Google Scholar] [CrossRef]
- Berg, B.; Albrektson, A.; Berg, M.P.; Cortina, J.; Johansson, M.-B.; Gallardo, A.; Madeira, M.; Pausas, J.; Kratz, W.; Vallejo, R.; et al. Amounts of litter fall in some pine forests in a European transect, in particular Scots pine. Ann. For. Sci. 1999, 56, 625–639. [Google Scholar] [CrossRef]
- Hansen, K.; Vesterdal, L.; Schmidt, I.K.; Gundersen, P.; Sevel, L.; Bastrup-Birk, A.; Pedersen, L.B.; Bille-Hansen, J. Litterfall and nutrient return in five tree species in a common garden experiment. For. Ecol. Manag. 2009, 257, 2133–2144. [Google Scholar] [CrossRef]
- Choi, B.; Baek, G.; Kim, H.; Son, Y.; Kim, C. Comparisons of carbon and nitrogen dynamics of litterfall components in adjacent Pinus densiflora and Quercus variabilis stands. J. For. Sci. 2022, 68, 287–297. [Google Scholar] [CrossRef]
- Hennessey, T.C.; Dougherty, P.M.; Cregg, B.M.; Wittwer, R.F. Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density. For. Ecol. Manag. 1992, 51, 329–338. [Google Scholar] [CrossRef]
- Erkan, N.; Comez, A.; Aydin, A.C.; Denli, O.; Erkan, S. Litterfall in relation to stand parameters and climatic factors in Pinus brutia forests in Turkey. Scand. J. For. Res. 2018, 33, 338–346. [Google Scholar] [CrossRef]
- Bueis, T.; Bravo, F.; Pando, V.; Turrión, M.B. Local basal area affects needle litterfall, nutrient concentration, and nutrient release during decomposition in Pinus halepensis Mill. plantations in Spain. Ann. For. Sci. 2018, 75, 21. [Google Scholar] [CrossRef]
- Berg, B.; Laskowski, R. Litter Fall. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2006; Volume 38, pp. 19–71. [Google Scholar]
- Matala, J.; Kellomäki, S.; Nuutinen, T. Litterfall in relation to volume growth of trees: Analysis based on literature. Scand. J. For. Res. 2008, 23, 194–202. [Google Scholar] [CrossRef]
- Lehtonen, A.; Lindholm, M.; Hokkanen, T.; Salminen, H.; Jalkanen, R. Testing dependence between growth and needle litterfall in Scots pine—A case study in northern Finland. Tree Physiol. 2008, 28, 1741–1749. [Google Scholar] [CrossRef]
- Kouki, J.; Hokkanen, T. Long-term needle litterfall of a Scots pine Pinus sylvestris stand: Relation to temperature factors. Oecologia 1992, 89, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Astel, A.; Parzych, A.; Trojanowski, J. Comparison of litterfall and nutrient return in a Vaccinio uliginosi–Betuletum pubescentis and an Empetro nigri–Pinetum forest ecosystem in northern Poland. For. Ecol. Manag. 2009, 257, 2331–2341. [Google Scholar] [CrossRef]
- An, J.Y.; Park, B.B.; Chun, J.H.; Osawa, A. Litterfall production and fine root dynamics in cool-temperate forests. PLoS ONE 2017, 12, e0180126. [Google Scholar] [CrossRef]
- Andivia, E.; Bou, J.; Fernandez, M.; Caritat, A.; Alejano, R.; Vilar, L.; Vazquez-Pique, J. Assessing the relative role of climate on litterfall in Mediterranean cork oak forests. iFor.—Biogeosci. For. 2018, 11, 786–793. [Google Scholar] [CrossRef]
- Muukkonen, P.; Lehtonen, A. Needle and branch biomass turnover rates of Norway spruce (Picea abies). Can. J. For. Res. 2004, 34, 2517–2527. [Google Scholar] [CrossRef]
- Muukkonen, P. Needle biomass turnover rates of Scots pine (Pinus sylvestris L.) derived from the needle-shed dynamics. Trees 2005, 19, 273–279. [Google Scholar] [CrossRef]
- Lehtonen, A. Estimating foliage biomass in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Tree Physiol. 2005, 25, 803–811. [Google Scholar] [CrossRef]
- Tupek, B.; Mäkipää, R.; Heikkinen, J.; Peltoniemi, M.; Ukonmaanaho, L.; Hokkanen, T.; Nöjd, P.; Nevalainen, S.; Lindgren, M.; Lehtonen, A. Foliar turnover rates in Finland—Comparing estimates from needle-cohort and litterfall-biomass methods. Boreal Environ. Res. 2015, 20, 283–304. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth and Yield. From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2009; p. 664. [Google Scholar] [CrossRef]
- Thomas, S.C. Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction. In Size- and Age-Related Changes in Tree Structure and Function; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 33–64. [Google Scholar] [CrossRef]
- Vanninen, P.; Mäkelä, A. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status. Tree Physiol. 2000, 20, 527–533. [Google Scholar] [CrossRef]
- Lee, J.; Tolunay, D.; Makineci, E.; Çömez, A.; Son, Y.M.; Kim, R.; Son, Y. Estimating the age-dependent changes in carbon stocks of Scots pine (Pinus sylvestris L.) stands in Turkey. Ann. For. Sci. 2016, 73, 523–531. [Google Scholar] [CrossRef]
- DGLP. Zasady Hodowli Lasu [Principles of Silviculture]; Państwowe Gospodarstwo Leśne Lasy Państwowe: Warszawa, Poland, 2023.
- Woś, A. Climate of Poland [Klimat Polski]; PWN Scientific Publishers: Warszawa, Poland, 1999; p. 301. [Google Scholar]
- Bruchwald, A. New empirical formula for determination of volume of Scots pine stands. Folia For. Pol. 1996, 38, 5–10. [Google Scholar]
- Socha, J.; Tymińska-Czabańska, L.; Grabska, E.; Orzeł, S. Site index models for main forest-forming tree species in Poland. Forests 2020, 11, 301. [Google Scholar] [CrossRef]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; FAO: Rome, Italy; CIRAD: Montpellier, France, 2012; p. 215. [Google Scholar]
- Socha, J.; Wężyk, P. Empirical formulae to assess the biomass of the above-ground part of pine trees. Electron. J. Pol. Agric. Univ. 2004, 7, #04. [Google Scholar]
- Albrektson, A. Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scand. J. For. Res. 1988, 3, 333–342. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Villagra, P.E.; Rossi, B.E.; Cesca, E.M. Spatial and temporal litterfall heterogeneity generated by woody species in the Central Monte desert. Plant Ecol. 2009, 205, 295–303. [Google Scholar] [CrossRef]
- Liski, J.; Perruchoud, D.; Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manag. 2002, 169, 159–175. [Google Scholar] [CrossRef]
- Oleksyn, J.; Reich, P.B.; Zytkowiak, R.; Karolewski, P.; Tjoelker, M.G. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 2003, 136, 220–235. [Google Scholar] [CrossRef]
- Pensa, M.; Jalkanen, R.; Liblik, V. Variation in Scots pine needle longevity and nutrient conservation in different habitats and latitudes. Can. J. For. Res. 2007, 37, 1599–1604. [Google Scholar] [CrossRef]
- Ågren, G.I.; Hyvönen, R.; Nilsson, T. Are Swedish forest soils sinks or sources for CO2—Model analyses based on forest inventory data. Biogeochemistry 2007, 82, 217–227. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Lukjanova, A. Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Ann. For. Sci. 2003, 60, 195–208. [Google Scholar] [CrossRef]
- Eimil-Fraga, C.; Sánchez-Rodríguez, F.; Álvarez-Rodríguez, E.; Rodríguez-Soalleiro, R. Variability in needle lifespan and foliar biomass along a gradient of soil fertility in maritime pine plantations on acid soils rich in organic matter. For. Ecol. Manag. 2015, 343, 34–41. [Google Scholar] [CrossRef]
- Schoettle, A.W. The interaction between leaf longevity and shoot growth and foliar biomass per shoot in Pinus contorta at two elevations. Tree Physiol. 1990, 7, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Gower, S.T.; Reich, P.B.; Son, Y. Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiol. 1993, 12, 327–345. [Google Scholar] [CrossRef]
Sample Plot | Stand Age (years) | Stand Density (tree·ha−1) | Quadratic Mean Diameter (cm) | Stand Height (m) | Mean Crown Length (m) | Basal Area (m2·ha−1) | Stand Volume (m3·ha−1) | Crown Cover (%) | Site Index (m) |
---|---|---|---|---|---|---|---|---|---|
1 | 26 | 5500 | 8.6 | 9.0 | 3.4 | 31.8 | 37 | 93 | 30.7 |
2 | 27 | 2900 | 10.9 | 7.1 | 3.8 | 22.2 | 78 | 89 | 32.2 |
3 | 32 | 2650 | 11.3 | 12.4 | 3.5 | 26.8 | 150 | 75 | 23.3 |
4 | 41 | 2281 | 13.8 | 15.2 | 4.5 | 34.2 | 246 | 79 | 32.4 |
5 | 42 | 1457 | 14.4 | 13.0 | 4.4 | 24.1 | 145 | 58 | 23.2 |
6 | 45 | 1750 | 15.7 | 15.5 | 4.4 | 33.7 | 244 | 79 | 29.4 |
7 | 46 | 1556 | 13.5 | 13.3 | 5.0 | 31.2 | 224 | 76 | 28.3 |
8 | 47 | 794 | 21.1 | 17.0 | 6.6 | 27.8 | 221 | 67 | 30.6 |
9 | 48 | 1331 | 18.4 | 19.1 | 5.4 | 35.5 | 320 | 83 | 34.0 |
10 | 48 | 1850 | 14.5 | 14.0 | 4.1 | 30.7 | 201 | 67 | 24.7 |
11 | 51 | 2066 | 13.5 | 13.3 | 4.7 | 29.8 | 195 | 85 | 27.0 |
12 | 51 | 862 | 21.3 | 19.7 | 5.6 | 30.9 | 281 | 68 | 31.2 |
13 | 53 | 1375 | 14.9 | 14.4 | 4.5 | 24.1 | 162 | 64 | 25.5 |
14 | 60 | 1750 | 14.8 | 11.3 | 3.9 | 30.3 | 178 | 73 | 22.5 |
15 | 67 | 1387 | 15.6 | 15.6 | 4.4 | 29.1 | 211 | 55 | 26.3 |
16 | 74 | 763 | 21.2 | 18.5 | 5.4 | 26.9 | 230 | 54 | 24.0 |
17 | 80 | 870 | 26.9 | 22.3 | 6.8 | 49.6 | 508 | 71 | 27.7 |
18 | 88 | 681 | 24.1 | 19.0 | 5.8 | 31.0 | 270 | 77 | 29.8 |
19 | 89 | 719 | 25.6 | 21.4 | 6.0 | 37.1 | 366 | 74 | 25.5 |
20 | 90 | 634 | 26.1 | 21.9 | 6.2 | 34.0 | 339 | 61 | 24.8 |
Sample Plot | Stand Age (years) | Aboveground Biomass (kg·ha−1) | Needle Biomass (kg·ha−1) | Needle Mass Fraction (%) | Needle Litterfall (kg·ha−1·yr−1) | Needle Biomass Turnover Rate (%) |
---|---|---|---|---|---|---|
1 | 26 | 109,873 | 14,722 | 13.4 | 2310 | 15.7 |
2 | 27 | 85,011 | 9003 | 10.6 | 2390 | 26.5 |
3 | 32 | 151,008 | 12,715 | 8.4 | 2230 | 17.5 |
4 | 41 | 163,567 | 10,347 | 6.3 | 2400 | 23.2 |
5 | 42 | 104,154 | 8031 | 7.7 | 1610 | 20.0 |
6 | 45 | 161,911 | 9896 | 6.1 | 2400 | 24.3 |
7 | 46 | 155,298 | 8808 | 5.7 | 2070 | 23.5 |
8 | 47 | 166,209 | 6359 | 3.8 | 1640 | 25.8 |
9 | 48 | 194,939 | 8926 | 4.6 | 2410 | 27.0 |
10 | 48 | 139,089 | 9695 | 7.0 | 1610 | 16.6 |
11 | 51 | 136,424 | 9434 | 6.9 | 2610 | 27.7 |
12 | 51 | 172,025 | 7299 | 4.2 | 1910 | 26.2 |
13 | 53 | 110,903 | 7474 | 6.7 | 1870 | 25.0 |
14 | 60 | 128,600 | 10,262 | 8.0 | 1910 | 18.6 |
15 | 67 | 140,008 | 8156 | 5.8 | 1350 | 16.6 |
16 | 74 | 144,814 | 6613 | 4.6 | 1620 | 24.5 |
17 | 80 | 300,744 | 10,268 | 3.4 | 1920 | 18.7 |
18 | 88 | 169,988 | 7208 | 4.2 | 1800 | 25.0 |
19 | 89 | 219,392 | 7987 | 3.6 | 1920 | 24.0 |
20 | 90 | 202,319 | 7210 | 3.6 | 2190 | 30.4 |
Average | 157,814 | 9021 | 6.2 | 2008 | 22.8 |
Variable | Needle Biomass Turnover Rate | |
---|---|---|
r | p | |
Stand age | 0.2456 | 0.2966 |
Quadratic mean diameter | 0.3951 | 0.0847 |
Stand height | 0.3623 | 0.1165 |
Crown length | 0.4953 * | 0.0264 |
Stand density | −0.4557 * | 0.0435 |
Basal area | −0.0864 | 0.7174 |
Stand volume | 0.2548 | 0.2784 |
Crown cover | 0.0557 | 0.8156 |
Aboveground biomass | 0.1204 | 0.6132 |
Needle biomass | −0.6199 ** | 0.0035 |
Needle mass fraction | −0.4625 * | 0.0400 |
Site index | 0.3419 | 0.1401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turski, M.; Korczyński, I.; Łukowski, A.; Węgiel, A. Needle Biomass Turnover Rate in Scots Pine Stands of Different Ages. Forests 2024, 15, 1454. https://doi.org/10.3390/f15081454
Turski M, Korczyński I, Łukowski A, Węgiel A. Needle Biomass Turnover Rate in Scots Pine Stands of Different Ages. Forests. 2024; 15(8):1454. https://doi.org/10.3390/f15081454
Chicago/Turabian StyleTurski, Mieczysław, Ignacy Korczyński, Adrian Łukowski, and Andrzej Węgiel. 2024. "Needle Biomass Turnover Rate in Scots Pine Stands of Different Ages" Forests 15, no. 8: 1454. https://doi.org/10.3390/f15081454
APA StyleTurski, M., Korczyński, I., Łukowski, A., & Węgiel, A. (2024). Needle Biomass Turnover Rate in Scots Pine Stands of Different Ages. Forests, 15(8), 1454. https://doi.org/10.3390/f15081454