Determinants of Deadwood Biomass under the Background of Nitrogen and Water Addition in Warm Temperate Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Quadrat Establishment and Field Methods
2.4. Biotic and Abiotic Factors
2.5. Deadwood Biomass Estimates
2.6. Statistical Analyses
3. Results
3.1. Species Composition and Community Characteristics of Trees
3.2. Drivers of Tree Mortality at Community Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakubowski, A.R.; Jackson, R.D.; Casler, M.D. Can Biomass Yield of Switchgrass be Increased without Increasing Nitrogen Requirements? Crop Sci. 2017, 57, 2024–2031. [Google Scholar] [CrossRef]
- Gu, H.; Zhao, Z.; Lou, J.; Li, L.; Yu, F. Effects of Nitrogen Deposition on Biomass Accumulation and Photosynthetic Physiology in Populus deltoides × P. nigra under Cadmium Stress. J. North East For. Univ. 2019, 47, 19. [Google Scholar]
- Arumugam, M.; Agarwal, A.; Arya, M.C.; Ahmed, Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresource Technol. 2013, 131, 246–249. [Google Scholar] [CrossRef]
- Bai, J.; Chen, F.; Tang, H.; Lou, Y. Effects of simulated water depth and nitrogen addition on functional traits of wetland plants in Sanjiang Plain. Chin. J. Appl. Environ. Biol. 2021, 27, 38–45. [Google Scholar]
- Li, J.; Shi, Y.; Veeranampalayam-Sivakumar, A.-N.; Schachtman, D. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents with Spectral and Morphological Traits Derived from Unmanned Aircraft System. Front. Plant Sci. 2018, 9, 1406. [Google Scholar] [CrossRef] [PubMed]
- Benke, A.P.; Rieps, A.-M.; Wollmann, I.; Petrova, I.; Zikeli, S.; Moller, K. Fertilizer value and nitrogen transfer efficiencies with clover-grass ley biomass based fertilizers. Nutr. Cycl. Agroecosys. 2017, 107, 395–411. [Google Scholar] [CrossRef]
- Rose, T.J.; Kearney, L.J. Biomass Production and Potential Fixed Nitrogen Inputs from Leguminous Cover Crops in Subtropical Avocado Plantations. Agronomy 2019, 9, 70. [Google Scholar] [CrossRef]
- Fu, X.; Yang, S.; Liu, D.; Liu, Y. Effects of Nitrogen Application on Soil Microbial Biomass Carbon and Nitrogen of Intercropping Wheat-Corn in Hetao Irrigation Area. Ecol. Environ. Sci. 2018, 27, 1652–1657. [Google Scholar]
- Chen, J.; Yang, J.; Hu, G.; Hu, X.; Li, Z.; Shen, Z.; Radoze, M.; Fan, M. Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439–1445. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, J.; Li, X.; Zhao, S. Biomass-based quantum dots co-doped with sulfur and nitrogen for highly sensitive detection of thrombin and its inhibitor. New J. Chem. 2019, 43, 11510–11516. [Google Scholar] [CrossRef]
- Di Lorenzo, R.A.; Place, B.K.; VandenBoer, T.C.; Young, C. Composition of Size-Resolved Aged Boreal Fire Aerosols: Brown Carbon, Biomass Burning Tracers, and Reduced Nitrogen. ACS Earth Space Chem. 2018, 2, 278–285. [Google Scholar] [CrossRef]
- Du, Z.; An, H.; Wen, Z.; Wang, B.; Zhang, X. Response of plant community structure and its stability to water and nitrogen addition in desert grassland. Acta Ecol. Sin. 2021, 41, 2359–2371. [Google Scholar]
- Ficken, C.D.; Wright, J.P. Nitrogen uptake and biomass resprouting show contrasting relationships with resource acquisitive and conservative plant traits. J. Veg. Sci. 2019, 30, 65–74. [Google Scholar] [CrossRef]
- Gao, H.; Hong, M.; Huo, L.; Liu, P.; Chang, F. Effect of water and nitrogen interaction on plant species diversity and biomass in a desert grassland. Pratacul. Sci. 2018, 35, 36–45. [Google Scholar]
- Xu, M.; Li, X.; Liu, S.; Jiang, S.; Wang, X. Effects of Enclosure and Water-nitrogen Addition on Species Diversity and Functional Diversity for Severe Degraded Grassland. Ecol. Environ. Sci. 2020, 29, 1730–1737. [Google Scholar]
- Zhao, C.; Zhang, S.; Han, M.; Zhang, X.; Liu, Y.; Li, W.; Chen, C.; Wang, G.; Zhang, H.; Zhao, H. Ambient Electrosynthesis of Ammonia on a Biomass-Derived Nitrogen-Doped Porous Carbon Electrocatalyst: Contribution of Pyridinic Nitrogen. ACS Energy Lett. 2019, 4, 377–383. [Google Scholar] [CrossRef]
- He, K.; Qi, Y.; Huang, Y.; Chen, H.; Sheng, Z.; Xu, X.; Dua, L. Response of aboveground biomass and diversity to nitrogen addition a five-year experiment in semi-arid grassland of Inner Mongolia, China. Sci. Rep. 2016, 6, 31919. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Zhang, J.; Kou, Z.; Liu, X.; Asare, O.; Zhou, H.; Cheng, K.; Zhang, H.; Mai, L.; Pan, M.; et al. Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. ACS Appl. Mater. Interfaces 2016, 8, 29408–29418. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wan, Z. Preparation of Biomass-based Mesoporous Carbon with Higher Nitrogen-/Oxygen-chelating Adsorption for Cu(II) Through Microwave Pre-Pyrolysis. JoVE J. Vis. Exp. 2019, 1, 11–20. [Google Scholar]
- Zhang, J.; Zuo, X. Effects of grazing, increase water, nitrogen addition and their coupling on plant functional traits in the sandy grassland. Acta Ecol. Sin. 2021, 41, 7153–7167. [Google Scholar]
- Zhang, P.; Huang, J.; Mu, L.; Shan, Y.; Ye, R.; Wen, C. Influence of nitrogen and water addition on the primary productivity of Stipa breviflora in a desert steppe under different grazing intensities. Acta Ecol. Sin. 2022, 42, 5458–5470. [Google Scholar]
- Zhang, R.; Zhao, X.; Wang, S.; Zuo, X.; Wang, R. Effect of Extreme Drought on the Community Species Diversity and Aboveground Biomass Carbon and Nitrogen in the Desert-steppe Region in Northern China. Ecol. Environ. Sci. 2019, 28, 715–722. [Google Scholar]
- Zheng, J.; She, W.; Bai, Y.; Xuan, Y.; Zhang, Z.; Qin, Q. Effects of Nitrogen and Water Addition on Leaf Traits of Dominant Plant Species in Artemisia Ordosica Community of the Mu Us Desert. Sci. Silvae Sin. 2018, 54, 164–171. [Google Scholar]
- Schulte-Uebbing, L.F.; Ros, G.H.; de Vries, W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Glob. Change Biol. 2021, 28, 899–917. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, X.; Xie, J.; Lyu, M.; Zheng, Y.; You, Z.; Fan, Y.; Lin, C.; Chen, G.; Chen, Y.; et al. Nitrogen Addition Affects Soil Respiration Primarily through Changes in Microbial Community Structure and Biomass in a Subtropical Natural Forest. Forests 2019, 10, 435. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, H.; Wu, M.; Fu, M. Effects of Spring Thawing Process on Soil Microbial Biomass Carbon and Nitrogen and Soluble Organic Carbon and Nitrogen in Two Temperate Forests. J. Soil Water Conserv. 2018, 32, 204–209. [Google Scholar]
- Lu, G.; Li, X.; Dang, N.; Yao, S.; Li, Z.; Li, X.; De, K.; Zhang, M. Effects of Different Forms and Proportions of Nitrogen on Plant Height and Biomass in Alpine Meadow. Acta Agrestia Sin. 2018, 26, 210–215. [Google Scholar]
- Molla, M.S.H.; Nakasathien, S.; Ali, M.A.; Khan, A.; Alam, M. Influence of nitrogen application on dry biomass allocation and translocation in two maize varieties under short pre-anthesis and prolonged bracketing flowering periods of drought. Arch. Agron. Soil Sci. 2019, 65, 928–944. [Google Scholar] [CrossRef]
- Sosa-Hernandez, J.E.; Rodas-Zuluaga, L.I.; Castillo-Zacarias, C.; Rostro-Alanis, M.; Cruz, R. Light Intensity and Nitrogen Concentration Impact on the Biomass and Phycoerythrin Production by Porphyridium purpureum. Mar. Drugs 2019, 17, 460. [Google Scholar] [CrossRef]
- Thapa, R.; Poffenbarger, H.; Tully, K.L.; Ackroyd, V.; Kramer, M.; Mirsky, S. Biomass Production and Nitrogen Accumulation by Hairy Vetch-Cereal Rye Mixtures: A Meta-Analysis. Agron. J. 2018, 110, 1197–1208. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, H.; Ran, W.; You, L.; Yao, S.; Shen, X.; Tu, F. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries. Appl. Surf. Sci. 2019, 489, 154–164. [Google Scholar] [CrossRef]
- Nemadodzi, L.E.; Araya, H.; Nkomo, M.; Ngezimanz, W.; Mudau, N. Nitrogen, phosphorus, and potassium effects on the physiology and biomass yield of baby spinach (Spinacia oleracea L.). J. Plant Nutr. 2017, 40, 2033–2044. [Google Scholar] [CrossRef]
- Qi, D.; Liu, X.; Wang, G.; Zhu, S. Biomass Changes of Suaeda glauca and Suaeda salsa under Reciprocal Companion and Different Additive Amount of Extraneous Nitrogen: A Field Simulation Experiment. Wetl. Sci. 2019, 17, 119–122. [Google Scholar]
- Zou, K.; Tan, H.; Wang, L.; Qian, Y.; Deng, Y.; Chen, G. Biomass waste-derived nitrogen-rich hierarchical porous carbon offering superior capacitive behavior in an environmentally friendly aqueous MgSO4 electrolyte. J. Colloid Interface Sci. 2019, 537, 475–485. [Google Scholar] [CrossRef]
- Jing, G.; Chen, Z.; Lu, Q.; Zhang, Z.; Zhao, N. Response of grassland community struction to short-term nitrogen addition and water addition with different management practices in the semi-arid loess region. Acta Ecol. Sin. 2021, 41, 8192–8201. [Google Scholar]
- Li, J.; Yang, C.; Zhou, H.; Shao, X. Responses of plant diversity and soil microorganism diversity to water and nitrogen additions in the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2020, 22, e01003. [Google Scholar] [CrossRef]
- Ye, H.; Lu, C.; Lin, Q. Investigation of the spatial heterogeneity of soil microbial biomass carbon and nitrogen under long-term fertilizations in fluvo-aquic soil. PLoS ONE 2019, 14, e0209635. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhao, J.; Huang, F.; Yang, D. Effects of Nitrogen and Water Addition on the Aboveground Biomass of Functional Groups in the Stipa baicalensis Steppe, Inner Mongolia, China. Chin. J. Grassl. 2015, 37, 7–13. [Google Scholar]
- Liu, J.; Pang, Y.; Shen, X. Microwave preparation of biomass activated carbon from pomelo peel and its adsorption of nitrogen dye. Appl. Chem. Ind. 2017, 46, 1–11. [Google Scholar]
- Liu, S.; Han, T.; Wang, Z.; Fei, T.; Zhang, T. Biomass-derived Nitrogen and Phosphorus Co-doped Hierarchical Micro/mesoporous Carbon Materials for High-performance Non-enzymatic H2O2 Sensing. Electroanalysis 2019, 31, 527–534. [Google Scholar] [CrossRef]
- Sha, T.; Liu, J.; Sun, M.; Li, L.; Bai, J.; Hu, Z.; Zhou, M. Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 2019, 200, 300–306. [Google Scholar] [CrossRef]
- Wang, M.; Wen, X.; Wei, X.; Wei, X.; Jiang, Y.; Chai, S.; Tang, H. Effects of nitrogen addition on seedling growth and biomass allocation of three rare tree species in the south of China. Guihaia 2017, 37, 127–133. [Google Scholar]
- Wang, Y.; Li, R.; Zhang, H.; Ju, C.; Pei, W.; Hu, F. Effects of exponential fertilization on biomass and nitrogen accumulation of Carya illinoensis seedlings. Chin. J. Ecol. 2018, 37, 2920–2926. [Google Scholar]
- Wen, P.; Wang, B.; Liu, S.; Wu, L.; Yue, L.; Wu, Y.; Chen, H.; Bai, Y.; Chen, D. Seasonal community stability increased with water addition and shrub removal but reduced with nitrogen addition in semi-arid grassland. Funct. Ecol. 2023, 1, 690–702. [Google Scholar] [CrossRef]
- Wheeler, M.M.; Collins, S.L.; Grimm, N.B.; Cook, E.; Clark, C.; Sponseller, R.; Hall, S. Water and nitrogen shape winter annual plant diversity and community composition in near-urban Sonoran Desert preserves. Ecol. Monogr. 2021, 91, e01450. [Google Scholar] [CrossRef]
DBH-Class | Equations | Adjusted R2 | Standard Error of the Mean | R. Error (%) |
---|---|---|---|---|
DBH ≤ 5 cm | WT = 0.05549 × D2.87776 | 0.91164 | 0.60826 | −0.23 |
WB = 0.01124 × D3.16237 | 0.81933 | 0.30284 | 0.00 | |
WL = 0.01551 × D2.32693 | 0.86555 | 0.08602 | 0.42 | |
WR = 0.02838 × D2.65348 | 0.90495 | 0.22077 | −0.27 | |
5 < DBH ≤ 10 cm | WT = 0.11701 × D2.36933 | 0.88428 | 2.05700 | 0.04 |
WB = 0.01621 × D2.93859 | 0.76490 | 1.79321 | 0.63 | |
WL = 0.04169 × D1.90082 | 0.68922 | 0.44047 | 0.39 | |
WR = 0.04977 × D2.19517 | 0.95730 | 0.32819 | −0.16 | |
10 < DBH ≤ 20 cm | WT = 0.10769 × D2.34891 | 0.77761 | 4.15734 | 4.55 |
WB = 0.00385 × D3.15093 | 0.88184 | 3.81171 | 3.69 | |
WL = 0.00372 × D2.65113 | 0.82848 | 0.96151 | 0.57 | |
WR = 0.03538 × D2.29567 | 0.81687 | 3.46518 | 0.45 | |
DBH > 20 cm | WT = 0.03541 × D2.65146 | 0.97844 | 36.71034 | −2.34 |
WB = 0.00583 × D2.94383 | 0.85965 | 52.85291 | −1.61 | |
WL = 0.07709 × D1.55399 | 0.71000 | 4.94167 | −0.30 | |
WR = 0.01128 × D2.67850 | 0.92962 | 24.5010 | −1.11 |
DBH Ranges | cm | Abundance | DBd |
---|---|---|---|
Very small | 1–10 cm | 201 | 8.2 |
Small | 10–30 cm | 50 | 24.9 |
Medium | 30–50 cm | 30 | 16.3 |
Large | >50 cm | 2 | 13.4 |
Total | 283 | 62.8 |
Species | DBd | |
---|---|---|
1 | Quercus acutissima Carruth. | 11.7 |
2 | Liquidambar formosana Hance | 9.9 |
3 | Quercus variabilis Blume | 7.7 |
4 | Acer buergerianum Miq. | 6.6 |
5 | Celtis sinensis Pers. | 6.3 |
6 | Lindera glauca (Siebold & Zucc.) Blume | 4.9 |
7 | Prunus tomentosa Thunb. | 4.5 |
8 | Diospyros lotus L. | 3.5 |
9 | Vernicia fordii (Hemsl.) Airy Shaw | 3.3 |
10 | Quercus glauca Thunb. | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.; Tang, S.; Li, T.; Fu, L.; Song, X.; Duan, G.; Fu, J.; Ma, L. Determinants of Deadwood Biomass under the Background of Nitrogen and Water Addition in Warm Temperate Forests. Forests 2024, 15, 1464. https://doi.org/10.3390/f15081464
Hong L, Tang S, Li T, Fu L, Song X, Duan G, Fu J, Ma L. Determinants of Deadwood Biomass under the Background of Nitrogen and Water Addition in Warm Temperate Forests. Forests. 2024; 15(8):1464. https://doi.org/10.3390/f15081464
Chicago/Turabian StyleHong, Liang, Shouzheng Tang, Tao Li, Liyong Fu, Xinyu Song, Guangshuang Duan, Jueming Fu, and Lei Ma. 2024. "Determinants of Deadwood Biomass under the Background of Nitrogen and Water Addition in Warm Temperate Forests" Forests 15, no. 8: 1464. https://doi.org/10.3390/f15081464
APA StyleHong, L., Tang, S., Li, T., Fu, L., Song, X., Duan, G., Fu, J., & Ma, L. (2024). Determinants of Deadwood Biomass under the Background of Nitrogen and Water Addition in Warm Temperate Forests. Forests, 15(8), 1464. https://doi.org/10.3390/f15081464