Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Dendrometric Variables of the Inventory
2.3. Forest Biomass
2.4. Sentinel-2 Imagery
2.5. Vegetation Indices
- Normalized Difference Vegetation Index (NDVI)
- Enhanced Vegetation Index (EVI)
- Enhanced Vegetation Index 2 (EVI 2)
- GNDV (Green Normalized Difference Vegetation Index)
- AFRI (Aerosol Free Vegetation Index)
- SAVI (Soil-Adjusted Vegetation Index)
- MSAVI (Modified Soil-Adjusted Vegetation Index)
- MSAVIaf (Modified Soil-Adjusted Vegetation Index aerosol free
- NDRE (Normalized Difference Red Edge Index)
2.6. Correlation Analysis
2.7. Modeling of the Artificial Neural Network (ANN)
3. Results
3.1. Vegetation Inventory
3.2. Correlation Analysis of Biomass and Vegetation Indices
3.3. Biomass Modeling
3.4. Statistical Analysis
3.5. Analyzing the Spatial Distribution of Biomass
4. Discussion
4.1. Forest Biomass and Land Use and Land Cover
4.2. Selection of Independent Variables (Vegetation Indices)
4.3. Training the Neural Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, S.K.R.; Coêlho, A.G.; Lucarini, M.; Durazzo, A.; Arcanjo, D.D.R. The Platonia insignis Mart. as the Promising Brazilian ‘Amazon Gold’: The State-of-the-Art and Prospects. Agriculture 2022, 12, 1827. [Google Scholar] [CrossRef]
- Marques, E.Q.; Marimon-Junior, B.H.; Marimon, B.S.; Matricardi, E.A.T.; Mews, H.A.; Colli, G.R. Redefining the Cerrado–Amazonia transition: Implications for conservation. Biodivers. Conserv. 2020, 29, 1501–1517. [Google Scholar] [CrossRef]
- Ratter, J.A.; Richards, P.W.; Argent, G.; Gifford, D.R. Observations on the vegetation of northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo Expedition area. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1973, 266, 449–492. [Google Scholar]
- Marimon, B.S.; Lima, E.D.S.; Duarte, T.G.; Chieregatto, L.C.; Ratter, J.A. Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest ecotone. Edinb. J. Bot. 2006, 63, 323–341. [Google Scholar] [CrossRef]
- Balch, J.K.; Nepstad, D.C.; Curran, L.M.; Brando, P.M.; Portela, O.; Guilherme, P.; Reuning-Scherer, J.D.; de Carvalho, O. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For. Ecol. Manag. 2011, 261, 68–77. [Google Scholar] [CrossRef]
- MAPBIOMAS. News: In 38 Years, Brazil Has Lost 15% of Its Natural Forests. Available online: https://brasil.mapbiomas.org/en/noticias/ (accessed on 8 March 2024).
- Nogueira, D.S.; Marimon, B.S.; Marimon-Junior, B.H.; Oliveira, E.A.; Morandi, P.; Reis, S.M.; Elias, F.; Neves, E.C.; Feldpausch, T.R.; Lloyd, J.; et al. Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environ. Conserv. 2019, 46, 285–292. [Google Scholar] [CrossRef]
- Brown, S.; Sathaye, J.; Cannell, M.; Kauppi, P.E. Mitigation of carbon emissions to the atmosphere by forest management. Commonw. For. Rev. 1996, 75, 80–91. [Google Scholar]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Silva, F. Sensoriamento Remoto para Detecção de Queimadas no Cerrado Maranhense: Uma Aplicação no Parque Estadual do Mirador. Rev. Geogr. Acad. 2019, 13, 90–105. [Google Scholar]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Fremout, T.; De Vinatea, J.C.; Thomas, E.; Huaman-Zambrano, W.; Salazar-Villegas, M.; la Fuente, D.L.D.; Bernardino, P.N.; Atkinson, R.; Csaplovics, E.; Muys, B. Site-specific scaling of remote sensing-based estimates of woody cover and aboveground biomass for mapping long-term tropical dry forest degradation status. Remote Sens. Environ. 2022, 276, 113040. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Patel, N.R.; Pandya, M.R.; Patel, N.K. Estimation of Biomass of Wheat Using Vegetation Indices. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 288–296. [Google Scholar]
- Song, X.; Li, L.; Zhuo, W.; Wu, C. Estimating forest aboveground biomass by combining Landsat and MODIS data: A case study for the Sierra National Forest, California, USA. Remote Sens. 2014, 6, 2107–2136. [Google Scholar]
- Chen, X.; Yang, K.; Ma, J.; Jiang, K.; Gu, X.; Peng, L. Aboveground biomass inversion based on Object-Oriented Classification and Pearson-mRMR-Machine Learning Model. Remote Sens. 2024, 16, 1537. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, X.; Huang, X.; Xu, J.; Li, S.; Cui, G.; Huang, H. Toward a more robust estimation of forest biomass Carbon stock and Carbon Sink in mountainous region: A case study in Tibet, China. Remote Sens. 2024, 16, 1481. [Google Scholar] [CrossRef]
- Costa, A.C.; Pinto, J.R.; Miguel, E.P.; Xavier, G.D.; Marimon, B.H.; Aparecido Trondoli Matricardi, E. Artificial intelligence tools and vegetation indices combined to estimate aboveground biomass in tropical forests. J. Appl. Remote Sens. 2023, 17, 024512. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of remote sensing-based methods for forest aboveground biomass estimation: Progress, challenges, and prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Novo, E.; Ferreira, L.G.; Barbosa, C.; Carvalho, C.; Sano, E.E.; Shimabukuro, Y.E.; Miura, T. Advanced remote sensing techniques for global changes and Amazon ecosystem functioning studies. Acta Amaz. 2005, 35, 259–272. [Google Scholar] [CrossRef]
- Bertier, F.; Silva, R.; Nora, G. Fire in the Woods, Danger for Real? Community Considerations About Using Fire in the Cerrado of Mato Grosso. Rev. Rencima Edição Espec. 2020, 11, 144–157. [Google Scholar]
- Ivanauskas, M.M.; Ivanauskas, N.M.; Monteiro, R.; Rodrigues, R.R. Composição florística de trechos florestais na borda sul- amazônica. Acta Amaz. 2004, 34, 399–413. [Google Scholar] [CrossRef]
- BRASIL Ministério das Minas e Energia, Secretaria Geral. Projeto RADAMBRASIL—Levantamento dos Recursos Naturais; Folha SB.21—Araguaia e Folha SC-22—Tocantins, geologia, geomorfologia, pedologia, vegetação e uso potencial da terra; BRASIL Ministério das Minas e Energia: Rio de Janeiro, RJ, Brazil, 1974; p. 552.
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Brasil, L.S.; Batista, J.D.; Giehl NF, D.S.; Valadão MB, X.; Santos JO, D.; Dias-Silva, K. Integridade ambiental e composição de espécies de libelinhas em riachos amazônicos na região do “arco do desmatamento”, Mato Grosso, Brasil. Acta Limnol. Bras. 2014, 26, 278–287. [Google Scholar] [CrossRef]
- IBGE—Brazilian Institute of Geography and Stastistic. Downloads—Geociências. Available online: https://www.ibge.gov.br/geociencias/downloads-geociencias.html (accessed on 13 April 2023).
- Baker, T.R.; Phillips, O.L.; Malhi, Y.; Almeida, S.; Arroyo, L.; Di Fiore, A.; Erwin, T.; Killeen, T.J.; Laurance, S.G.; Laurance, W.F.; et al. Variation in wood density determines spatial patterns in Amazonian Forest biomass. Glob. Change Biol. 2004, 10, 545–562. [Google Scholar] [CrossRef]
- Peacock, J.; Baker, T.R.; Lewis, S.L.; Lopez-Gonzalez, G.; Phillips, O.L. The RAINFOR database: Monitoring forest biomass and dynamics. J. Veg. Sci. 2007, 18, 535–542. Available online: https://www.jstor.org/stable/4499259 (accessed on 5 February 2024). [CrossRef]
- Chave, J.; Muller-Landau, H.C.; Baker, T.R.; Easdale, T.A.; Ter Steege, H.; Webb, C.O. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 2006, 16, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Rezende, A.; Vale, A.D.; Sanquetta, C.R.; Figueiredo Filho, A.; Felfili, J.M. Comparação de modelos matemáticos para estimativa do volume biomassa e estoque de carbono da vegetação lenhosa de um cerrado sensu stricto em Brasília, D.F. Sci. For. 2006, 71, 65–76. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef] [PubMed]
- ESA—European Space Agency. Sentinel Overview. Available online: https://sentinel.esa.int/web/sentinel/missions (accessed on 3 January 2023).
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ETRS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium., Washington, DC, USA, 10–14 December 1973; Paper A-20, pp. 309–317. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective 2/e; Pearson Education India: Bangalore, India, 2009. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Yan, E.; Wang, G.; Lin, H.; Xia, C.; Sun, H. Phenology-based classification of vegetation cover types in Northeast China using MODIS NDVI and EVI time series. Rev. Int. J. Remote Sens. 2015, 36, 489–512. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Karnieli, A.; Bayasgalan, M.; Bayarjargal, Y.; Agam, N.; Khudulmur, S.; Tucker, C.J.; Zhang, X. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2001, 14, 2833–2845. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil-adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Robert, P.C., Ed.; ASA: Madison, WI, USA, 2000. [Google Scholar]
- Kang, Y.; Hu, X.; Meng, Q.; Zou, Y.; Zhang, L.; Liu, M.; Zhao, M. Land cover and crop classification based on red edge indices features of GF-6 WFV time series data. Remote Sens. 2021, 13, 4522. [Google Scholar] [CrossRef]
- STATSOFT. Comparativo de Versões do Software Statistica. Available online: http://www.statsoft.com.br/ftp/COMP_VERS_STATISTICA.pdf (accessed on 20 March 2023).
- Carrijo, J.V.N.; Miguel, E.; Vale, A.T.D.; Matricardi, E.; Monteiro, T.; Rezende, A.; Inkotte, J. Artificial intelligence associated with satellite data in predicting energy potential in the Brazilian savanna woodland area. Iforest-Biogeosci. For. 2020, 13, 48. [Google Scholar] [CrossRef]
- Guerrout, E.H.; Ait-Aoudia, S.; Michelucci, D.; Mahiou, R. Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation. J. Exp. Theor. Artif. Intell. 2018, 30, n415–n427. [Google Scholar] [CrossRef]
- Borsato, D.; Moreira, I.; Nobrega, M.M.; Moreira, M.B.; Dias, G.H.; Ferreira da Silva, R.S.D.S.; Bona, E. Aplicação de redes neurais artificiais na identificação de gasolinas adulteradas comercializadas na região de Londrina–Paraná. Química Nova 2009, 32, 2328–2332. [Google Scholar] [CrossRef]
- Shiblee, M.; Chandra, B.; Kalra, P. Learning of geometric mean neuron model using resilient propagation algorithm. Expert Syst. Appl. 2010, 37, 7449–7455. [Google Scholar] [CrossRef]
- Fischer, D.R.; Paixão, J.L.; Sausen, J.P.; Abaide, A.R. Previsão de Curto Prazo para Geração Fotovoltaica a partir de Dados Meteorológicos via RNA. In Proceedings of the Congresso Brasileiro de Automática—CBA, Porto Alegre, Brazil, 23–26 November 2020; Volume 2. [Google Scholar]
- Binoti, M.L.M.S.; Binoti, D.H.B.; Leite, H.G. Aplicação de redes neurais artificiais para estimação da altura de povoamentos equiâneos de eucalipto. Rev. Árvore 2013, 37, 639–645. [Google Scholar] [CrossRef]
- Bustamante, M.C.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.O.; Aragão, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Change Biol. 2016, 22, 92–109. [Google Scholar] [CrossRef]
- Egrioglu, E.A.; Ufuk, Y.B.; Cagdas, H.A.; Eren, B. Recurrent Multiplicative Neuron Model Artificial Neural Network for Non-Linear Time Series Forecasting. Procedia Soc. Behav. Sci. 2014, 109, 1094–1100. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W. Assessment of forest disturbances by seletive logging and forest fires in the Brazilian Amazon using Landsat data. Int. J. Remote Sens. 2013, 34, 1057–1086. [Google Scholar] [CrossRef]
- Santos, T. Os impactos do desmatamento e queimadas de origem antrópica sobre o clima da Amazônia brasileira: Um estudo de revisão. Rev. Geográfica Acadêmica 2017, 11, 157–181. [Google Scholar]
- Scremin, A.P.; Kemerich, P.D.C. Impactos ambientais em propriedade rural de atividade mista. Disc. Sci. Sér Ciências Nat. Tecnol. Santa Maria 2010, 11, 126–148. [Google Scholar]
- Silva, F.L.; Oliveira, F.D.A.; Amin, M.M.; Beltrão, N.E.S.; Sales de Andrade, V.M. Dimensões do Uso e Cobertura da Terra nas Mesorregiões do Estado do Pará. Espacios 2016, 37, 5. [Google Scholar]
- Merzlyak, M.N.; Chivkunova, O.B.; Solovchenko, A.E.; Naqvi, K.R. Absorção de luz por antocianinas em folhas juvenis, estressadas e senescentes. J. Exp. Bot. 2008, 59, 3903–3911. [Google Scholar] [CrossRef] [PubMed]
- Bronson, K.F.; Chua, T.T.; Booker, J.D.; Keeling, J.W.; Lascano, R.J. In-season nitrogen status sensing in irrigated cotton: II. Leaf nitrogen and biomass. Soil Sci. Soc. Am. J. 2003, 67, 1439–1448. [Google Scholar] [CrossRef]
- Barrachina, M.; Cristóbal, J.; Tulla, A. Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 184–192. [Google Scholar] [CrossRef]
- Huang, J.; Chen, D.; Cosh, M.H. Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. Int. J. Remote Sens. 2009, 30, 2075–2104. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Bollas, N.; Kokinou, E.; Polychronos, V. Comparison of sentinel-2 and UAV multispectral data for use in precision agriculture: An application from northern Greece. Drones 2021, 5, 35. [Google Scholar] [CrossRef]
- Güner, Ş.T.; Diamantopoulou, M.J.; Poudel, K.P.; Çömez, A.; Özçelik, R. Employing artificial neural networks for effective biomass prediction: An alternative approach. Comput. Electron. Agric. 2022, 192, 106596. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning. Remote Sens. 2019, 11, 1503. [Google Scholar] [CrossRef]
ID Sentinel-2A, Sensor MSI | Data |
---|---|
20160807T135257_T22LBL | 7 August 2016 |
20180802T135108_T22LCL | 2 August 2018 |
20200801T135115_T22LBL | 1 August 2020 |
20200803T134216_T22LCL | 3 August 2020 |
20210813T134211_T22LDL | 13 August 2021 |
Cerrado Plots | Forest Plots | ||||||||
---|---|---|---|---|---|---|---|---|---|
Statistics | DBH | Ht | WD | AGB | Statistics | DBH | Ht | WD | AGB |
Minimum | 10.0 | 4.0 | 0.41 | 14.35 | Minimum | 10.0 | 10.0 | 0.20 | 66.56 |
Maximum | 39.0 | 13.0 | 0.84 | 23.49 | Maximum | 93.2 | 30.0 | 1.09 | 331.38 |
Mean | 13.81 | 6.64 | 0.66 | 18.38 | Mean | 19.12 | 13.99 | 0.67 | 146.86 |
Variance | 15.38 | 1.65 | 0.01 | 10.97 | Variance | 105.19 | 17.5 | 0.019 | 2572.76 |
Deviation | 3.92 | 1.28 | 0.10 | 3.31 | Deviation | 10.25 | 4.18 | 0.14 | 50.72 |
CV (%) | 28.4 | 19.33 | 15.43 | 18.02 | CV (%) | 53.64 | 29.9 | 20.4 | 34.54 |
Vegetation Indices | Average |
---|---|
AFRI | 0.564 |
EVI | 0.571 |
GNDVI | 0.569 |
EVI2 | 0.392 |
MSAVIaf | 0.324 |
MSAVI | 0.545 |
NDRE | 0.515 |
NDVI | 0.697 |
SAVI | 0.408 |
AFRI | EVI | EVI2 | GNDVI | MSAVIaf | MSAVI | NDRE | NDVI | SAVI | Biomass | |
---|---|---|---|---|---|---|---|---|---|---|
AFRI | 1 | |||||||||
EVI | 0.887 ** | 1 | ||||||||
EVI2 | 0.875 ** | 0.963 ** | 1 | |||||||
GNDVI | 0.897 ** | 0.902 ** | 0.951 ** | 1 | ||||||
MSAVIaf | 0.948 ** | 0.963 ** | 0.969 ** | 0.950 ** | 1 | |||||
MSAVI | 0.868 ** | 0.975 ** | 0.933 ** | 0.866 ** | 0.942 ** | 1 | ||||
NDRE | 0.954 ** | 0.853 ** | 0.882 ** | 0.921 ** | 0.922 ** | 0.825 ** | 1 | |||
NDVI | 0.972 ** | 0.909 ** | 0.902 ** | 0.907 ** | 0.943 ** | 0.887 ** | 0.971 ** | 1 | ||
SAVI | 0.831 ** | 0.853 ** | 0.889 ** | 0.863 ** | 0.907 ** | 0.850 ** | 0.786 ** | 0.820 ** | 1 | |
Biomass | 0.469 * | 0.443 * | 0.532 ** | 0.621 ** | 0.555 ** | 0.404 * | 0.509 ** | 0.466 * | 0.594 ** | 1 |
ANN | Architecture | Activation | Activation | Adjustment | Validation | Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nº of Cycles | RMSE% | R | RMSE% | R | RMSE% | R | ||||||
Hidden | Output | |||||||||||
1 | MLP 3-12-1 | 860 | Tang | Tang | 18.09 | 0.93 | 15.76 | 0.94 | 15.92 | 0.94 | ||
2 | MLP 3-11-1 | 1630 | Logistic | Exponential | 19.44 | 0.92 | 16.09 | 0.93 | 16.18 | 0.93 | ||
3 | MLP 3-8-1 | 910 | Logistic | Identity | 19.77 | 0.92 | 16.41 | 0.93 | 16.92 | 0.93 | ||
4 | MLP 3-13-1 | 950 | Tang | Exponential | 19.53 | 0.92 | 16.62 | 0.93 | 16.91 | 0.93 | ||
5 | MLP 3-11-1 | 670 | Logistic | Identity | 20.19 | 0.91 | 17.91 | 0.91 | 17.12 | 0.91 | ||
ANN | Predictor variables | Neurons per layer | Adjust | |||||||||
Input | Hidden | Output | TI | SI | AI | Algorithm | ||||||
1 | AFRI, EVI, GNDVI | 3 | 12 | 1 | 0.08 | 0.08 | 0.09 | BFGS | ||||
2 | AFRI, EVI, GNDVI | 3 | 9 | 1 | 0.10 | 0.11 | 0.12 | BFGS | ||||
3 | AFRI, EVI, GNDVI | 3 | 5 | 1 | 0.10 | 0.12 | 0.13 | BFGS | ||||
4 | AFRI, EVI, GNDVI | 3 | 13 | 1 | 0.11 | 0.13 | 0.10 | BFGS | ||||
5 | AFRI, EVI, GNDVI | 3 | 7 | 1 | 0.13 | 0.15 | 0.17 | BFGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faria, L.D.d.; Matricardi, E.A.T.; Marimon, B.S.; Miguel, E.P.; Junior, B.H.M.; Oliveira, E.A.d.; Prestes, N.C.C.d.S.; Carvalho, O.L.F.d. Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region. Forests 2024, 15, 1599. https://doi.org/10.3390/f15091599
Faria LDd, Matricardi EAT, Marimon BS, Miguel EP, Junior BHM, Oliveira EAd, Prestes NCCdS, Carvalho OLFd. Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region. Forests. 2024; 15(9):1599. https://doi.org/10.3390/f15091599
Chicago/Turabian StyleFaria, Luana Duarte de, Eraldo Aparecido Trondoli Matricardi, Beatriz Schwantes Marimon, Eder Pereira Miguel, Ben Hur Marimon Junior, Edmar Almeida de Oliveira, Nayane Cristina Candido dos Santos Prestes, and Osmar Luiz Ferreira de Carvalho. 2024. "Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region" Forests 15, no. 9: 1599. https://doi.org/10.3390/f15091599
APA StyleFaria, L. D. d., Matricardi, E. A. T., Marimon, B. S., Miguel, E. P., Junior, B. H. M., Oliveira, E. A. d., Prestes, N. C. C. d. S., & Carvalho, O. L. F. d. (2024). Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region. Forests, 15(9), 1599. https://doi.org/10.3390/f15091599