Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Research Data
3. Methods
3.1. Geometric Correction of UAV Imagery
3.2. Forest Recognition Based on Deep Learning
3.3. Forest Change Detection and Analysis of Change Areas
3.4. Accuracy Evaluation
4. Results and Analysis
4.1. Evaluation of the Geometric Correction Results of UAV Imagery
4.1.1. Correction Results for the Low-Altitude Flight Data
4.1.2. Correction Results for High-Altitude Flight Data
4.2. Forest Recognition Results Based on Deep Learning
4.3. Forest Change Detection and Change Area Analysis Results
4.3.1. Analysis of Forest Change Areas in Low-Altitude Images
- (1)
- Area Size Discrimination
- (2)
- ABDA
4.3.2. Analysis of Forest Change Areas from High-Altitude Aerial Images
- (1)
- Area Discrimination Method
- (2)
- ABDA
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richards, K.R.; Stokes, C. A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research. Clim. Chang. 2004, 63, 1–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wen, Y. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization. J. Beijing For. Univ. 2022, 44, 38–47. [Google Scholar]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future Ecosystem Services from European Mountain Forests under Climate Change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Hao, X.; Ouyang, W.; Zhang, K.; Wan, X.; Cui, X.; Zhu, W. Enhanced Release, Export, and Transport of Diffuse Nutrients from Litter in Forested Watersheds with Climate Warming. Sci. Total Environ. 2022, 837, 155897. [Google Scholar] [CrossRef]
- Njana, M.A.; Mbilinyi, B.; Eliakimu, Z. The Role of Forests in the Mitigation of Global Climate Change: Emprical Evidence from Tanzania. Environ. Chall. 2021, 4, 100170. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.; Lei, Y.; Xue, W.; Yan, G.; Liu, X.; Cai, B.; Tong, D.; Wang, J. Air Quality Benefits of Achieving Carbon Neutrality in China. Sci. Total Environ. 2021, 795, 148784. [Google Scholar] [CrossRef]
- Advances in Forest Inventory for Sustainable Forest Management and Biodiversity Monitoring|SpringerLink. Available online: https://link.springer.com/book/10.1007/978-94-017-0649-0 (accessed on 20 June 2024).
- Desclée, B.; Bogaert, P.; Defourny, P. Forest Change Detection by Statistical Object-Based Method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Mani, J.K.; Varghese, A.O. Remote Sensing and GIS in Agriculture and Forest Resource Monitoring. In Geospatial Technologies in Land Resources Mapping, Monitoring and Management; Reddy, G.P.O., Singh, S.K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 377–400. ISBN 978-3-319-78711-4. [Google Scholar]
- Shakya, A.K.; Ramola, A.; Vidyarthi, A. Exploration of Pixel-Based and Object-Based Change Detection Techniques by Analyzing ALOS PALSAR and LANDSAT Data. In Smart and Sustainable Intelligent Systems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 229–244. ISBN 978-1-119-75213-4. [Google Scholar]
- Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Object-Based Change Detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Ya’acob, N.; Azize, A.B.M.; Mahmon, N.A.; Yusof, A.L.; Azmi, N.F.; Mustafa, N. Temporal Forest Change Detection and Forest Health Assessment Using Remote Sensing. IOP Conf. Ser. Earth Environ. Sci. 2014, 19, 012017. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J. Study on Characteristics of Land Cover Change Using MODIS NDVI Time Series. J. Zhejiang Univ. Agric. Life Sci. 2009, 35, 105–110. [Google Scholar]
- Gyamfi-Ampadu, E.; Gebreslasie, M.; Mendoza-Ponce, A. Mapping Natural Forest Cover Using Satellite Imagery of Nkandla Forest Reserve, KwaZulu-Natal, South Africa. Remote Sens. Appl. Soc. Environ. 2020, 18, 100302. [Google Scholar] [CrossRef]
- Bergamasco, L.; Martinatti, L.; Bovolo, F.; Bruzzone, L. An Unsupervised Change Detection Technique Based on a Super-Resolution Convolutional Autoencoder. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3337–3340. [Google Scholar]
- Li, Y.; Peng, C.; Chen, Y.; Jiao, L.; Zhou, L.; Shang, R. A Deep Learning Method for Change Detection in Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5751–5763. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S. Transferred Deep Learning-Based Change Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6960–6973. [Google Scholar] [CrossRef]
- Sharifi, A.; Felegari, S.; Tariq, A.; Siddiqui, S. Forest Cover Change Detection Across Recent Three Decades in Persian Oak Forests Using Convolutional Neural Network. In Climate Impacts on Sustainable Natural Resource Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 57–73. ISBN 978-1-119-79340-3. [Google Scholar]
- de Bem, P.P.; de Carvalho Junior, O.A.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef]
- Isaienkov, K.; Yushchuk, M.; Khramtsov, V.; Seliverstov, O. Deep Learning for Regular Change Detection in Ukrainian Forest Ecosystem With Sentinel-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 364–376. [Google Scholar] [CrossRef]
- Kalinaki, K.; Malik, O.A.; Ching Lai, D.T. FCD-AttResU-Net: An Improved Forest Change Detection in Sentinel-2 Satellite Images Using Attention Residual U-Net. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103453. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Technical Regulations for Investigation and Monitoring of Forests, Grasslands, and Wetlands in China in 2022; National Forestry and Grassland Administration: Beijing, China, 2022. [Google Scholar]
- Abdollahnejad, A.; Panagiotidis, D.; Bílek, L. An Integrated GIS and Remote Sensing Approach for Monitoring Harvested Areas from Very High-Resolution, Low-Cost Satellite Images. Remote Sens. 2019, 11, 2539. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent Advances in Forest Insect Pests and Diseases Monitoring Using UAV-Based Data: A Systematic Review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Xu, Z. Study on Subtropical Forest Monitoring Method Based on UAV Remote Sensing and AI Algorithm. PhD. Thesis, Jiangxi Agricultural University, Nanchang, China, 2022. [Google Scholar]
- Horcher, A.; Visser, R. Unmanned Aerial Vehicles: Applications for Natural Resource Management and Monitoring. In Proceedings of the 2004 Council on Forest Engineering (COFE) Conference Proceedings: “Machines and People, The Interface”, Hot Springs, AR, Canada, 27–30 April 2004. [Google Scholar]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Wallace, L.O.; Lucieer, A.; Watson, C.S. ASSESSING THE FEASIBILITY OF UAV-BASED LIDAR FOR HIGH RESOLUTION FOREST CHANGE DETECTION. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B7, 499–504. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping Forest Tree Species in High Resolution UAV-Based RGB-Imagery by Means of Convolutional Neural Networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Pyo, J.; Han, K.; Cho, Y.; Kim, D.; Jin, D. Generalization of U-Net Semantic Segmentation for Forest Change Detection in South Korea Using Airborne Imagery. Forests 2022, 13, 2170. [Google Scholar] [CrossRef]
- Wan, Q.; Luo, L.; Chen, J.; Wang, Y.; Guo, D. Drone Image Stitching Using Local Least Square Alignment. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Virtual Symposium, 26 September–2 October 2020; pp. 1849–1852. [Google Scholar]
- Wan, Q.; Chen, J.; Luo, L.; Gong, W.; Wei, L. Drone Image Stitching Using Local Mesh-Based Bundle Adjustment and Shape-Preserving Transform. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7027–7037. Available online: https://ieeexplore.ieee.org/abstract/document/9211752 (accessed on 11 May 2024). [CrossRef]
- Dhana Lakshmi, M.; Mirunalini, P.; Priyadharsini, R.; Mirnalinee, T.T. Review of Feature Extraction and Matching Methods for Drone Image Stitching. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), Palladam, India, 16–17 May 2018; Pandian, D., Fernando, X., Baig, Z., Shi, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 595–602. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- A Study on Near-Real-Time Geometric Correction System of Drones Image. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018. Available online: https://ieeexplore.ieee.org/abstract/document/8343087/authors#authors (accessed on 11 May 2024).
- Peña-Haro, S.; Ljubičić, R.; Strelnikova, D. Chapter 8—Geometric Correction and Stabilization of Images Collected by UASs in River Monitoring. In Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments; Manfreda, S., Ben, D.E., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2023; pp. 203–230. ISBN 978-0-323-85283-8. [Google Scholar]
- Jakob, S.; Zimmermann, R.; Gloaguen, R. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data. Remote Sens. 2017, 9, 88. [Google Scholar] [CrossRef]
- Belloni, V.; Fugazza, D.; Di Rita, M. UAV-Based Glacier Monitoring: GNSS Kinematic Track Post-Processing and Direct Georeferencing for Accurate Reconstructions in Challenging Environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B1-2022, 367–373. [Google Scholar] [CrossRef]
- Cramer, M.; Przybilla, H.-J.; Zurhorst, A. UAV Cameras: Overview and Geometric Calibration Benchmark. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2-W6, 85–92. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, Y.; Ran, H. Aerial Image Stitching Method Based on Feature Transfer and Tile Image. In Proceedings of the 2023 6th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–29 May 2023; pp. 830–835. [Google Scholar]
- Qiu-Hui, X.U. A Method of Geometric Correction and Mosa-Ic of Unmanned Aerial Vehicle Remote Sensing Image With-out Ground Control Points. Doctoral Dissertation, Nanjing University, Nanjing, China, 2013. [Google Scholar]
Predicted Negative | Predicted Positive | |
---|---|---|
Actual Negative | TN | FP |
Actual Positive | FN | TP |
Model | Accuracy | Precision | Recall | F1 Score | Kappa |
---|---|---|---|---|---|
U-Net | 0.97077 | 0.95098 | 0.93851 | 0.92991 | 0.73389 |
ResUNet | 0.86277 | 0.89231 | 0.94808 | 0.89923 | 0.64733 |
TernausNet | 0.99292 | 0.97822 | 0.97432 | 0.97276 | 0.89808 |
Threshold (m2) | 250 | 325 | 375 | 500 |
---|---|---|---|---|
Accuracy | 0.58 | 0.67 | 0.65 | 0.65 |
Precision | 0.82 | 0.77 | 0.68 | 0.55 |
Recall | 0.41 | 0.47 | 0.45 | 0.44 |
F1 Score | 0.55 | 0.59 | 0.55 | 0.49 |
Kappa | 0.23 | 0.33 | 0.28 | 0.23 |
Threshold (m) | 6 | 7.5 | 8 | 8.5 |
---|---|---|---|---|
Accuracy | 0.58 | 0.67 | 0.65 | 0.65 |
Precision | 0.82 | 0.77 | 0.68 | 0.55 |
Recall | 0.41 | 0.47 | 0.45 | 0.44 |
F1 Score | 0.55 | 0.59 | 0.55 | 0.49 |
Kappa | 0.23 | 0.33 | 0.28 | 0.23 |
Threshold (m2) | 250 | 375 | 500 |
---|---|---|---|
Accuracy | 0.69 | 0.74 | 0.74 |
Precision | 0.91 | 0.84 | 0.69 |
Recall | 0.48 | 0.53 | 0.54 |
F1 Score | 0.63 | 0.65 | 0.60 |
Kappa | 0.40 | 0.46 | 0.41 |
Threshold (m) | 7 | 7.5 | 8 | 8.5 |
---|---|---|---|---|
Accuracy | 0.93 | 0.95 | 0.95 | 0.94 |
Precision | 0.94 | 0.94 | 0.91 | 0.84 |
Recall | 0.83 | 0.88 | 0.94 | 0.93 |
F1 Score | 0.88 | 0.91 | 0.92 | 0.89 |
Kappa | 0.83 | 0.87 | 0.89 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Zang, Z.; Tang, X.; Zhang, M.; Cao, P.; Tang, S.; Wang, X. Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence. Forests 2024, 15, 1676. https://doi.org/10.3390/f15091676
Xiang J, Zang Z, Tang X, Zhang M, Cao P, Tang S, Wang X. Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence. Forests. 2024; 15(9):1676. https://doi.org/10.3390/f15091676
Chicago/Turabian StyleXiang, Jiahong, Zhuo Zang, Xian Tang, Meng Zhang, Panlin Cao, Shu Tang, and Xu Wang. 2024. "Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence" Forests 15, no. 9: 1676. https://doi.org/10.3390/f15091676
APA StyleXiang, J., Zang, Z., Tang, X., Zhang, M., Cao, P., Tang, S., & Wang, X. (2024). Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence. Forests, 15(9), 1676. https://doi.org/10.3390/f15091676