Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution Data
2.2. Selection and Processing of Environmental Factors
2.3. Construction of the Integrated Model
2.4. Changes in Ecological Niches
2.5. Field Survey Sample Plot Settings
2.6. Analysis of Significant Values
2.7. Diversity Analysis
3. Results
3.1. Evaluation of Model Accuracy
3.2. Potential Geographic Distribution of T. sinensis under Current Climatic Conditions
3.3. Predicting the Impact of Climate Change on the Potential Geographic Distribution of T. sinensis
3.4. Analysis of Ecological Niche Changes in Future Periods
3.5. Community Characteristics of T. sinensis under Different Habitability Zones
4. Discussion
4.1. Importance of Species Distribution Modeling
4.2. Effect of Environmental Data and Species Distribution Records on Model Accuracy
4.3. Impact of Climate Change on T. sinensis
4.4. Reasons for Differences in Community Diversity of T. sinensis in Different Habitat Areas
4.5. Conservation Strategies for T. sinensis Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.K. Global low-carbon transition and China’s response strategies. Adv. Clim. Chang. Res. 2016, 7, 204. [Google Scholar] [CrossRef]
- Rajkhowa, S.; Sarma, J. Climate change and flood risk, global climate change. Glob. Clim. Chang. 2021, 321–339. [Google Scholar] [CrossRef]
- Termaat, T.; Van Strien, A.J.; Van Grunsven, R.H.A.; De Knijf, G.; Bjelke, U.; Burbach, K.; Conze, K.-J.; Goffart, P.; Hepper, D.; Kalkman, V.J.; et al. Distribution trends of European dragonflies under climate change. Divers. Distrib. 2019, 25, 936. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.; Sun, J.; Li, T.; Wang, Q.I.; Ye, X.; Fan, B. Analysis of the Distribution Pattern of Chinese Ziziphus Jujuba under Climate Change Based on Optimized Biomod2 and MaxEnt Models. Ecol. Indic 2021, 132, 108256. [Google Scholar] [CrossRef]
- Chen, F.H.; Dong, G.H.; Zhang, D.J.; Liu, X.Y.; Jia, X.; An, C.B.; Ma, M.M.; Xie, Y.W.; Barton, L.; Ren, X.Y.; et al. Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3600 B.P. Science 2015, 347, 248–250. [Google Scholar] [CrossRef]
- Cao, B.; Bai, C.; Zhang, M.; Lu, Y.; Gao, P.; Yang, J.; Xue, Y.; Li, G. Future Landscape of Renewable Fuel Resources: Current and Future Conservation and Utilization of Main Biofuel Crops in China. Sci. Total Environ. 2022, 806, 150946. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.M.; Mittermeier, R.A.; Da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global Biodiversity Conservation Priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef]
- Avasthi, A. California Tries to Connect Its Scattered Marine Reserves. Science 2005, 308, 487–488. [Google Scholar] [CrossRef]
- Alkemade, R.; Bakkenes, M.; Eickhout, B. Towards a General Relationship between Climate Change and Biodiversity: An Example for Plant Species in Europe. Reg. Environ. Chang. 2011, 11, 143–150. [Google Scholar] [CrossRef]
- Wan, X.R.; Cheng, C.Y.; Bai, D.F.; Zhang, Z.B. Ecological impacts of climate change and adaption strategie. Bull. Chin. Acad. Sci. 2023, 38, 518–527. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of Twenty-First-Century Policy for Multi-Millennial Climate and Sea-Level Change. Nat. Clim. Chang. 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Li, X.Z.; Liu, X.D.; Ma, H.Y. Regulation of human activities on orbital-scale precipitation in global monsoon regions. J. Earth Environ. 2023, 14, 557–572. [Google Scholar] [CrossRef]
- Zhao, Z.C.; Luo, Y.; Huang, J.B. The detection of the CMIP5 climate model to see the development of CMIP6 earth system models. Clim. Chang. Res. 2018, 14, 643–648. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of Climate Extremes in China, an Incremental Exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhou, B.; Ma, C.; Gao, C.; Han, D.; Chai, Y. Impacts of Climate Change on Species Distribution Patterns of Polyspora Sweet in China. Ecol. Evol. 2022, 12, e9516. [Google Scholar] [CrossRef]
- Huang, D.; An, Q.; Huang, S.; Tan, G.; Quan, H.; Chen, Y.; Zhou, J.; Liao, H. Biomod2 Modeling for Predicting the Potential Ecological Distribution of Three Fritillaria Species under Climate Change. Sci. Rep. 2023, 13, 18801. [Google Scholar] [CrossRef]
- Sharma, M.K.; Ram, B.; Chawla, A. Ensemble Modelling under Multiple Climate Change Scenarios Predicts Reduction in Highly Suitable Range of Habitats of Dactylorhiza Hatagirea (D. Don) Soo in Himachal Pradesh, Western Himalaya. S. Afr. J. Bot. 2023, 154, 203–218. [Google Scholar] [CrossRef]
- Wu, Y.M.; Shen, X.L.; Tong, L.; Lei, F.W.; Mu, X.Y.; Zhang, Z.X. Impact of Past and Future Climate Change on the Potential Distribution of an Endangered Montane Shrub Lonicera Oblata and Its Conservation Implications. Forests 2021, 12, 125. [Google Scholar] [CrossRef]
- Xie, C.; Chen, L.; Li, M.; Jim, C.Y.; Liu, D. BIOCLIM Modeling for Predicting Suitable Habitat for Endangered Tree Tapiscia sinensis (Tapisciaceae) in China. Forests 2023, 14, 2275. [Google Scholar] [CrossRef]
- Abhin Sukumar, P.; Sanjo Jose, V.; Ramesh, S.V.; Bhat, R. Predicting current and future climate suitability for arecanut (Areca catechu L.) in India using ensemble model. Heliyon 2024, 4, e26382. [Google Scholar] [CrossRef]
- Wen, X.; Zhao, G.; Cheng, X.; Chang, G.; Dong, X.; Lin, X. Prediction of the Potential Distribution Pattern of the Great Gerbil (Rhombomys Opimus) under Climate Change Based on Ensemble Modelling. Pest. Manag. Sci. 2022, 78, 3128–3134. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Duque-Lazo, J.; Navarro-Cerrillo, R.M.; Van Gils, H.; Groen, T.A. Forecasting Oak Decline Caused by Phytophthora Cinnamomi in Andalusia: Identification of Priority Areas for Intervention. For. Ecol. Manag. 2018, 417, 122–136. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A Review of Evidence about Use and Performance of Species Distribution Modelling Ensembles like BIOMOD. Divers. Distrib. 2019, 25, 839–852. [Google Scholar] [CrossRef]
- Jian, W.L.; Hai, B.J.; Ming, J.X.; Chuan, T.S.; Chun, G.H.; Hong, F.B.; Lian, X.S. Functional characteristics and habitat suitability of threatened birds in northeastern China. Ecol. Evol. 2024, 6, e11550. [Google Scholar] [CrossRef]
- Zhou, X.J.; Ren, X.L.; Liu, W.Z. Genetic Diversity of SSR Markers in Wild Populations of Tapiscia sinensis, an Endangered Tree Species. Biochem. Syst. Ecol. 2016, 69, 1–5. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.R.; Xiong, Y.; Liu, Z.; Liu, W.Q.; Liao, W.B. Characteristics of Tapiscia sinensis Community in Guanshan Nature Reserve, Jiangxi and Its Protection Strategy. Subtrop. Plant Sci. 2021, 50, 125–132. [Google Scholar]
- Li, D.J.; Hu, T.; Yu, D.H.; Zheng, D.M.; Gu, D.H.; Liao, J. Analysis of Population Structure Dynamics of Tapiscia sinensis in Leigongshan Nature Reserve. Rural. Econ. Sci.-Technol. 2022, 33, 54–57. [Google Scholar]
- Zong, S.; Yang, Z.; Tao, J. Study on the Ecological Characteristics of Tapiscia sinensis. Chin. J. Plant Ecol. 1985, 9, 192. [Google Scholar]
- Xin, G.L.; Liu, J.Q.; Liu, J.; Ren, X.L.; Du, X.M.; Liu, W.Z. Anatomy and RNA-Seq Reveal Important Gene Pathways Regulating Sex Differentiation in a Functionally Androdioecious Tree, Tapiscia sinensis. BMC Plant Biol. 2019, 19, 554. [Google Scholar] [CrossRef] [PubMed]
- Lü, W.; Liu, W. Pollination Biology in Androdioecious Species Tapiscia sinensis (Staphyleaceae). Chin. Bull. Bot. 2010, 45, 713. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Fritsch, P.W.; Tian, H.; Yang, A.; Yao, X. Phylogeography and Genetic Structure of a Tertiary Relict Tree Species, Tapiscia sinensis (Tapisciaceae): Implications for Conservation. Ann. Bot. 2015, 116, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Wang, Y.Y.; Xu, Y.N.; Yan, R.S.; Zhao, P.; Liu, W.Z. De Novo Characterization of Flower Bud Transcriptomes and the Development of EST-SSR Markers for the Endangered Tree Tapiscia sinensis. Int. J. Mol. Sci. 2015, 16, 12855–12870. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.P. A Review of Research Advances in Rare and Endangered Plant Tapiscia sinensis. Subtrop. Plant Sci. 2006, 35, 71–74. [Google Scholar]
- Suryani, F.; Bakhtra, D.D.A.; Fajrina, A. Cytotoxic Activity of Endophytic Fungus against HeLa Cells (Cervical Cancer Cells): A Article Review. Asian J. Pharm. Res. Dev. 2022, 10, 25–28. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. World Clim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Sun, C.; Zuo, J.; Shi, X.; Liu, X.; Liu, H. Diverse Inter-Annual Variations of Winter Siberian High and Link with Eurasian Snow in Observation and BCC-CSM2-MR Coupled Model Simulation. Front. Earth Sci. 2021, 9, 761311. [Google Scholar] [CrossRef]
- Milovac, J.; Ingwersen, J.; Warrach-Sagi, K. Global Top Soil Texture Data Compatible with the WRF Model Based on the Harmonized World Soil Database (HWSD) at 30 Arc-Second Horizontal Resolution Version 1.21. 2018. Available online: https://www.wdc-climate.de/ui/entry?acronym=WRF_NOAH_HWSD_world_TOP_ST_v121 (accessed on 18 March 2024).
- Tao, W.; Ting, J.Z.; Wei, B.A.; Zai, L.W.; Chuan, R.L. Predicting the Potential Geographic Distribution of Invasive Freshwater Apple SnailPomacea canaliculate (Lamarck, 1819) under Climate Change Based on Biomod2. Agronomy 2024, 14, 650. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Su, M.; Liu, M.; Yang, J.; Wu, Q. Spatial Distribution Patterns of the Key Afforestation Species Cupressus funebris: Insights from an Ensemble Model under Climate Change Scenarios. Forests 2024, 15, 1280. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. Ecospat: An R Package to Support Spatial Analyses and Modeling of Species Niches and Distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Wang, B.S.; Yu, S.X.; Peng, S.L. Handbook of Plant Community Experiment; Guangdong Higher Education Press: Guangzhou, China, 1996; pp. 1–15. [Google Scholar]
- Li, B.; Yang, C.; Lin, P. Ecology; Higher Education Press: Beijing, China, 2000; p. 127. [Google Scholar]
- Wang, Y.F.; Yu, S.X.; Liu, W.Q. A new species diversity index and its fractal analysis. Acta Phytoecol. Sin. 2002, 26, 391–395. [Google Scholar]
- Rushing, C.S.; Rubenstein, M.; Lyons, J.E.; Runge, M.C. Using Value of Information to Prioritize Research Needs for Migratory Bird Management under Climate Change: A Case Study Using Federal Land Acquisition in the United States. Biol. Rev. 2020, 95, 1109–1130. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhi, F.; Zhang, G. Predicting Impacts of Climate Change on Suitable Distribution of Critically Endangered Tree Species Yulania zenii (W. C. Cheng) D. L. Fu in China. Forests 2024, 15, 883. [Google Scholar] [CrossRef]
- Carosi, A.; Ghetti, L.; Padula, R.; Lorenzoni, M. Population Status and Ecology of the Salmo Trutta Complex in an Italian River Basin under Multiple Anthropogenic Pressures. Ecol. Evol. 2020, 10, 7320–7333. [Google Scholar] [CrossRef]
- Karypidou, M.C.; Almpanidou, V.; Tompkins, A.M.; Mazaris, A.D.; Gewehr, S.; Mourelatos, S.; Katragkou, E. Projected Shifts in the Distribution of Malaria Vectors Due to Climate Change. Clim. Chang. 2020, 163, 2117–2133. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, X.; Ma, Y.; Liu, M.; Shama, Z.; Li, J.; Huang, Y. Potential Global Distribution of Setaria Italica, an Important Species for Dryland Agriculture in the Context of Climate Change. PLoS ONE 2024, 19, e0301751. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Su, M.; Gong, W.; Liu, Y.; Yang, J.; Huang, Y.; Zhao, C. Modeling the Potential Distribution of the Energy Tree Species Triadica Sebifera in Response to Climate Change in China. Sci. Rep. 2024, 14, 1220. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Xu, Z.L.; Peng, H.H.; Peng, S.Z. The development and evaluation of species distribution models. Acta Ecol. Sin. 2015, 35, 557–567. [Google Scholar]
- Mi, C.; Ma, L.; Yang, M.; Li, X.; Meiri, S.; Roll, U.; Oskyrko, O.; Pincheira-Donoso, D.; Harvey, L.P.; Jablonski, D. Global Protected Areas as Refuges for Amphibians and Reptiles under Climate Change. Nat. Commun. 2023, 14, 1389. [Google Scholar] [CrossRef]
- Huang, L.; Li, S.; Huang, W.; Xiang, H.; Jin, J.; Oskolski, A.A. Glacial Expansion of Cold-Tolerant Species in Low Latitudes: Megafossil Evidence and Species Distribution Modelling. Natl. Sci. Rev. 2023, 10, nwad038. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Jiang, J.; Yang, C.; Gu, X.; Huang, Y.; Liu, L. Climate Change Will Lead to a Significant Reduction in the Global Cultivation of Panicum Milliaceum. Atmosphere 2023, 14, 1297. [Google Scholar] [CrossRef]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species Distribution Modelling to Support Forest Management. A Literature Review. Ecol. Modell. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Duan, R.Y.; Kong, X.Q.; Huang, M.Y.; Fan, W.Y.; Wang, Z.G. The Predictive Performance and Stability of Six Species Distribution Models. PLoS ONE 2014, 9, e112764. [Google Scholar] [CrossRef] [PubMed]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where Is Positional Uncertainty a Problem for Species Distribution Modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; NCEAS Predicting Species Distributions Working Group. Effects of Sample Size on the Performance of Species Distribution Models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial Prediction of Species Distribution: An Interface between Ecological Theory and Statistical Modelling. Ecol. Modell. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Natale, E.; Zalba, S.M.; Reinoso, H. Presence—Absence versus Invasive Status Data for Modelling Potential Distribution of Invasive Plants: Saltcedar in Argentina. Écoscience 2013, 20, 161–171. [Google Scholar] [CrossRef]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.; De Siqueira, M.F.; Grainger, A.; Hannah, L. Extinction Risk from Climate Change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Teng, L. Fruit Development of Tapiscia sinensis. Master’s Dissertation, Northwest University, Xi’an, China, 2009. [Google Scholar]
- Meng, C.J. Measuring Method Selection of Photosynthesis In Vitro and Photosynthetic Eco-Physiological Characteristics of 6 Kinds of Rare and Endangered Plants in Qinling Mountains. Doctoral Dissertation, Northwest University, Xi’an, China, 2021. [Google Scholar]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate Change Threats to Plant Diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef]
- Zhao, G.; Cui, X.Y.; Wang, Z.; Jing, H.L.; Fan, B.G. Prediction of Potential Distribution of Ziziphus jujuba var. spinosa in China under Context of Climate Change. Sci. Silvae Sin. 2021, 57, 158–168. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, G.; Zhang, S.; Wang, Z.; Wen, X.; Liu, L.; Zhang, C.; Tie, N.; Sa, R. Priority Conservation Area of Larix Gmelinii under Climate Change: Application of an Ensemble Modeling. Front. Plant Sci. 2023, 14, 1177307. [Google Scholar] [CrossRef]
- Brown, J.H.; Lomolino, M.V. Biogeography; Sinuer Associates Publishers: Sunderland, MA, USA, 1998. [Google Scholar]
- Yuan, H.Y.; Sheng, R.; Hu, H.-F.; Chen, A.-P.; Ji, C.-J.; Zhu, B.; Zuo, W.-Y.; Li, X.-R.; Shen, H.-H.; Wang, Z.-H.; et al. Plant Species Richness of Alpine Grasslands in Relation to Environmental Factors and Biomass on the Tibetan Plateau. Biodivers. Sci. 2004, 12, 200. [Google Scholar] [CrossRef]
- Yang, K. Carbohydrate Metabolism and Gene Regulationduring Anther Development in Anandrodioecious Tree, Tapiscia sinensis. Ph.D. Thesis, Northwest University, Xi’an, China, 2017. [Google Scholar]
- Wang, S.Y.; Liu, X.J.; Zhou, P.Z.; Liu, Q.L. Preliminary Report on the Ex Situ Conservation Experiment of Tapiscia sinensis. Shaanxi For. Sci. Technol. 1987, 2, 17–18. [Google Scholar]
Period | Climate Scenario | Low Habitability Zone | Moderately Habitability Zone | Highly Habitability Zone | The Total Habitability Zone |
---|---|---|---|---|---|
Current | 55.07 | 38.67 | 20.44 | 114.18 | |
2041–2060 | SSP126 | 46.19 | 16.96 | 5.84 | 68.99 |
SSP245 | 43.01 | 25.71 | 6.24 | 74.96 | |
SSP585 | 44 | 19.09 | 5.39 | 68.48 | |
2081–2100 | SSP126 | 43.58 | 26.77 | 6.41 | 76.76 |
SSP245 | 40.49 | 12.68 | 3.23 | 56.4 | |
SSP585 | 42.32 | 6.34 | 0.95 | 49.61 |
Family | Genus | Species | Relative Significance | Relative Density | Relative Density | Significant Value | |
---|---|---|---|---|---|---|---|
Most suitable area | 45 | 69 | 101 | 15.55% | 23.00% | 15.11% | 53.66% |
Most suitable area | 49 | 67 | 90 | 15.70% | 21.00% | 13.11% | 49.81% |
Most suitable area | 41 | 67 | 103 | 16.78% | 22.95% | 14.52% | 54.25% |
Marginally suitable area | 57 | 81 | 125 | 11.95% | 14.42% | 11.76% | 38.13% |
Marginally suitable area | 59 | 83 | 145 | 13.90% | 16.58% | 12.77% | 43.25% |
Marginally suitable area | 58 | 80 | 133 | 8.25% | 9.48% | 10.77% | 28.5% |
Marginally unsuitable area | 53 | 77 | 119 | 6.30% | 7.25% | 7.50% | 21.05% |
Marginally unsuitable area | 55 | 80 | 122 | 4.39% | 5.07% | 5.03% | 14.49% |
Marginally unsuitable area | 52 | 75 | 109 | 3.80% | 4.50% | 5.00% | 13.30% |
Simpson’s Diversity Index | Shannon–Wiener Diversity Index | Pielou Uniformity | |
---|---|---|---|
Plot 1 in the most suitable area | 0.56 | 3.10 | 0.82 |
Plot 2 in the most suitable area | 0.65 | 3.21 | 0.79 |
Plot 3 in the most suitable area | 0.66 | 3.19 | 0.78 |
Plot 1 in the marginally suitable area | 0.96 | 3.54 | 0.85 |
Plot 2 in the marginally suitable area | 0.94 | 3.53 | 0.73 |
Plot 3 in the marginally suitable area | 0.83 | 3.44 | 0.84 |
Plot 1 in the marginally unsuitable area | 0.85 | 3.56 | 0.79 |
Plot 2 in the marginally unsuitable area | 0.88 | 3.65 | 0.73 |
Plot 3 in the marginally unsuitable area | 0.89 | 3.64 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Li, X.; Yang, L.; Chen, K.; Shama, Z.; Jiang, X.; Yang, J.; Zhao, G.; Huang, Y. Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis. Forests 2024, 15, 1677. https://doi.org/10.3390/f15091677
Liu M, Li X, Yang L, Chen K, Shama Z, Jiang X, Yang J, Zhao G, Huang Y. Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis. Forests. 2024; 15(9):1677. https://doi.org/10.3390/f15091677
Chicago/Turabian StyleLiu, Mei, Xiaoyu Li, Liyong Yang, Keyi Chen, Zixi Shama, Xue Jiang, Jingtian Yang, Guanghua Zhao, and Yi Huang. 2024. "Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis" Forests 15, no. 9: 1677. https://doi.org/10.3390/f15091677
APA StyleLiu, M., Li, X., Yang, L., Chen, K., Shama, Z., Jiang, X., Yang, J., Zhao, G., & Huang, Y. (2024). Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis. Forests, 15(9), 1677. https://doi.org/10.3390/f15091677