Relationships Between Saproxylic Beetle Microhabitat Occurrences and Forest State Indicators
Abstract
:1. Introduction
2. Methods
2.1. Forest State Data
2.2. Study Area
2.3. Saproxylic Beetle Data Collection
- Cerambyx-type tree. Since Aegosoma scabricorne Scopoli, 1763 can also cause similar exit holes—although its habitat is basically different—we only recorded the large holes on the bark surface of oak trees.
- Gasterocercus-type tree. As there are other species of insects, especially wasps, that leave similar life traces—circular holes of the same diameter—we only recorded the trees in which we found the remains of G. depressirostris imago in one of the holes.
- Lacon-type cavity. The structure of the debris, the typical fungus (Laetiporus sulphureus Bull. (Murrill))-infested wood, its color, and the presence of the associated species, especially Pentaphyllus spp., are together considered an L. querceus occurrence.
- Cucujus-type dead tree. It was recorded if there was minimal debris under the moist bark, with life traces of associated species, e.g., Hololepta plana Sulzer, 1776 or the shedding remains of the target species.
- Limoniscus-type cavity. The most typical associated species (within the same microhabitat) is the Ischnodes sanguinicollis Panzer, 1793. If it was present, it means that the cavity is probably occupied by L. violaceus too, but the characteristics of the cavity make it clear enough that it is suitable for it.
- Protaetia-type cavity. Not all suitable cavities were considered colonized by these species, but only those with large quantities of species-specific feces, larval, shedding, or imago remains were found.
- Rosalia-, Ampedus-, and Sinodendron-type TreMs. The exit holes and other life traces found in the defined TreM types (Figure 2) within the study area are sufficient evidence of the presence of the species on their own, as they cannot be confused with any other species.
2.4. Analysis
2.4.1. Data Preparation
2.4.2. Variable Selection
- Avg. No. of snags with DBH = 21–50 cm;
- Avg. No. of TreM categories;
- Avg. volume (m3) of CWD;
- Freq. of decayed CWD with 35 cm < Ø;
- Freq. of CWD with 35 cm < Ø;
- Avg. No. of DBH > 50 cm tree species;
- Avg. No. of DBH classes;
- Avg. No. of DBH = 36–50 cm tree species;
- Freq. of outstanding live trees;
- Freq. of routes without outstanding trees;
- Freq. of CWD with Ø = 8–35 cm.
2.4.3. Statistical Analysis
3. Results
3.1. Redundancy Analysis
3.2. Correlation Heatmaps
- Avg. No. of DBH = 36–50 cm tree species;
- Avg. No. of DBH > 50 cm tree species;
- Avg. No. of DBH classes;
- Avg. No. of snags with DBH = 21–50 cm;
- Avg. volume (m3) of CWD;
- Freq. of CWD with 35 cm < Ø;
- Freq. of decayed CWD with 35 cm < Ø;
- Freq. of outstanding live trees;
- Avg. No. of TreM categories.
- Avg. No. of snags with DBH = 21–50 cm;
- Avg. volume (m3) of CWD;
- Freq. of CWD with 35 cm < Ø;
- Freq. of trunk-based rot holes;
- Freq. of cavities.
4. Discussion
4.1. The Most Important Predictors
4.2. Differences Between Forest Stand Types
4.3. Differences Between Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vera, F.W.M. Grazing Ecology and Forest History; CABI Publishing: Oxford, UK, 2000. [Google Scholar]
- Pickett, S.T.A.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Watt, A.S. Pattern and Process in the Plant Community. J. Ecol. 1947, 35, 1–22. [Google Scholar] [CrossRef]
- Larsson, T.-B. Biodiversity Evaluation Tools for European Forests; Ecological Bulletins No. 50; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Seibold, S.; Brandl, R.; Buse, J.; Hothorn, T.; Schmidl, J.; Thorn, S.; Müller, J. Association of Extinction Risk of Saproxylic Beetles with Ecological Degradation of Forests in Europe. Conserv. Biol. 2015, 29, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, Disturbances, Ecosystem Function and Management of European Forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Woodcock, B.A.; Watt, A.D.; Niemelii, J. Effect Heterogeneity Scale Landscape at the on Carabid Communities of Land-Use. Ecography 2005, 28, 3–16. [Google Scholar] [CrossRef]
- Hermy, M.; Verheyen, K. Legacies of the Past in the Present-Day Forest Biodiversity: A Review of Past Land-Use Effects on Forest Plant Species Composition and Diversity. Ecol. Res. 2007, 22, 361–371. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030. Communication from the Commission to the European Parlament, the Council, the European Economic and Social Committee and the Committee of the Regions. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0572 (accessed on 13 November 2024).
- Alexander, K.N.A. Revision of the Index of Ecological Continuity as Used for Saproxylic Beetles. English Nature Research Reports 574. Peterborough. 2004. Available online: https://publications.naturalengland.org.uk/file/133007 (accessed on 13 November 2024).
- Miklín, J.; Sebek, P.; Hauck, D.; Konvicka, O.; Cizek, L. Past Levels of Canopy Closure Affect the Occurrence of Veteran Trees and Flagship Saproxylic Beetles. Divers. Distrib. 2018, 24, 208–218. [Google Scholar] [CrossRef]
- Debeljak, M. Coarse Woody Debris in Virgin and Managed Forest. Ecol. Indic. 2006, 6, 733–742. [Google Scholar] [CrossRef]
- Davies, Z.G.; Tyler, C.; Stewart, G.B.; Pullin, A.S. Are Current Management Recommendations for Saproxylic Invertebrates Effective? A Systematic Review. Biodivers. Conserv. 2008, 17, 209–234. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, NY, USA, 2012. [Google Scholar]
- The Council Directive 92/43/EEC. The Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora—“The Habitat Directive”. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043 (accessed on 13 November 2024).
- Buse, J.; Ranius, T.; Assmann, T. An Endangered Longhorn Beetle Associated with Old Oaks and Its Possible Role as an Ecosystem Engineer. Conserv. Biol. 2008, 22, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lachat, T.; Wermelinger, B.; Gossner, M.M.; Bussler, H.; Isacsson, G.; Müller, J. Saproxylic Beetles as Indicator Species for Dead-Wood Amount and Temperature in European Beech Forests. Ecol. Indic. 2012, 23, 323–331. [Google Scholar] [CrossRef]
- Cálix, M.; Alexander, K.N.A.; Nieto, A.; Dodelin, B.; Soldati, F.; Telnov, D.; Vazquez-Albalate, X.; Aleksandrowicz, O.; Audisio, P.; Istrate, P.; et al. European Red List of Saproxylic Beetles; IUCN: Brussels, Belgium, 2018; Available online: https://portals.iucn.org/library/node/47296 (accessed on 13 November 2024).
- Hjältén, J.; Johansson, T.; Alinvi, O.; Danell, K.; Ball, J.P.; Pettersson, R.; Gibb, H.; Hilszczański, J. The Importance of Substrate Type, Shading and Scorching for the Attractiveness of Dead Wood to Saproxylic Beetles. Basic Appl. Ecol. 2007, 8, 364–376. [Google Scholar] [CrossRef]
- Müller, J.; Bütler, R. A Review of Habitat Thresholds for Dead Wood: A Baseline for Management Recommendations in European Forests. Eur. J. For. Res. 2010, 129, 981–992. [Google Scholar] [CrossRef]
- Gossner, M.M.; Wende, B.; Levick, S.; Schall, P.; Floren, A.; Linsenmair, K.E.; Steffan-Dewenter, I.; Schulze, E.D.; Weisser, W.W. Deadwood Enrichment in European Forests—Which Tree Species Should Be Used to Promote Saproxylic Beetle Diversity? Biol. Conserv. 2016, 201, 92–102. [Google Scholar] [CrossRef]
- Lassauce, A.; Paillet, Y.; Jactel, H.; Bouget, C. Deadwood as a Surrogate for Forest Biodiversity: Meta-Analysis of Correlations between Deadwood Volume and Species Richness of Saproxylic Organisms. Ecol. Indic. 2011, 11, 1027–1039. [Google Scholar] [CrossRef]
- Parisi, F.; Pioli, S.; Lombardi, F.; Fravolini, G.; Marchetti, M.; Tognetti, R. Linking Deadwood Traits with Saproxylic Invertebrates and Fungi in European Forests—A Review. IForest 2018, 11, 423–436. [Google Scholar] [CrossRef]
- Lachat, T.; Bouget, C.; Bütler, R.; Müller, J. Deadwood: Quantitative and Qualitative Requirements for the Conservation of Saproxylic Biodiversity. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; Kraus, D., Krumm, F., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 92–103. [Google Scholar]
- Bütler, R.; Lachat, T.; Larrieu, L.; Paillet, Y. Habitat Trees: Key Elements for Forest Biodiversity. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; Kraus, D., Krumm, F., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 84–91. [Google Scholar]
- Wermelinger, B.; Lachat, T.; Müller, J. Forest Insects and Their Habitat Requirements. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; Kraus, D., Krumm, F., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 152–157. [Google Scholar]
- Lehnert, L.W.; Bässler, C.; Brandl, R.; Burton, P.J.; Müller, J. Conservation Value of Forests Attacked by Bark Beetles: Highest Number of Indicator Species Is Found in Early Successional Stages. J. Nat. Conserv. 2013, 21, 97–104. [Google Scholar] [CrossRef]
- Buse, J. “Ghosts of the Past”: Flightless Saproxylic Weevils (Coleoptera: Curculionidae) Are Relict Species in Ancient Woodlands. J. Insect Conserv. 2012, 16, 93–102. [Google Scholar] [CrossRef]
- Müller, J.; Bußler, H.; Kneib, T. Saproxylic Beetle Assemblages Related to Silvicultural Management Intensity and Stand Structures in a Beech Forest in Southern Germany. J. Insect Conserv. 2008, 12, 107–124. [Google Scholar] [CrossRef]
- Gossner, M.M.; Lachat, T.; Brunet, J.; Isacsson, G.; Bouget, C.; Brustel, H.; Brandl, R.; Weisser, W.W.; Müller, J. Current Near-to-Nature Forest Management Effects on Functional Trait Composition of Saproxylic Beetles in Beech Forests. Conserv. Biol. 2013, 27, 605–614. [Google Scholar] [CrossRef]
- FOREST EUROPE. State of Europe’s Forests 2020. 2020. Available online: https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (accessed on 13 November 2024).
- Schmidt, A.M.; Van der Sluis, T. E-BIND Handbook (Part A): Improving the Availability of Data and Information on Species, Habitats and Sites; Wageningen Environmental Research/Ecologic Institute/Milieu Ltd.: Wageningen, The Netherlands, 2021. [Google Scholar]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. National Forest Inventories: Pathways for Common Reporting; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Christensen, M.; Hahn, K.; Mountford, E.P.; Ódor, P.; Standovár, T.; Rozenbergar, D.; Diaci, J.; Wijdeven, S.; Meyer, P.; Winter, S.; et al. Dead Wood in European Beech (Fagus sylvatica) Forest Reserves. For. Ecol. Manag. 2005, 210, 267–282. [Google Scholar] [CrossRef]
- Gouix, N.; Brustel, H. Emergence Trap, a New Method to Survey Limoniscus violaceus (Coleoptera: Elateridae) from Hollow Trees. Biodivers. Conserv. 2012, 21, 421–436. [Google Scholar] [CrossRef]
- Toriti, M.; Durand, A.; Fohrer, F. Traces of Common Xylophagous Insects in Wood—Atlas of Identification—Western Europe; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Ciach, M.; Michalcewicz, J. Correlation between Selected Biometric Traits of Adult Rosalia alpina (L.) (Coleoptera: Cerambycidae) and Size of Their Exit Holes: New Perspectives on Insect Studies? Pol. J. Ecol. 2013, 61, 349–355. [Google Scholar]
- Gandiaga, F.; Thibault, M.; Nadeau, P.; Moreau, G. Settling in or Passing through: Differentiating between Wood-Boring Beetle Visitation and Colonization after a Dead Wood Pulse. Entomol. Exp. Appl. 2018, 166, 834–843. [Google Scholar] [CrossRef]
- Helclová, M.; Kozel, P.; Čížek, L. Habitat Requirements of the Critically Endangered Jewel Beetle Eurythyrea quercus (Herbst, 1780) in the Czech Republic. In Proceedings of the 11th Symposium on the Conservation of Saproxylic Beetles, Aranjuez, Spain, 14–16 September 2023; p. 31. [Google Scholar]
- Barbalat, S. Promoting Rosalia Alpina in the Swiss Jura. In Proceedings of the 11th Symposium on the Conservation of Saproxylic Beetles; Aranjuez, Spain, 14–16 September 2023; p. 8. [Google Scholar]
- Kašák, J.; Foit, J. Shortage of Declining and Damaged Sun-Exposed Trees in European Mountain Forests Limits Saproxylic Beetles: A Case Study on the Endangered Longhorn Beetle Ropalopus ungaricus (Coleoptera: Cerambycidae). J. Insect Conserv. 2018, 22, 171–181. [Google Scholar] [CrossRef]
- Foit, J.; Kašák, J.; Nevoral, J. Habitat Requirements of the Endangered Longhorn Beetle Aegosoma scabricorne (Coleoptera: Cerambycidae): A Possible Umbrella Species for Saproxylic Beetles in European Lowland Forests. J. Insect Conserv. 2016, 20, 837–844. [Google Scholar] [CrossRef]
- Nagarajan, R.P.; Goodbla, A.; Graves, E.; Baerwald, M.; Holyoak, M.; Schreier, A. Non-Invasive Genetic Monitoring for the Threatened Valley Elderberry Longhorn Beetle. PLoS ONE 2020, 15, e0227333. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional Diversity: Back to Basics and Looking Forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Standovár, T.; Szmorad, F.; Kovács, B.; Kelemen, K.; Plattner, M.; Roth, T.; Pataki, Z. A Novel Forest State Assessment Methodology to Support Conservation and Forest Management Planning. Community Ecol. 2016, 17, 167–177. [Google Scholar] [CrossRef]
- Nagy, J. A Börzsöny Hegység Edényes Flórája. Rosalia 2.; Duna-Ipoly Nemzeti Park Igazgatóság: Budapest, Hungary, 2007. [Google Scholar]
- Bartholy, J.; Pongrácz, R. Éghajlattan; Edutus Főiskola: Budapest, Hungary, 2011. [Google Scholar]
- Matthews, J.D. Silvicultural Systems; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Anon. Északi-Középhegység Erdészeti Tájcsoport; Führer, E., Ed.; Nemzeti Élelmiszerlánc-biztonsági Hivatal: Budapest, Hungary, 2017.
- Decree 13/2001 (V.9.). Decree on Protected and Specially Protected Species of Flora and Fauna, on Specially Protected Caves and on the Publication of Species of Flora and Fauna of Conservation Importance in the European Community. Available online: https://njt.hu/jogszabaly/2001-13-20-66 (accessed on 13 November 2024).
- Merkl, O. Az “Erdei Életközösségek Védelmét Megalapozó Többcélú Állapotértékelés a Magyar Kárpátokban” Című, a Svájci-Magyar Együttműködési Programban Nyertes Pályázat (SH/4/13) Keretén Belül a Holtfához Kötődő Bogárfajok Felméréséről a Börzsönyben és a Mátra Kiválasztott Részein; Report; Magyar Természettudományi Múzeum: Budapest, Hungary, 2016. [Google Scholar]
- Németh, T. Protokoll Szaproxylofág Bogarak Mintavételezésére. In LIFE4OAK Forests—Monitoring Protokoll; Aszalós, R., Bölöni, J., Frank, T., Eds.; Magyar Tudományos Akadémia, Ökológiai Kutatóközpont: Vácrátót, Hungary, 2019; pp. 25–37. [Google Scholar]
- Németh, T. Kutatási Jelentés a Duna Ipoly Nemzeti Park Igazgatósága és Németh Tamás EV Közt Létrejött, DINPI/1425-8/2021-Számú Szerződésben Vállalt Feladatok Elvégzéséről és Ehhez Kapcsolódó Kutatási Eredményekről; Magyar Természettudományi Múzeum: Budapest, Hungary, 2021. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Palmer, M.W. Putting Things in Even Better Order: The Advantages of Canonical Correspondence Analysis. Ecology 1993, 74, 2215–2230. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2024; Available online: https://www.r-project.org (accessed on 10 February 2024).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Community Ecology Package “vegan” 2.6-4. 2022. Available online: https://cran.r-project.org/package=vegan (accessed on 10 February 2024).
- Larrieu, L.; Paillet, Y.; Winter, S.; Bütler, R.; Kraus, D.; Krumm, F.; Lachat, T.; Michel, A.K.; Regnery, B.; Vandekerkhove, K. Tree Related Microhabitats in Temperate and Mediterranean European Forests: A Hierarchical Typology for Inventory Standardization. Ecol. Indic. 2018, 84, 194–207. [Google Scholar] [CrossRef]
- Paillet, Y.; Archaux, F.; Boulanger, V.; Debaive, N.; Fuhr, M.; Gilg, O.; Gosselin, F.; Guilbert, E. Snags and Large Trees Drive Higher Tree Microhabitat Densities in Strict Forest Reserves. For. Ecol. Manag. 2017, 389, 176–186. [Google Scholar] [CrossRef]
- Kozák, D.; Svitok, M.; Zemlerová, V.; Mikoláš, M.; Lachat, T.; Larrieu, L.; Paillet, Y.; Buechling, A.; Bače, R.; Keeton, W.S.; et al. Importance of Conserving Large and Old Trees to Continuity of Tree-Related Microhabitats. Conserv. Biol. 2023, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sverdrup-Thygeson, A.; Skarpaas, O.; Ødegaard, F. Hollow Oaks and Beetle Conservation: The Significance of the Surroundings. Biodivers. Conserv. 2010, 19, 837–852. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Kruys, N.; Ranius, T. Ecology of Species Living on Dead Wood—Lessons for Dead Wood Management. Silva Fenn. 2005, 39, 289–309. [Google Scholar] [CrossRef]
- Percel, G.; Parmain, G.; Laroche, F.; Bouget, C. The Larger, the Better? Effects of Delayed Diameter-Limit Cutting on Old-Growth Attributes and Saproxylic Beetle Diversity in Temperate Oak Forests. Eur. J. For. Res. 2018, 137, 237–249. [Google Scholar] [CrossRef]
- Lindhe, A.; Lindelöw, Å.; Åsenblad, N. Saproxylic Beetles in Standing Dead Wood Density in Relation to Substrate Sun-Exposure and Diameter. Biodivers. Conserv. 2005, 14, 3033–3053. [Google Scholar] [CrossRef]
- Merkl, O.; Vig, K. Bogarak a Pannon Régióban; Vas Megyei Múzeumok Igazgatósága: Szombathely, Hungary, 2011. [Google Scholar]
- Redolfi De Zan, L.; Bardiani, M.; Antonini, G.; Campanaro, A.; Chiari, S.; Mancini, E.; Maura, M.; Sabatelli, S.; Solano, E.; Zauli, A.; et al. Guidelines for the Monitoring of Cerambyx cerdo. Nat. Conserv. 2017, 20, 129–164. [Google Scholar] [CrossRef]
- Franc, N.; Götmark, F.; Økland, B.; Nordén, B.; Paltto, H. Factors and Scales Potentially Important for Saproxylic Beetles in Temperate Mixed Oak Forest. Biol. Conserv. 2007, 135, 86–98. [Google Scholar] [CrossRef]
- Bouget, C.; Larrieu, L.; Nusillard, B.; Parmain, G. In Search of the Best Local Habitat Drivers for Saproxylic Beetle Diversity in Temperate Deciduous Forests. Biodivers. Conserv. 2013, 22, 2111–2130. [Google Scholar] [CrossRef]
- Horák, J.; Chobot, K. Phenology and Notes on the Behaviour of Cucujus cinnaberinus: Points for Understanding the Conservation of the Saproxylic Beetle. North. West. J. Zool. 2011, 7, 352–355. [Google Scholar]
- Campanaro, A.; De Zan, L.R.; Hardersen, S.; Antonini, G.; Chiari, S.; Cini, A.; Mancini, E.; Mosconi, F.; De Gasperis, S.R.; Solano, E.; et al. Guidelines for the Monitoring of Rosalia alpina. Nat. Conserv. 2017, 20, 165–203. [Google Scholar] [CrossRef]
- Bosso, L.; Rebelo, H.; Garonna, A.P.; Russo, D. Modelling Geographic Distribution and Detecting Conservation Gaps in Italy for the Threatened Beetle Rosalia alpina. J. Nat. Conserv. 2013, 21, 72–80. [Google Scholar] [CrossRef]
- Fravolini, G.; Tognetti, R.; Lombardi, F.; Egli, M.; Ascher-Jenull, J.; Arfaioli, P.; Bardelli, T.; Cherubini, P.; Marchetti, M. Quantifying Decay Progression of Deadwood in Mediterranean Mountain Forests. For. Ecol. Manag. 2018, 408, 228–237. [Google Scholar] [CrossRef]
- Hegyessy, G.; Merkl, O. Havasi Cincér—Rosalia alpina (Linnaeus, 1758). In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 265–269. [Google Scholar]
- Miklín, J.; Hauck, D.; Konvička, O.; Cizek, L. Veteran Trees and Saproxylic Insects in the Floodplains of Lower Morava and Dyje Rivers, Czech Republic. J. Maps 2017, 13, 291–299. [Google Scholar] [CrossRef]
- Petritan, A.M.; Biris, I.A.; Merce, O.; Turcu, D.O.; Petritan, I.C. Structure and Diversity of a Natural Temperate Sessile Oak (Quercus petraea L.)—European Beech (Fagus sylvatica L.) Forest. For. Ecol. Manag. 2012, 280, 140–149. [Google Scholar] [CrossRef]
- Levins, R. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc. Am. 1969, 15, 237–240. [Google Scholar] [CrossRef]
- Brunet, J.; Isacsson, G. Influence of Snag Characteristics on Saproxylic Beetle Assemblages in a South Swedish Beech Forest. J. Insect Conserv. 2009, 13, 515–528. [Google Scholar] [CrossRef]
- Bölöni, J.; Molnár, Z.; Horváth, F.; Illyés, E. Naturalness-Based Habitat Quality of the Hungarian (Semi-)Natural Habitats. Acta Bot. Hung. 2008, 50, 149–159. [Google Scholar] [CrossRef]
- European Commission. Monitoring of Insects with Public Participation. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE11-NAT-IT-000252/monitoring-of-insects-with-public-participation (accessed on 13 November 2024).
- Mason, F.; Roversi, P.F.; Audisio, P.; Bologna, M.A.; Carpaneto, G.M.; Antonini, G.; Mancini, E.; Sabbatini Peverieri, G.; Mosconi, F.; Solano, E.; et al. Monitoring of Insects with Public Participation (MIPP; EU LIFE Project 11 NAT/IT/000252): Overview on a Citizen Science Initiative and a Monitoring Programme (Insecta: Coleoptera; Lepidoptera; Orthoptera). Fragm. Entomol. 2015, 47, 51. [Google Scholar] [CrossRef]
- Campanaro, A.; Hardersen, S.; De Zan, L.R.; Antonini, G.; Bardiani, M.; Maura, M.; Maurizi, E.; Mosconi, F.; Zauli, A.; Bologna, M.A.; et al. Analyses of Occurrence Data of Protected Insect Species Collected by Citizens in Italy. Nat. Conserv. 2017, 20, 265–297. [Google Scholar] [CrossRef]
- Zapponi, L.; Cini, A.; Bardiani, M.; Hardersen, S.; Maura, M.; Maurizi, E.; Redolfi De Zan, L.; Audisio, P.; Bologna, M.A.; Carpaneto, G.M.; et al. Citizen Science Data as an Efficient Tool for Mapping Protected Saproxylic Beetles. Biol. Conserv. 2017, 208, 139–145. [Google Scholar] [CrossRef]
- Hegyessy, G.; Merkl, O. Nagy Hőscincér—Cerambyx cerdo (Linnaeus, 1758). In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 260–264. [Google Scholar]
- Albert, J.; Platek, M.; Cizek, L. Vertical Stratification and Microhabitat Selection by the Great Capricorn Beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae) in Open-Grown, Veteran Oaks. Eur. J. Entomol. 2012, 109, 553–559. [Google Scholar] [CrossRef]
- Csóka, G.; Kovács, T. Xylophagous Insects; Forest Research Institute: Budapest, Hungary, 1999. [Google Scholar]
- Merkl, O.; Kovács, T. Nemzeti Biodiverzitás-Monitorozó Rendszer VI. Bogarak; Magyar Természettudományi Múzeum: Budapest, Hungary, 1997. [Google Scholar]
- Kovács, T. Ritka, Védett és Közösségi Jelentőségű Xilofág és Szaproxilofág Bogárfajok Kutatása a Határ-Menti Natura 2000 Területeken, a Rábaközben és a Soproni-Hegységben (Coleoptera)—2017–2020. Gyöngyös. 2020. Available online: https://www.ferto-hansag.hu/upload/document/645/fh_xilof_mdv17-zarojelentes_f3wn.pdf (accessed on 13 November 2024).
- Buse, J.; Schröder, B.; Assmann, T. Modelling Habitat and Spatial Distribution of an Endangered Longhorn Beetle—A Case Study for Saproxylic Insect Conservation. Biol. Conserv. 2007, 137, 372–381. [Google Scholar] [CrossRef]
- Vrezec, A.; Ambrožič, Š.; Kapla, A. An Overview of Sampling Methods Tests for Monitoring Schemes of Saproxylic Beetles in the Scope of Natura 2000 in Slovenia. Stud. For. Slov. 2012, 137, 73–90. [Google Scholar]
- Castro, A.; Martínez De Murguía, L. Size and Quality of Wood Used by Rosalia alpina (Linnaeus, 1758) (Coleoptera: Cerambycidae) in Beech Woodlands of Gipuzkoa (Northern Spain). Munibe (Cienc. Nat. Zientziakziak) 2012, 60, 77–100. [Google Scholar]
- Németh, T.; Merkl, O. Kék Pattanó—Limoniscus violaceus (P. W. J. Müller, 1821). In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 251–253. [Google Scholar]
- Kovács, T. A Kék Pattanó (Limoniscus violaceus) Monitorozása. In Módszertani Kézikönyv a Hazánkban Előforduló Egyes Közösségi Jelentőségű Állatfajok Terepi Vizsgálatához; Kemencei, Z., Patalenszki, A., Eds.; Agrárminisztérium: Budapest, Hungary, 2021; pp. 140–154. [Google Scholar]
- Németh, T.; Kovács, T.; Kutasi, C.; Lőkkös, A.; Rozner, G.; Szénási, V. Updated Knowledge on the Records for the Endangered Click Beetle Limoniscus violaceus in Hungary (Coleoptera: Elateridae). Folia Entomol. Hung. 2017, 78, 57–70. [Google Scholar] [CrossRef]
- Leseigneur, L. Coléoptères Elateridae de La Faune de France Continentale et de Corse. Bull. Mens. Société Linnéenne Lyon 1972, 41, 1–379. [Google Scholar] [CrossRef]
- Merkl, O. Skarlátbogár—Cucujus cinnaberinus (Scopoli, 1763). In Natura 2000 Fajok és Élőhelyek Magyarországon; Haraszthy, L., Ed.; Pro Vértes Közalapítvány: Csákvár, Hungary, 2014; pp. 254–256. [Google Scholar]
- Rozner, G.; Lőkkös, A. Adatok a Dunántúl Közösségi Jelentőségű Bogarainak Ismeretéhez I. Nat. Somogyiensis 2018, 32, 165–182. [Google Scholar] [CrossRef]
- Speight, M.C.D. Saproxylic Invertebrates and Their Conservation. Nature and Environment Series, No. 42.; Council of Europe: Strasbourg, France, 1989. [Google Scholar]
- Horák, J.; Vávrová, E.; Chobot, K. Habitat Preferences Influencing Populations, Distribution and Conservation of the Endangered Saproxylic Beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the Landscape Level. Eur. J. Entomol. 2010, 107, 81–88. [Google Scholar] [CrossRef]
- Kovács, T.; Németh, T. Ritka Szaproxilofág Álpattanóbogarak, Pattanóbogarak És Lárváik a Mátra És a Bükk Területéről (Coleoptera: Cerophytidae, Elateridae). Folia Hist. Nat. Musei Matra. 2012, 36, 19–28. [Google Scholar]
- Recalde, I.J.I. Lista Roja Europea de Escarabajos Saproxílicos (Coleoptera) Presentes En La Península Ibérica: Actualización y Perspectivas. Heteropterus Rev. Entomol. 2010, 10, 157–166. [Google Scholar]
- Bernardinelli, I.; Mossenta, M. Flight Period of Gasterocercus Depressirostris in Relation to Temperature in North-Eastern Italy. Bull. Insectology 2009, 62, 209–213. [Google Scholar]
- Bernardinelli, I.; Friuli, R.; Giulia, V.; Buian, F.M.; Zandigiacomo, P. Gasterocercus Depressirostris in Relict Woods in North-Eastern Italy: New Records of a Rare “Primary Forest” Species (Coleoptera, Curculionidae). In Proceedings of the International Symposium “Dead Wood: A Key to Biodiversity”; Mason, F., Nardi, G., Tisato, M., Eds.; European Commission/Ministry of Agriculture and Forestry: Mantova, Italy, 2003; pp. 96–97. [Google Scholar]
- Plewa, R.; Hilszczański, J.; Jaworski, T.; Tarwacki, G. Flower Chafer Protaetia speciosissima (Scopoli, 1786) (Coleoptera: Scarabaeidae)—Protected Saproxylic Species of Oak Stands in Poland. For. Res. Pap. 2014, 75, 225–229. [Google Scholar] [CrossRef]
- Fremlin, M. The Rose Chafer Cetonia aurata L. (Coleoptera: Scarabaeidae: Cetoniinae) in Essex: Distribution and Some Aspects of Its Ecology. Essex Nat. (New Ser.) 2018, 35, 167–178. [Google Scholar]
Sampling Unit | Variable | Details |
---|---|---|
Route | Presence of outstanding large veteran trees | Alive/dead/both; DBH > 50 cm |
Plot | Canopy closure | Closure of trees above 2.5 m in height with 5% precision |
Tree species composition in diameter classes | Cover in broad categories (0%–5%, 6%–20%, 21%–50%, 51%–100%), in diameter classes (DBH = 0–8, 9–20, 21–35, 36–50, >50 cm) above 2.5 m, per species | |
No. of standing dead trees and snags | In diameter classes above (dead tree) and below (snag) 2.5 m (DBH = 9–20, 21–50, >50 cm) | |
Decay stage of standing dead trees | Fresh/mixed/decayed categories in case of two diameter classes (DBH = 21–50, >50 cm) | |
Lying deadwood | FWD (Ø = 0–8 cm) and CWD (Ø > 8 cm) diameter and quantity (m3 classes) in 9 categories | |
Decay stage of CWD | Fresh/mixed/decayed categories for two diameter classes (Ø = 8–35, >35 cm) | |
No. of TreM categories | The occurrence of 12 categories: root plate, residual pile, new stump, old stump, trunk base rot hole, trunk rot hole, stem breakage, bark loss, bark shelter, bird breeding cavity on living tree, bird breeding cavity on dead tree, deadwood on living tree |
Occurrence of Each TreM Type (No.) | Interval-Scale Midpoint (No.) |
---|---|
0 | 0 |
1 | 1 |
2–5 | 4 |
6–10 | 8 |
10–25 | 18 |
>25 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoltán, L.; Németh, T.; Horváth, S.; Bérces, S.; Elek, Z.; Standovár, T. Relationships Between Saproxylic Beetle Microhabitat Occurrences and Forest State Indicators. Forests 2025, 16, 195. https://doi.org/10.3390/f16020195
Zoltán L, Németh T, Horváth S, Bérces S, Elek Z, Standovár T. Relationships Between Saproxylic Beetle Microhabitat Occurrences and Forest State Indicators. Forests. 2025; 16(2):195. https://doi.org/10.3390/f16020195
Chicago/Turabian StyleZoltán, László, Tamás Németh, Soma Horváth, Sándor Bérces, Zoltán Elek, and Tibor Standovár. 2025. "Relationships Between Saproxylic Beetle Microhabitat Occurrences and Forest State Indicators" Forests 16, no. 2: 195. https://doi.org/10.3390/f16020195
APA StyleZoltán, L., Németh, T., Horváth, S., Bérces, S., Elek, Z., & Standovár, T. (2025). Relationships Between Saproxylic Beetle Microhabitat Occurrences and Forest State Indicators. Forests, 16(2), 195. https://doi.org/10.3390/f16020195