Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Traits
2.2. Materials
2.3. Evaluation of Materials and Compositions
2.4. Panel Production
2.5. Performance Tests
2.6. Scanning Electron Microscopy
2.7. Statistical Analysis
3. Results and Discussion
3.1. Statistical Analysis of Results
3.2. Granulometry of Mixtures
3.3. Physical Properties
3.4. Mechanical Properties
3.5. Scanning Electron Microscope Images
3.6. Classifications According to Standard Codes
4. Conclusions
- Based on the tests conducted, it was confirmed that particleboards using epoxy resin can replace urea-formaldehyde and other adhesives, offering superior performance in some cases, such as physical and mechanical tests. Additionally, epoxy has the advantage of being less harmful to the environment and human health, making it a more sustainable option;
- The statistical analysis demonstrated that the epoxy resin content significantly influences all evaluated physical and mechanical properties;
- The scanning electron microscopy (SEM) analysis confirmed that the addition of 5% epoxy resin is not sufficient to adequately fill the voids in the panel or to provide good encapsulation of the particles, compromising protection against moisture. Panels with 10% and 15% present better resin encapsulation of the particles, which is sufficient to provide better protection in physical and mechanical tests;
- Panels met the parameters of both Brazilian and international standard codes for furniture applications under conditions of humid and not severe conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Production of Wood-Based Panels: Trends and Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#home (accessed on 11 November 2024).
- Campos, P.H.S.; Santos Junior, A.J.; de Souza, M.V.; Herradon, M.P.; Libera, V.B.L.; Dezen, L.E.; da Silva, É.V.; Silva, A.G.B.P.; Rodrigues, F.R.; Bispo, R.A.; et al. Evaluation and production of high-strength wood composite panels with polyethylene terephthalate (PET). BioResources 2023, 18, 8528–8535. [Google Scholar] [CrossRef]
- da Silva Cazella, P.H.; de Souza, M.V.; Rodrigues, F.R.; da Silva, S.A.M.; Bispo, R.A.; Araujo, V.A.; de Christoforo, A.L. Polyethylene terephthalate (PET) as a recycled raw material for particleboards produced from pinus wood and biopolymer resin. J. Clean. Prod. 2024, 447, 141460. [Google Scholar] [CrossRef]
- IMARC Group. Particleboard Market: Global Industry Trends, Share, Size, Growth, Opportunity, and Forecast 2023–2032; IMARC Group: New York, NY, USA, 2023; Available online: https://www.imarcgroup.com/particle-board-market (accessed on 11 November 2024).
- Mansouri, H.R.; Pizzi, A.; Leban, J.M. Improved water resistance of UF adhesives for plywood by small pMDI additions. Holz Als Roh-Und Werkst. 2006, 64, 218–220. [Google Scholar] [CrossRef]
- Guru, M.; Tekeli, S.; Bilici, İ. Manufacturing of urea–formaldehyde-based composite particleboard from almond shell. Mater. Des. 2006, 27, 1148–1151. [Google Scholar] [CrossRef]
- Salim, R.M.; Asik, J.; Sarjadi, M.S. Properties of Bark Particleboard Bonded with Demethylated Lignin Adhesives Derived from Leucaena leucocephala Bark. J. Renew. Mater. 2024, 12, 737–769. [Google Scholar] [CrossRef]
- Klein, C.; Nielsen, G.; Johanson, G.; Bolt, H.; Papameletiou, D.; European Commission: Directorate-General for Employment, Social Affairs and Inclusion. SCOEL/REC/125 formaldehyde–Recommendation from the Scientific Committee on Occupational Exposure Limits, Publications Office. 2016. Available online: https://data.europa.eu/doi/10.2767/399843 (accessed on 11 November 2024).
- Dorn, L.; Thirion, A.; Ghorbani, M.; Olaechea, L.M.; Mayer, I. Exploring fully biobased adhesives: Sustainable kraft lignin and 5-HMF adhesive for particleboards. Polymers 2023, 15, 2668. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Transparency Market Research. Epoxy Resins Market-Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2020–2031. Transparency Market Research. 2022. Available online: https://www.transparencymarketresearch.com/epoxy-resins-market.html (accessed on 12 November 2024).
- Zion Market Research. Epoxy Coatings Market: Global Industry Perspective, Comprehensive Analysis, and Forecast, 2018–2025. Zion Market Research. 2019. Available online: https://www.zionmarketresearch.com/report/epoxy-coatings-market (accessed on 12 November 2024).
- Herradon, M.P.; Santos Junior, A.J.; de Carvalho, F.A.; de Souza, M.V.; da Silva Cazella, P.H.; Rodrigues, F.R.; Bispo, R.A.; da Silva, S.A.M.; Christoforo, A.L. Produção e avaliação de painéis de partículas com resíduo de Pinus oocarpa aglutinadas com dois tipos de resinas. Cad. Pedagógico 2023, 20, 889–902. [Google Scholar] [CrossRef]
- Gilio, C.G.; Andraus Bispo, R.; Ferreira Trevisan, M.; Reis Rodrigues, F.; Frutuoso, C.; Junior, A.; Mello Da Silva, S.A. Produção de painéis aglomerados empregando seringueira, teca e poliuretano derivado de óleo de mamona. Rev. Principia 2021, 57, 86–97. [Google Scholar] [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT. NBR NM 248: Agregados: Determinação da Composição Granulométrica; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Souza, M.V.; da Silva, S.A.M.; Cazella, P.H.S.; Rodrigues, F.R.; Bonfim, K.S.; Sanches, A.O.; de Araujo, V.A.; dos Santos, H.F.; Pinto, E.M.; Christoforo, A.L.; et al. Particleboards manufactured from Tectona grandis wood waste with homogeneous and three-layer heterogeneous compositions for commercial purposes. BioResources 2022, 17, 5011–5020. [Google Scholar] [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT. NBR 6458: Grãos de Pedregulho Retidos na Peneira de Abertura 4,8 mm: Determinação da Massa Específica, da Massa Específica Aparente e da Absorção de Água; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT. NBR 6457: Amostras de Solo—Preparação Para Ensaios de Compactação e Ensaios de Caracterização; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT: Rio de Janeiro, Brazil, 2024. [Google Scholar]
- Bispo, R.A.; Trevisan, M.F.; da Silva, S.A.M.; Aquino, V.B.M.; Saraiva, R.L.P.; Arroyo, F.N.; Molina, J.C.; Chahud, E.; Branco, L.A.M.N.; Panzera, T.H.; et al. Production and evaluation of particleboards made of coconut fibers, pine, and eucalyptus using bicomponente polyurethane-castor oil resin. Bio Resour. 2022, 3944–3951. [Google Scholar] [CrossRef]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT. NBR 14810-2: Painéis de Partículas de Média Densidade: Parte 2: Requisitos e Métodos de Ensaio; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- American National Standards Institute–ANSI. A208.1: Particleboards; ANSI: Gaithersburg, MD, USA, 2016. [Google Scholar]
- European Comitee for Standardization. Particleboard: Specifications. EN 312; CEN: Brussels, Belgium, 2003; Available online: https://www.en-standard.eu/ (accessed on 12 November 2024).
- Iwakiri, S.; Trianoski, R. Painéis de Madeira Reconstituída, 2nd ed.; Fundação de Pesquisas Florestais do Paraná: Curitiba, Brasil, 2020; Available online: https://fupef.org.br/ (accessed on 12 November 2024).
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT. NBR. 7190: Projeto de Estruturas de Madeira; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS–ABNT: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Sozim, P.C.L.; Napoli, L.M.; Ferro, F.S.; Mustefaga, E.C.; Hillig, É. Propriedades de painéis aglomerados produzidos com madeiras de Ligustrum lucidum e Pinus taeda. Pesquisa Florestal Brasileira 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Carvalho, A.G.; Carlos, R.; Lelis, C.; Miguel Do Nascimento, A. Evaluation of adhesives based on tannins from pinus caribaea var. bahamensis and acacia mearnsii in the manufacture of particleboard. Ciência Florest. 2014, 2, 479–489. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pedzik, M.; Rogozinski, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
Mixture Traits | Pine (%) | Epoxy (%) |
---|---|---|
5EP | 100 | 5 |
10EP | 100 | 10 |
15EP | 100 | 15 |
Property | Epoxy Contents | p-Value (AD) | ||
---|---|---|---|---|
5% | 10% | 15% | ||
Density (D) | B | A | A | 0.341 |
Water absorption (WA) | A | B | C | 0.523 |
Thickness swelling (TS) | A | B | C | 0.064 |
Moisture content (MC) | A | A | B | 0.473 |
Modulus of rupture (MOR) | C | B | A | 0.261 |
Modulus of elasticity (MOE) | C | B | A | 0.063 |
Perpendicular tensile (PT) | C | B | A | 0.452 |
Type | Hole (mm) | Average Retained Mass (g) | Retained Material (%) |
---|---|---|---|
1/4” | 6.30 | 0.41 | 1.18 |
4 | 4.76 | 2.31 | 6.59 |
8 | 2.38 | 23.28 | 66.52 |
16 | 1.19 | 8.60 | 24.56 |
30 | 0.60 | 0.33 | 0.93 |
50 | 0.30 | 0.00 | 0.00 |
FM | - | - | 3.81 |
Property | Epoxy Contents | ||
---|---|---|---|
5% | 10% | 15% | |
D (kg/m3) | 840 | 880 | 890 |
WA (%) | 102.34 | 51.94 | 38.64 |
TS (%) | 55.53 | 28.45 | 15.84 |
MC (%) | 7.89 | 7.59 | 6.80 |
Property | Epoxy Contents | ||
---|---|---|---|
5% | 10% | 15% | |
MOR (N/mm2) | 9.05 | 16.52 | 26.92 |
MOE (N/mm2) | 1354 | 2679 | 3051 |
PT (N/mm2) | 0.30 | 1.01 | 1.43 |
Standard Code | Class. | TS (%) | PT (N/mm2) | MOR (N/mm2) | MOE (N/mm2) | Classified Panels |
---|---|---|---|---|---|---|
ABNT NBR 14810 [20] | P4 | 16 | 0.40 | 16 | 2300 | 15EP |
A208.1 [21] | M-3i | - | 0.50 | 15 | 2500 | 10EP |
A208.1 [21] | D-2 | - | 0.55 | 16.5 | 2750 | 15EP |
EN 312 [22] | P4 | 16 | 0.40 | 16 | 2300 | 15EP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Junior, A.J.; Herradon, M.P.; de Souza, M.V.; da Silva, S.A.M.; De Araujo, V.A.; de Almeida, D.H.; dos Santos, H.F.; Christoforo, A.L. Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions. Forests 2025, 16, 196. https://doi.org/10.3390/f16020196
Santos Junior AJ, Herradon MP, de Souza MV, da Silva SAM, De Araujo VA, de Almeida DH, dos Santos HF, Christoforo AL. Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions. Forests. 2025; 16(2):196. https://doi.org/10.3390/f16020196
Chicago/Turabian StyleSantos Junior, Antonio José, Marjorie Perosso Herradon, Matheus Viana de Souza, Sergio Augusto Mello da Silva, Victor Almeida De Araujo, Diego Henrique de Almeida, Herisson Ferreira dos Santos, and André Luis Christoforo. 2025. "Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions" Forests 16, no. 2: 196. https://doi.org/10.3390/f16020196
APA StyleSantos Junior, A. J., Herradon, M. P., de Souza, M. V., da Silva, S. A. M., De Araujo, V. A., de Almeida, D. H., dos Santos, H. F., & Christoforo, A. L. (2025). Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions. Forests, 16(2), 196. https://doi.org/10.3390/f16020196