Variability and Relationship Between Phenological and Morphological Traits in Early and Late Pedunculate Oak
Abstract
:1. Introduction
2. Materials and Methods
- 1—bud swelling
- 1a—bud elongation
- 2a—appearance of the first wrinkled leaves 0.5–3 cm long
- 2b—leaves 3–5 cm long
- 2v—leaves 5–7 cm long, intense leafing
- 2g—leaves 7–10 cm long, optimum leafing.
Statistical Analysis
3. Results
3.1. Principal Component Analysis (PCA)
3.2. Cluster Analysis
4. Discussion
4.1. Variability of Examined Traits
4.2. Relationship Between Examined Traits
4.3. Relationship Between Trees
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stojnić, S.; Trudić, B.; Galović, B.; Šimunovački, Đ.; Đorđević, B.; Rađević, V.; Orlović, S. Očuvanje genetičkih resursa hrasta lužnjaka na području Javnog preduzeća “Vojvodinašume”. Topola/Poplar 2014, 193/194, 47–71. (In Serbian) [Google Scholar]
- Rađević, V.; Pap, P.; Vasić, V. Gazdovanje šumama hrasta lužnjaka u Ravnom Sremu: Juče, danas, sutra. Topola/Poplar 2020, 206, 41–52. (In Serbian) [Google Scholar] [CrossRef]
- Stojanović, D.B.; Levanič, T.; Matović, B.; Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. For. Res. 2015, 134, 555–567. [Google Scholar] [CrossRef]
- Stojanović, D.B.; Orlović, S.; Zlatković, M.; Kostić, S.; Vasić, V.; Miletić, B.; Kesić, L.; Matović, B.; Božanić, D.; Pavlović, L.; et al. Climate change within Serbian forests: Current state and future perspectives. Topola/Poplar 2021, 208, 39–56. [Google Scholar] [CrossRef]
- Bobinac, M. Stand structure and natural regeneration of common oak in nature reserves Vratična and Smogva near Morović. Međunarodna konferencija: “OAK 2000-Improvement of wood quality and genetic diversity of oaks”. Glas. Šumske Pokuse 2000, 37, 295–309. [Google Scholar]
- Gajić, M.; Tešić, Ž. Vrste Roda Hrasta (Quercus L.) u Srbiji; Posebna publikacija; Institut za šumarstvo: Beograd, Serbia, 1992. (In Serbian) [Google Scholar]
- Krstinić, A. Unutarpopulacijska i međupopulacijska varijabilnost hrasta lužnjaka. In Oplemenjivanje Hrasta Lužnjaka u Hrvatskoj; Vidaković, M., Klepac, D., Eds.; HAZU i Hrvatske šume d.o.o.: Zagreb, Croatia, 1996; pp. 112–118. (In Croatian) [Google Scholar]
- Bobinac, M.; Batos, B.; Miljković, D.; Radulović, S. Polycyclism and phenological variability in the common oak (Quercus robur L.). Arch. Biol. Sci. 2012, 64, 97–105. [Google Scholar] [CrossRef]
- Memišević Hodžić, M. Morfološko-Fenološko-Genetička Varijabilnost Hrasta Lužnjaka (Quercus robur L.) u Bosanskohercegovačkom Testu Provenijencija. Ph.D Thesis, University of Sarajevo, Faculty of Forestry, Sarajevo, Bosnia and Herzegovina, 2015; pp. 1–191. (In Bosnian). [Google Scholar]
- Batos, B.; Miljković, D.; Perović, M.; Orlović, S. Morphological variability of Quercus robur L. leaf in Serbia. Genetika 2017, 49, 529–541. [Google Scholar] [CrossRef]
- Kremer, A.; Dupoey, J.L.; Deans, J.D.; Cottrell, J.; Csaikl, U.; Finkeldey, R.; Espinel, S.; Jensen, J.; Kleinschmit, J.; Van Dam, B.; et al. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. Des Sci. For. 2002, 59, 777–787. [Google Scholar] [CrossRef]
- Batos, B.; Bobinac, M.; Vilotić, D. Stomatal Variability of Common Oak (Quercus robur L.) Trees with Summer Flowering. In Proceedings of the International Scientific 16 Conference in Occasion of 60 Year of Operation of Institute of Forestry, Belgrade, Serbia: Sustainable Use of Forest Ecosystems, The Challenge of the 21st Century, Donji Milanovac, Serbia, 8–10 November 2006; pp. 219–224. [Google Scholar]
- Ballian, D.; Memišević, M.; Bogunić, F.; Bašić, N.; Marković, M.; Kajba, D. Morfološka varijabilnost hrasta unmake (Quercus robur L.) na području Hrvatske i Zapadnog Balkana. Šumar. List 2010, 134, 371–386. (In Serbian) [Google Scholar]
- Stojnić, S.; Orlović, S.; Miljković, D. Intra-and interprovenance variations in leaf mor-phometric traits in European beech (Fagus sylvatica L.). Arch. Biol. Sci. 2016, 68, 64. [Google Scholar] [CrossRef]
- Pilipović, A.; Drekić, M.; Stojnić, S.; Nikolić, N.; Trudić, S.; Milović, M.; Poljaković-Pajnik, L.; Borišev, M.; Orlović, S. Physiological responses of two pedunculate oak (Quercus robur L.) families to combined stress conditions–drought and herbivore attack. Šumar. List 2020, 144, 573–583. [Google Scholar]
- Szantijevska, N.; Zavadilova, I.; Nezval, O.; Krejza, J.; Petrik, P.; Čater, M.; Stojanović, M. Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. For. Ekol. Manag. 2022, 516, 120248. [Google Scholar] [CrossRef]
- Čortan, D.; Šijačić-Nikolić, M.; Knežević, R. Variability of morphometric leaf characteristics of Black poplar from the area of Vojvodina. Glas. Sumar. Fak. 2014, 109, 63–72. [Google Scholar] [CrossRef]
- Bertin, R.I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc.–BioOne 2008, 135, 126–146. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Erdeši, J. Fitocenoze Šuma Jugozapadnog Srema. Ph.D. Thesis, Šumsko gazdinstvo Sr. Mitrovica, Sremska Mitrovica, Serbia, 1971; p. 384. (In Serbian). [Google Scholar]
- Feeny, P. Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. Insect Physiol. 1968, 14, 805–817. [Google Scholar] [CrossRef]
- Tikkanen, O.-P.; Lyytiknen-Saarenmaa, P. Adaptation of ageneralist moth, Operophtera brumata, to variable budburstphenology of host plants. Entomol. Exp. Appl. 2002, 103, 123–133. [Google Scholar] [CrossRef]
- Franjić, J.; Sever, K.; Bogdan, S.; Škvorc, Ž.; Krstonošić, D.; Alešković, I. Fenološka neujednačenost kao ograničavajući čimbenik uspješnog oprašivanja u klonskim sjemenskim plantažama hrasta lužnjaka (Quercus robur L.). Croat. J. For. Eng. 2011, 32, 141–156. (In Croatian) [Google Scholar]
- Stamenković, V.; Vučković, M.; Simić, Z. Karakteristike prirasta ranolistajućeg i kasnolistajućeg hrasta lužnjaka (Quercus robur L.). In Proceedings of the Prvi Simpozijum za Oplemenjivanje Organizama, Vrnjačka banja, Beograd, Serbia, 8–11 November 1995. (In Serbian). [Google Scholar]
- Andrić, I.; Jazbec, A.; Pintar, V.; Kajba, D. Modeliranje vremena listanja u klonskoj sjemenskoj plantaži hrasta lužnjaka (Quercus robur L.). Šumar. List 2018, 142, 137–148. (In Croatian) [Google Scholar]
- Pellis, A.; Laureysens, I.; Ceulemans, R. Genetic Variation of the Bud and Leaf Phenology of Seventeen Poplar Clones in a Short Rotation Coppice Culture. Plant Biol. 2004, 6, 38–46. [Google Scholar] [CrossRef]
- Herniman, W.; Halbur, M.; Micheli, L. Comparison of Oak Phenology Between a Drought Year (WY 2014–2015) and an El Niño Year (WY 2015–2016) at Pepperwood Preserve, Sonoma County, CA; California Phenology Project. 2016. Available online: https://www.pepperwoodpreserve.org/wp-content/uploads/2016/01/Pepperwood-CA-Naturalist-Phenology-Poster-2016-08-31-2.pdf (accessed on 1 September 2024).
- Knott, J.A.; Liang, L.; Dukes, J.S.; Swihar, R.K.; Fei, S. Phenological response to climate variation in a northernred oak plantation: Links to survival and productivity. Ecology 2023, 104, e3940. [Google Scholar] [CrossRef] [PubMed]
- Tikkanen, O.P.; Julkunen-Tiitto, R. Phenological variation as protection against defoliating insects: The case of Quercus robur and Operophtera brumata. Oecologia 2003, 136, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Batos, B.; Ninić-Todorović, J.; Miljković, D. Population and individual variability of the leafing phenophase of pedunculate oak in three successive years. Bull. Fac. For. 2014, 109, 9–32. (In Serbian) [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Liao, P.C.; Wang, T.; Wang, X.; Ueno, S.; Du, F.K. Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & E.H. Wilson. Ann. For. Sci. 2021, 78, 64. [Google Scholar]
- Fu, G.; Dai, X.; Symanzik, J.; Bushman, S. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models. New Phytol. 2017, 213, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Nonić, M.; Šijačić Nikolić, M. Forest genetics resources in Serbia: State and recommendatins for improvement in this area. In Šumarska Genetika; University of Belgrade, Faculty of Forestry: Belgrade, Serbia, 2021; pp. 1–298. (In Serbian) [Google Scholar]
- Ferris, K.G. Endless forms most functional: Uncovering the role of natural selection in the evolution of leaf shape. Am. J. Bot. 2019, 106, 1–4. [Google Scholar] [CrossRef]
- Fritz, M.A.; Rosa, S.; Sicard, A. Mechanisms underlying the environmentally induced plasticity of leaf morphology. Front. Genet. 2018, 9, 478. [Google Scholar] [CrossRef]
- Aizen, M.A.; Patterson, W.A. Acorn size and geographical range in the North American oaks (Quercus L.). J. Biogeogr. 1990, 17, 327–332. [Google Scholar] [CrossRef]
- Bonito, A.; Varone, L.; Gratani, L. Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica 2011, 49, 75–86. [Google Scholar] [CrossRef]
- Popović, V.; Lučić, A.; Rakonjac, L.; Ćirković-Mitrović, T.; Brašanac-Bosanac, L. Influence of acorn size on morphological characteristics of one-year-old northern red oak (Quercus rubra L.) seedlings. Arch. Biol. Sci. 2015, 67, 1357–1360. [Google Scholar] [CrossRef]
- Woziwoda, B.; Greda, A.; Frelich, L.E. High acorn diversity of the introduced Quercus rubra indicates its ability to spread efficiently in the new range. Ekol. Indik. 2023, 146, 109884. [Google Scholar] [CrossRef]
- Devetaković, J.; Nonić, M.; Prokić, B.; Popović, V.; Šijačić-Nikolić, M. Acorn size influence on the quality of pedunculate oak (Quercus robur L.) one-year old seedlings. Reforesta 2019, 8, 17–24. [Google Scholar] [CrossRef]
- Roth, V.; Dubravac, T.; Pilaš, I.; Dekanić, S.; Brekalo, Z. Acorn size of Pedunculate oak (Quercus robur L.) and Sessile oak (Quercus petraea Liebl.) as a factor in growth and development of seedlings. Šumar. List 2009, 133, 257–266. [Google Scholar]
- Roth, V.; Dekanić, S.; Dubravac, T. Effect of acorn size on morphological development of one-year-old seedlings of Pedunculate oak (Quercus robur L.) in different light conditions. Šumar. List 2011, 135, 159–168. [Google Scholar]
- Anonymous. Osnova Gazdovanja Šumama za GJ “Vinična-Žeravinac-Puk” za Period 2017–2026. Godina. Public Enterprise “Vojvodinašume”: Petrovaradin, Serbia, 2017; pp. 1–460. (In Serbian) [Google Scholar]
- Franjić, J. Morphometric leaf analysis as an indicator of Pedunculate oak (Quercus robur L.) variability in Croatia. Ann. For. 1994, 19, 5–32. [Google Scholar]
- BTI Curriculum Development Projects in Plant Biology ImageJ Measurement Protocol. 2015. Available online: https://btiscience.org/wp-content/uploads/2015/12/d.-Beet-Armyworm-ImageJ-measurement-protocol-and-practice.pdf (accessed on 2 September 2024).
- RHMZ. 2024. Available online: https://www.hidmet.gov.rs/eng/meteorologija/klimatologija_produkti.php (accessed on 2 September 2024).
- TIBCO Software Inc. Data Science WorkBench 14.0.0. 2020. Available online: https://docs.tibco.com/products/tibco-data-science-workbench-14-0-0 (accessed on 2 September 2024).
- Lefèvre, F.; Lègionnet, A.; de Vries, S.; Turok, J. Strategies for the conservation of a pioneer tree species, Populus nigra L., in Europe. Genet. Sel. Evol. 2001, 30 (Suppl. S1), S181–S196. [Google Scholar] [CrossRef]
- Ballian, D.; Memišević, H.M. Varijabilnost Hrasta Lužnjaka (Quercus robur L.) u Bosni i Hercegovini; Udruženje inženjera i tehničara šumarstva Federacije Bosne i Hercegovine: Sarajevo, Bosnia and Herzegovina; Ljubljana, Slovenia, 2016; pp. 1–328. (In Serbian) [Google Scholar]
- Franjić, J. Morfometrijska analiza varijabilnosti lista posavskih i podravskih populacija hrasta lužnjaka (Quercus robur L., Fagaceae) u Hrvatskoj. Glas. Šumske Pokuse 1996, 33, 181–182. (In Croatian) [Google Scholar]
- Matić, S.; Komlenović, N.; Orlić, S.; Oršanić, M. Nursery production of pedunculate oak. In Hrast Lužnjak u Hrvatskoj; Hrvatska akademija znanosti i umjetnosti, “Hrvatske šume” doo: Zagreb, Croatia, 1996; pp. 423–425. [Google Scholar]
- Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R.P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Jaoudé, R.A.; et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Chang. Biol. 2013, 19, 75–89. [Google Scholar] [CrossRef]
- Jovanović, B.; Uvalić-Tomić, Z. Uticaj visokih temperaturau februaru 1966. godine na fenofaze nekih lišćara u Beogradu. Glas. Šumar. Fak. 1971, 38, 61–80. (In Serbian) [Google Scholar]
- Deans, D.J.; Harvey, J.F. Frost hardines provenances of Quercus petraea (Matt.) Liebl. Inter- and intra-specific variation in European oaks: Evolutionary implications and practical consequences. In Proceedings of the Workshop 1994, Brussels, Belgium, 17–18 January 1994; pp. 185–215. [Google Scholar]
- Vitasse, Y.; Porte, A.J.; Kremer, A.; Michalet, R.; Delzon, S. Responses of canopy duration to temperature changes in four temperate tree species: Relative contributions of spring and autumn leaf phenology. Oecologia 2009, 161, 187–198. [Google Scholar] [CrossRef]
- Kuster, T.M.; Dobbertin, M.M.; Gunthardt-Goerg, M.S.; Schaub, M.; Arend, M. A phenological timetable of oak growth under experimental drought and air warming. PLoS ONE 2014, 9, e89724. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Li, X.; He, S.; Zhong, M.; Shang, F. Spatiotemporal Variation of Osmanthus fragrans Phenology in China in Response to Climate Change From 1973 to 1996. Front. Plant Sci. 2022, 12, 716071. [Google Scholar] [CrossRef] [PubMed]
Traits (a) | Interval of Variation | F-Test | Coefficient of Variation (%) | Tukey’s HSD Test (c) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min–Max | FP (b) | pP | FT(P) | pT(P) | CVP | CVT(P) | CVres | Early Group | Late Group | |||
lbl | 7.880–14.713 | 1.188 | 0.284 | 4.815 | 0.000 | 1.634 | 13.852 | 35.421 | 10.890 | a | 10.274 | b |
lpl | 0.387–1.968 | 0.146 | 0.705 | 6.800 | 0.000 | 0.000 | 34.640 | 71.838 | 0.683 | a | 0.717 | a |
ll | 8.267–15.467 | 0.956 | 0.335 | 5.064 | 0.000 | 0.000 | 13.762 | 34.094 | 11.573 | a | 10.991 | b |
lbw | 5.317–9.225 | 0.090 | 0.766 | 10.803 | 0.000 | 0.000 | 15.219 | 24.276 | 6.836 | a | 6.724 | a |
la | 26.195–70.815 | 0.115 | 0.737 | 10.906 | 0.000 | 0.000 | 27.495 | 43.633 | 43.353 | a | 41.920 | a |
lbw/lbl | 0.500–0.754 | 1.713 | 0.200 | 2.271 | 0.000 | 1.945 | 7.169 | 31.760 | 0.640 | a | 0.668 | a |
lpl/lbw | 0.069–0.331 | 0.133 | 0.718 | 5.232 | 0.000 | 0.000 | 34.601 | 84.028 | 0.105 | a | 0.110 | a |
acl | 2.144–3.464 | 7.772 | 0.009 | 99.619 | 0.000 | 5.698 | 9.228 | 6.571 | 3.023 | a | 2.773 | b |
acw | 1.086–1.808 | 1.183 | 0.284 | 86.194 | 0.000 | 1.061 | 10.446 | 8.002 | 1.350 | b | 1.403 | a |
acinx | 1.646–2.747 | 13.038 | 0.001 | 102.481 | 0.000 | 8.626 | 10.480 | 7.356 | 2.263 | a | 1.994 | b |
acve | 1.513–5.489 | 0.003 | 0.959 | 88.312 | 0.000 | 0.000 | 26.529 | 20.076 | 2.968 | a | 2.954 | a |
Traits (a) | Interval of Variation | F-Test (b) | Coefficient of Variation (%) (b) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min–Max | FP | pP | FY | PY | FP×Y | pP×Y | CVP | CVY | CVP×Y | CVres | ||
f01 | 78.941–98.263 | 11.430 | 0.077 | 2.405 | 0.294 | 17.098 | 0.000 | 0.082 | 0.037 | 0.043 | 0.045 | |
f02b | 93.588–122.526 | 20.689 | 0.045 | 1.281 | 0.438 | 25.913 | 0.000 | 0.130 | 0.019 | 0.050 | 0.042 | |
f12b | 13.588–36.737 | 2.364 | 0.264 | 0.247 | 0.802 | 60.076 | 0.000 | 0.238 | 0.000 | 0.350 | 0.193 | |
f02g | 110.235–136.737 | 35.665 | 0.027 | 2.863 | 0.259 | 10.319 | 0.000 | 0.105 | 0.030 | 0.029 | 0.041 | |
f12g | 31.294–50.947 | 1.802 | 0.312 | 0.317 | 0.759 | 36.674 | 0.000 | 0.100 | 0.000 | 0.191 | 0.136 | |
f02a | 87.569–115.474 | 21.198 | 0.044 | 1.261 | 0.442 | 21.947 | 0.000 | 0.131 | 0.018 | 0.049 | 0.046 | |
f12a | 7.569–27.842 | 2.388 | 0.262 | 0.189 | 0.841 | 60.357 | 0.000 | 0.300 | 0.000 | 0.437 | 0.241 | |
f12a/f12b | 0.531–0.755 | 1.209 | 0.386 | 0.123 | 0.891 | 33.935 | 0.000 | 0.038 | 0.000 | 0.140 | 0.104 | |
f12a/f12g | 0.226–0.545 | 1.728 | 0.319 | 0.003 | 0.997 | 51.960 | 0.000 | 0.157 | 0.000 | 0.316 | 0.188 | |
f01t | 513.330–776.111 | 16.298 | 0.056 | 8.992 | 0.100 | 10.202 | 0.000 | 0.137 | 0.121 | 0.057 | 0.080 | |
f02bt | 742.822–1193.153 | 50.004 | 0.019 | 1.707 | 0.370 | 8.868 | 0.000 | 0.238 | 0.035 | 0.056 | 0.084 | |
f12bt | 229.492–558.115 | 14.487 | 0.063 | 0.446 | 0.692 | 14.737 | 0.000 | 0.403 | 0.000 | 0.183 | 0.210 | |
f02gt | 1001.835–1466.824 | 42.082 | 0.023 | 1.475 | 0.404 | 7.943 | 0.001 | 0.181 | 0.024 | 0.046 | 0.074 | |
f12gt | 488.505–833.023 | 8.226 | 0.103 | 0.321 | 0.757 | 17.436 | 0.000 | 0.211 | 0.000 | 0.132 | 0.138 | |
f02at | 635.845–1060.465 | 47.533 | 0.020 | 2.261 | 0.307 | 8.988 | 0.000 | 0.243 | 0.049 | 0.058 | 0.087 | |
f12at | 122.515–410.372 | 11.372 | 0.078 | 0.333 | 0.750 | 17.657 | 0.000 | 0.500 | 0.000 | 0.261 | 0.271 | |
f12a/f12bt | 0.509–0.733 | 4.012 | 0.183 | 0.141 | 0.876 | 11.829 | 0.000 | 0.107 | 0.000 | 0.102 | 0.131 | |
f12a/f12gt | 0.243–0.493 | 13.280 | 0.068 | 0.177 | 0.850 | 8.068 | 0.001 | 0.306 | 0.000 | 0.141 | 0.225 | |
Traits | Tukey’s HSD Test (c) | |||||||||||
Early2015 (d) | Early2016 | Early2017 | Late2015 | Late2016 | Late2017 | |||||||
f01 | 82.000 | cd | 78.941 | d | 80.000 | d | 98.263 | a | 88.158 | b | 85.789 | bc |
f02b | 102.824 | c | 96.882 | d | 93.588 | d | 121.842 | a | 110.421 | b | 122.526 | a |
f12b | 20.824 | bc | 17.941 | cd | 13.588 | d | 23.579 | b | 22.263 | bc | 36.737 | a |
f02g | 122.177 | c | 110.235 | d | 112.529 | d | 135.526 | a | 128.842 | b | 136.737 | a |
f12g | 40.176 | b | 31.294 | d | 32.529 | cd | 37.263 | bc | 40.684 | b | 50.947 | a |
f02a | 95.353 | c | 91.706 | cd | 87.569 | d | 115.474 | a | 103.342 | b | 113.632 | a |
f12a | 13.353 | c | 12.765 | c | 7.569 | d | 17.211 | b | 15.184 | bc | 27.842 | a |
f12a/f12b | 0.643 | c | 0.718 | ab | 0.531 | d | 0.729 | ab | 0.669 | bc | 0.755 | a |
f12a/f12g | 0.336 | c | 0.409 | bc | 0.226 | d | 0.457 | b | 0.373 | c | 0.545 | a |
f01t | 544.653 | d | 676.293 | b | 513.330 | d | 737.240 | a | 776.111 | a | 607.453 | c |
f02bt | 807.826 | c | 938.044 | b | 742.822 | c | 1162.926 | a | 1193.153 | a | 1165.568 | a |
f12bt | 263.173 | c | 261.751 | c | 229.492 | c | 425.686 | b | 417.042 | b | 558.115 | a |
f02gt | 1159.684 | b | 1191.745 | b | 1001.835 | c | 1453.020 | a | 1466.824 | a | 1440.476 | a |
f12gt | 615.031 | c | 515.452 | d | 488.505 | d | 715.780 | b | 690.713 | bc | 833.023 | a |
f02at | 710.999 | c | 833.096 | b | 635.845 | c | 1030.259 | a | 1060.465 | a | 1017.825 | a |
f12at | 166.347 | c | 156.803 | c | 122.515 | c | 293.019 | b | 284.354 | b | 410.372 | a |
f12a/f12bt | 0.639 | b | 0.607 | b | 0.509 | c | 0.686 | ab | 0.673 | ab | 0.733 | a |
f12a/f12gt | 0.275 | c | 0.305 | c | 0.243 | c | 0.403 | b | 0.413 | b | 0.493 | a |
Leaf Morphological Traits | Acorn Morphological Traits | Phenological Traits | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Early Group | Late Group | Early Group | Late Group | Early Group | Late Group | ||||||
lbl | 0.329 | lbl | 0.071 | acl | 0.568 | acl | 0.726 | f01 | 0.134 | f01 | 0.000 |
lpl | 0.438 | lpl | 0.150 | acw | 0.609 | acw | 0.647 | f02b | 0.013 | f02b | 0.000 |
ll | 0.337 | ll | 0.075 | acinx | 0.643 | acinx | 0.698 | f12b | 0.000 | f12b | 0.000 |
lbw | 0.278 | lbw | 0.284 | acve | 0.576 | acve | 0.677 | f02g | 0.000 | f02g | 0.226 |
la | 0.311 | la | 0.262 | f12g | 0.000 | f12g | 0.000 | ||||
lbw/lbl | 0.041 | lbw/lbl | 0.151 | f02a | 0.061 | f02a | 0.014 | ||||
lpl/lbw | 0.085 | lpl/lbw | 0.167 | f12a | 0.000 | f12a | 0.000 | ||||
f12a/f12b | 0.000 | f12a/f12b | 0.141 | ||||||||
f12a/f12g | 0.000 | f12a/f12g | 0.000 | ||||||||
f01t | 0.000 | f01t | 0.000 | ||||||||
f02bt | 0.000 | f02bt | 0.444 | ||||||||
f12bt | 0.156 | f12bt | 0.000 | ||||||||
f02gt | 0.000 | f02gt | 0.508 | ||||||||
f12gt | 0.000 | f12gt | 0.010 | ||||||||
f02at | 0.000 | f02at | 0.486 | ||||||||
f12at | 0.000 | f12at | 0.000 | ||||||||
f12a/f12bt | 0.000 | f12a/f12bt | 0.183 | ||||||||
f12a/f12gt | 0.000 | f12a/f12gt | 0.022 |
Original Variable (a) | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
d13 | −0.243 | −0.007 | −0.125 | 0.156 | −0.834 | −0.008 |
h | 0.218 | 0.031 | 0.029 | 0.144 | −0.773 | 0.011 |
acl | −0.458 | −0.343 | 0.570 | −0.230 | −0.348 | 0.124 |
acw | 0.135 | 0.067 | 0.957 | 0.066 | 0.176 | 0.066 |
acinx | −0.513 | −0.346 | −0.359 | −0.266 | −0.481 | 0.053 |
acve | −0.059 | −0.063 | 0.984 | −0.045 | 0.013 | 0.101 |
lbl | −0.140 | −0.949 | −0.033 | −0.016 | −0.021 | −0.211 |
lpl | 0.128 | −0.232 | −0.004 | 0.902 | −0.152 | 0.002 |
ll | −0.114 | −0.949 | −0.033 | 0.129 | −0.044 | −0.203 |
lbw | −0.068 | −0.913 | 0.076 | −0.041 | 0.017 | 0.361 |
la | −0.030 | −0.931 | 0.065 | 0.020 | 0.020 | 0.185 |
lbw/lbl | 0.158 | −0.050 | 0.181 | −0.089 | −0.023 | 0.933 |
lpl/lbw | 0.169 | 0.130 | −0.027 | 0.916 | −0.140 | −0.112 |
f01 | 0.925 | 0.074 | 0.050 | −0.007 | 0.028 | −0.018 |
f02b | 0.990 | 0.072 | 0.028 | 0.018 | 0.012 | 0.010 |
f12b | 0.957 | 0.062 | 0.002 | 0.042 | −0.005 | 0.038 |
f02g | 0.979 | 0.078 | −0.040 | −0.033 | 0.023 | 0.000 |
f12g | 0.890 | 0.070 | −0.136 | −0.058 | 0.014 | 0.021 |
f02a | 0.987 | 0.073 | 0.023 | 0.066 | 0.025 | 0.011 |
f12a | 0.963 | 0.065 | −0.011 | 0.143 | 0.021 | 0.044 |
f12a/f12b | 0.775 | −0.024 | −0.009 | 0.312 | 0.072 | 0.180 |
f12a/f12g | 0.911 | 0.040 | 0.059 | 0.240 | 0.032 | 0.107 |
f01t | 0.915 | 0.096 | 0.022 | −0.013 | 0.038 | −0.026 |
f02bt | 0.989 | 0.073 | 0.023 | 0.029 | 0.012 | 0.009 |
f12bt | 0.978 | 0.054 | 0.023 | 0.053 | −0.005 | 0.030 |
f02gt | 0.975 | 0.092 | −0.038 | −0.023 | 0.018 | −0.020 |
f12gt | 0.947 | 0.084 | −0.072 | −0.027 | 0.004 | −0.015 |
f02at | 0.986 | 0.079 | 0.015 | 0.087 | 0.035 | 0.005 |
f12at | 0.976 | 0.062 | 0.009 | 0.154 | 0.030 | 0.027 |
f12a/f12bt | 0.764 | 0.004 | 0.014 | 0.309 | 0.100 | 0.111 |
f12a/f12gt | 0.919 | 0.038 | 0.081 | 0.240 | 0.039 | 0.104 |
Explained variance | 16.514 | 3.904 | 2.443 | 2.230 | 1.748 | 1.241 |
Contribution to the total variance | 0.533 | 0.126 | 0.079 | 0.072 | 0.056 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Živković, A.B.; Nikolić, M.Š.; Stojanović, D.B.; Orlović, S.; Kovačević, B. Variability and Relationship Between Phenological and Morphological Traits in Early and Late Pedunculate Oak. Forests 2025, 16, 198. https://doi.org/10.3390/f16020198
Živković AB, Nikolić MŠ, Stojanović DB, Orlović S, Kovačević B. Variability and Relationship Between Phenological and Morphological Traits in Early and Late Pedunculate Oak. Forests. 2025; 16(2):198. https://doi.org/10.3390/f16020198
Chicago/Turabian StyleŽivković, Andrijana Bauer, Mirjana Šijačić Nikolić, Dejan B. Stojanović, Saša Orlović, and Branislav Kovačević. 2025. "Variability and Relationship Between Phenological and Morphological Traits in Early and Late Pedunculate Oak" Forests 16, no. 2: 198. https://doi.org/10.3390/f16020198
APA StyleŽivković, A. B., Nikolić, M. Š., Stojanović, D. B., Orlović, S., & Kovačević, B. (2025). Variability and Relationship Between Phenological and Morphological Traits in Early and Late Pedunculate Oak. Forests, 16(2), 198. https://doi.org/10.3390/f16020198