Effects of Herbaceous Plant Encroachment on the Soil Carbon Pool in the Shrub Tundra of the Changbai Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Litter Chemical Properties
2.4. Soil Physico-Chemical Properties
2.5. Quantification of Litter- and Soil-Derived Organic Carbon Molecular Structure
2.6. Statistical Analysis
3. Results
3.1. Effects of Herbaceous Plant Encroachment on Soil Carbon Input
3.2. Effects of Herbaceous Encroachment on Soil Carbon Emissions
3.3. Effects of Herbaceous Plant Encroachment on the Soil Organic Carbon Pool
3.4. Main Influencing Factors of Soil Organic Carbon Concentration and COX
4. Discussion
4.1. Effects of Herbaceous Plant Encroachment on SOC Concentration
4.2. Effects of Herbaceous Plant Encroachment on SOC Stability
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
CO2 | Carbon dioxide |
COX | Carbon oxidation state |
DOC | Dissolved organic carbon |
EOC | Easily oxidizable organic carbon |
LSD | Least significant difference |
MAOC | Mineral-associated organic carbon |
MBC | Microbial biomass carbon |
NH4+ | Ammonium nitrogen |
NO3− | Nitrate nitrogen |
POC | Particle organic carbon |
SEM | Structural equation model |
SOC | Soil organic carbon |
TC | Total carbon |
TN | Total nitrogen |
TP | Total phosphorus |
Appendix A
Functional Groups | Chemical Shifts | Carbon Types |
---|---|---|
Alkyl | 0–45 ppm | Alkyl carbon |
N-alkyl/methoxy | 45–60 ppm | N-alkyl methoxy carbon |
O-alkyl | 60–95 ppm | Alkoxy carbon |
O2-alkyl | 95–110 ppm | Di-alkoxy carbon |
Aromatic | 110–145 ppm | Aromatic carbon |
O-aromatic | 145–165 ppm | Phenolic aromatic carbon |
Carbonyl | 165–210 ppm | Carbonyl carbon |
Sampling Site | pH | TC (g/kg) | TN (g/kg) | C/N (%) | TP (g/kg) | NH4+ (mg/kg) | NO3− (mg/kg) |
---|---|---|---|---|---|---|---|
Rho | (4.28 + 0.01) a | (225.87 + 10.88) a | (10.47 + 0.22) bc | (21.60 + 1.17) a | (1.10 + 0.03) c | (10.56 + 0.23) c | (0.18 +0.07) b |
Mil | (4.27 + 0.02) a | (208.59 + 7.39) a | (9.27 + 0.47) c | (22.65 + 1.61) a | (0.98 + 0.08) c | (10.76 + 0.06) c | (0.06 + 0.02) b |
Mod | (4.23 + 0.02) ab | (203.82 + 1.87) a | (9.56 + 0.20) c | (21.34 + 0.61) a | (1.21 + 0.06) bc | (11.55 + 0.15) b | (0.06 + 0.02) b |
Sev | (4.25 + 0.04) ab | (205.25 + 7.15) a | (11.42 + 0.01) b | (17.97 + 0.62) b | (1.30 + 0.06) b | (11.38 + 0.06) b | (0.27 + 0.19) b |
Dey | (4.19 + 0.02) b | (131.85 + 8.45) b | (13.57 + 0.92) a | (9.83 + 0.98) b | (1.62 + 0.13) a | (16.78 + 0.14) a | (4.92 + 3.24) a |
Appendix B
References
- Batjes, N.H. Projected Changes in Soil Organic Carbon Stocks Upon Adoption of Recommended Soil and Water Conservation Practices in the Upper Tana River Catchment, Kenya. Land Degrad. Dev. 2014, 25, 278–287. [Google Scholar] [CrossRef]
- Schulze, E.D.; Freibauer, A. Environmental science—Carbon unlocked from soils. Nature 2005, 437, 205–206. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.M.; Birdsey, R.; McCullough, K.; He, L.; Deng, F. Age structure and disturbance legacy of North American forests. Biogeosciences 2011, 8, 715–732. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.B.; Zhang, W.S.; Zheng, L.Y.; Zhang, Y.Z.; Lu, C.; Liu, L.Y. Drivers of mountain soil organic carbon stock dynamics: A review. J. Soils Sediments 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Li, S.Y.; Zhou, W.Z.; He, L.; Zou, R.; Yu, J.; Chen, Z.; Bai, X.; Zhang, J.; Sun, X. Comparative Analysis of Soil Organic Carbon and Soil Oxide Minerals across Different Climates and Forest Types. Austrian J. For. Sci. 2024, 141, 53–78. [Google Scholar]
- Ofiti, N.O.E.; Schmidt, M.W.; Abiven, S.; Hanson, P.J.; Iversen, C.M.; Wilson, R.M.; Kostka, J.E.; Wiesenberg, G.L.B.; Malhotra, A. Climate warming and elevated CO2 alter peatland soil carbon sources and stability. Nat. Commun. 2023, 14, 7533. [Google Scholar] [CrossRef]
- Xu, M.P.; Zhi, R.C.; Jian, J.N.; Feng, Y.Z.; Han, X.H.; Zhang, W. Changes in Soil Organic C Fractions and C Pool Stability Are Mediated by C-Degrading Enzymes in Litter Decomposition of Robinia pseudoacacia Plantations. Microb. Ecol. 2023, 86, 1189–1199. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Mitchell, E.; Scheer, C.; Rowlings, D.; Cotrufo, M.F.; Conant, R.T.; Friedl, J.; Grace, P. Trade-off between ‘new’ SOC stabilisation from above-ground inputs and priming of native C as determined by soil type and residue placement. Biogeochemistry 2020, 149, 221–236. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Wang, R.; Shangguan, Z. Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery. Biol. Fertil. Soils 2017, 53, 939–949. [Google Scholar] [CrossRef]
- Gao, J.; Feng, J.; Zhang, X.; Yu, F.H.; Xu, X.; Kuzyakov, Y. Drying-rewetting cycles alter carbon and nitrogen mineralization in litter-amended alpine wetland soil. Catena 2016, 145, 285–290. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zong, N.; Hartley, I.P.; He, N.; Zhang, J.; Powlson, D.; Zhou, J.; Kuzyakov, Y.; Zhang, F.; Yu, G.; et al. Microbial metabolic response to winter warming stabilizes soil carbon. Glob. Change Biol. 2021, 27, 2011–2028. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Zhu, G.; Liu, H.; Peng, S.; Nie, L. Nutrient limitation of litter decomposition with long-term secondary succession: Evidence from controlled laboratory experiments. J. Soils Sediments 2020, 20, 1858–1868. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; He, T.; Wang, Y. Aboveground and belowground litter have equal contributions to soil CO2 emission: An evidence from a 4-year measurement in a subtropical forest. Plant Soil 2017, 421, 7–17. [Google Scholar] [CrossRef]
- Zhang, W.P.; Fornara, D.; Yang, H.; Yu, R.P.; Callaway, R.M.; Li, L. Plant litter strengthens positive biodiversity-ecosystem functioning relationships over time. Trends Ecol. Evol. 2023, 38, 473–484. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Cornelissen, J.H.C.; Vendramini, F.; Cabido, M.; Castellanos, A. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 2000, 218, 21–30. [Google Scholar] [CrossRef]
- Shaw, M.R.; Harte, J. Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change. Ecol. Appl. 2001, 11, 1206–1223. [Google Scholar] [CrossRef]
- Mcculley, R.L.; Archer, S.R.; Boutton, T.W.; Hons, F.M.; Zuberer, D.A. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 2004, 85, 2804–2817. [Google Scholar] [CrossRef]
- Liao, J.D.; Boutton, T.W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biol. Biochem. 2008, 40, 1207–1216. [Google Scholar] [CrossRef]
- Zong, S.W.; Xu, J.W.; Wu, Z.F. Investigation and Mechanism Analysis on the Invasion of Deyeuxia angustifolia to Tundra Zone in Western Slope of Changbai Mountain. J. Mt. Sci. 2013, 31, 448–455. [Google Scholar]
- Zhang, Y.J. Effects of Deyeuxia purpurea Expansion on the Changes in the Litter Decomposition of the Changbai Mountain Tundra and Soil Nutrients. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2022. [Google Scholar]
- Zong, S.W.; Wu, Z.F.; Du, H.B. Study on Climate Change in Alpine Tundra of the Changbai Mountain in Growing Season in Recent 52 Years (in China). Arid Zone Res. 2013, 30, 41–49. [Google Scholar]
- Zong, S.W. Mechanism Research on the Vegetation Changes of the Sub-Alpine Tundra, Changbai Mountains. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2014. [Google Scholar]
- Baldock, J.A.; Masiello, C.A.; Gélinas, Y.; Hedges, J.I. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar. Chem. 2004, 92, 39–64. [Google Scholar] [CrossRef]
- Nelson, P.N.; Baldock, J.A. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry 2005, 72, 1–34. [Google Scholar] [CrossRef]
- Masiello, C.A.; Gallagher, M.E.; Randerson, J.T.; Deco, R.M.; Chadwick, O.A. Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J. Geophys. Res. Biogeosciences 2008, 113, G03010. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Nie, M.; Shang, L.; Liao, C.; Li, B. Changes in Primary Production and Carbon Sequestration After Plant Invasions. In Impact of Biological Invasions on Ecosystem Services; Vilà, M., Hulme, P., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998; 540p. [Google Scholar]
- Biederbeck, V.O.; Janzen, H.H.; Campbell, C.A.; Zentner, R.P. Lsbile soil organic-matter as influenced by cropping practices in an arid environmentent. Soil Biol. Biochem. 1994, 26, 1647–1656. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Barbosa, R.I. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For. Ecol. Manag. 1998, 108, 147–166. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Cornelissen JH, C.; Bardgett, R.D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 2008, 11, 516–531. [Google Scholar] [CrossRef]
- Feng, X.; Wang, S. Plant influences on soil microbial carbon pump efficiency. Glob. Change Biol. 2023, 29, 3854–3856. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liang, C.; Duan, X.; Chen, H.; Li, D. Variation of microbial residue contribution to soil organic carbon sequestration following land use change in a subtropical karst region. Geoderma 2019, 353, 340–346. [Google Scholar] [CrossRef]
- Shao, P.; Liang, C.; Lynch, L.; Xie, H.; Bao, X. Reforestation accelerates soil organic carbon accumulation: Evidence from microbial biomarkers. Soil Biol. Biochem. 2019, 131, 182–190. [Google Scholar] [CrossRef]
- Lauer, F.; Koesters, R.; Du Preez, C.C.; Amelung, W. Microbial residues as indicators of soil restoration in South African secondary pastures. Soil Biol. Biochem. 2011, 43, 787–794. [Google Scholar] [CrossRef]
- Huang, R.; Crowther, T.W.; Sui, Y.; Sun, B.; Liang, Y. High stability and metabolic capacity of bacterial community promote the rapid reduction of easily decomposing carbon in soil. Commun. Biol. 2021, 4, 1376. [Google Scholar] [CrossRef]
- Geethanjali, P.A.; Jayashankar, P.M. A Review on Litter Decomposition by Soil Fungal Community. IOSR J. Pharm. Biol. Sci. 2016, 11, 1–3. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Castellano, M.J.; Vogel, C.; Wiesmeier, M.; Mueller, C.W. Unlocking complex soil systems as carbon sinks: Multi-pool management as the key. Nat. Commun. 2023, 14, 2967. [Google Scholar] [CrossRef]
- Cragg, S.M.; Friess, D.A.; Gillis, L.G.; Trevathan-Tackett, S.M.; Terrett, O.M.; Watts, J.E.; Distel, D.L.; Dupree, P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annu. Rev. Mar. Sci. 2020, 12, 469–497. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, D.; Zhao, G.; Chen, S.; Sun, T.; Sun, H.; Wu, C.; Li, Y.; Yu, Z.; Li, Y.; et al. The contribution of wetland plant litter to soil carbon pool: Decomposition rates and priming effects. Environ. Res. 2023, 224, 115575. [Google Scholar] [CrossRef]
- Yang, J.; Wu, F.; Wei, X.; Zhang, X.; Wu, Q.; Yue, K.; Ni, X. Global Positive Effects of Litter Inputs on Soil Nitrogen Pools and Fluxes. Ecosystems 2023, 26, 860–872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Jin, Y.; Xu, J.; Zhang, Y.; Yang, J. Effects of Herbaceous Plant Encroachment on the Soil Carbon Pool in the Shrub Tundra of the Changbai Mountains. Forests 2025, 16, 197. https://doi.org/10.3390/f16020197
Xu X, Jin Y, Xu J, Zhang Y, Yang J. Effects of Herbaceous Plant Encroachment on the Soil Carbon Pool in the Shrub Tundra of the Changbai Mountains. Forests. 2025; 16(2):197. https://doi.org/10.3390/f16020197
Chicago/Turabian StyleXu, Xiaoyun, Yinghua Jin, Jiawei Xu, Yingjie Zhang, and Jiaxing Yang. 2025. "Effects of Herbaceous Plant Encroachment on the Soil Carbon Pool in the Shrub Tundra of the Changbai Mountains" Forests 16, no. 2: 197. https://doi.org/10.3390/f16020197
APA StyleXu, X., Jin, Y., Xu, J., Zhang, Y., & Yang, J. (2025). Effects of Herbaceous Plant Encroachment on the Soil Carbon Pool in the Shrub Tundra of the Changbai Mountains. Forests, 16(2), 197. https://doi.org/10.3390/f16020197