Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of CBL Genes in P. trichocarpa
2.2. Phylogenetic Analysis and Multiple Sequence Alignment
2.3. Analysis of Promoter cis-Acting Elements
2.4. Prediction of Phosphorylation Sites
2.5. Protein Tertiary Structure and Interaction Network
2.6. Plant Materials, Alkaline Stress and RNA-Seq Analysis
2.7. RNA Extraction and RT-qPCR
2.8. Statistical Analysis
3. Results
3.1. Identification of the CBL Genes in Populus trichocarpa
3.2. Chromosome Localization and KaKs Calculation
3.3. Phylogenetic Analysis
3.4. Gene Structure and Conserved Motifs
3.5. Promoter cis-Element Analysis
3.6. Protein Tertiary Structure
3.7. Protein Interaction Network
3.8. Prediction in Phosphorylation Sites
3.9. RNA-Seq and Expression Heatmap
3.10. Expression Pattern of Populus simonii × Populus nigra Under Alkaline Stress
4. Discussion
4.1. The CBL Family Genes in Populus trichocarpa
4.2. Promoter cis-Acting Elements of PtrCBLs
4.3. The Predicted Protein Interaction Network of PtrCBLs
4.4. Expression Patterns and RNA-Seq Analysis of PsbCBLs Under Alkaline Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, L.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell 2002, 14 (Suppl. 1), S165–S183. [Google Scholar] [CrossRef] [PubMed]
- Kolukisaoglu, U.; Weinl, S.; Blazevic, D.; Batistic, O.; Kudla, J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 2004, 134, 43–58. [Google Scholar] [CrossRef]
- Dodd, A.N.; Kudla, J.; Sanders, D. The language of calcium signaling. Annu. Rev. Plant Biol. 2010, 61, 593–620. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.J.; Wang, C.; Li, K.; Luan, S. The CBL-CIPK calcium signaling network: Unified paradigm from 20 Years of discoveries. Trends Plant Sci. 2020, 25, 604–617. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Li, Y.; Chang, C.; Wang, Y.; Feng, H.; Li, R. A novel transcriptional regulator HbERF6 regulates the HbCIPK2-Coordinated pathway conferring salt tolerance in halophytic Hordeum brevisubulatum. Front. Plant Sci. 2022, 13, 927253. [Google Scholar] [CrossRef] [PubMed]
- Batistic, O.; Kudla, J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim. Biophys. Acta 2009, 6, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.J.; Liu, H.; Yang, Y.; Yang, L.; Gao, X.S.; Garcia, V.J.; Luan, S.; Zhang, H.X. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res. 2012, 22, 1650–1665. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Eckert, C.; Anschutz, U.; Scholz, M.; Held, K.; Waadt, R.; Reyer, A.; Hippler, M.; Becker, D.; Kudla, J. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J. Biol. Chem. 2012, 287, 7956–7968. [Google Scholar] [CrossRef]
- Kudla, J.; Xu, Q.; Harter, K.; Gruissem, W.; Luan, S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 1999, 96, 4718–4723. [Google Scholar] [CrossRef]
- Kanwar, P.; Sanyal, S.K.; Tokas, I.; Yadav, A.K.; Pandey, A.; Kapoor, S.; Pandey, G.K. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Cell Calcium. 2014, 56, 81–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Liu, S.; Yu, A.; Yang, C.; Chen, X.; Liu, J.; Wang, A. Identification and functional analysis of tomato CIPK gene family. Int. J. Mol. Sci. 2019, 21, 110. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, B.; Deng, J.; Chen, L.; Ullah, A.; Yang, X. Genome-wide analysis of CBL and CIPK family genes in cotton: Conserved structures with divergent interactions and expression. Physiol. Mol. Biol. Plants 2021, 27, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Liu, J.; Dong, C.; Cheng, Z.M. The CBL and CIPK gene family in grapevine (Vitis vinifera): Genome-Wide analysis and expression profiles in response to various abiotic stresses. Front. Plant Sci. 2017, 8, 978. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Fakher, B.; Jakada, B.H.; Zhao, L.; Cao, S.; Cheng, Y.; Qin, Y. Genome-Wide identification and expression profiling of CBL-CIPK gene family in pineapple (Ananas comosus) and the role of AcCBL1 in abiotic and biotic stress response. Biomolecules 2019, 9, 293. [Google Scholar] [CrossRef]
- Ma, X.; Li, Q.H.; Yu, Y.N.; Qiao, Y.M.; Haq, S.U.; Gong, Z.H. The CBL-CIPK pathway in plant response to stress signals. Int. J. Mol. Sci. 2020, 21, 5668. [Google Scholar] [CrossRef] [PubMed]
- Mahs, A.; Steinhorst, L.; Han, J.P.; Shen, L.K.; Wang, Y.; Kudla, J. The calcineurin B-like Ca2+ sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Mol. Plant 2013, 6, 1149–1162. [Google Scholar] [CrossRef]
- D’Angelo, C.; Weinl, S.; Batistic, O.; Pandey, G.K.; Cheong, Y.H.; Schultke, S.; Albrecht, V.; Ehlert, B.; Schulz, B.; Harter, K.; et al. Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J. 2006, 48, 857–872. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Greaves, J.G.; Jakada, B.H.; Fakher, B.; Wang, X.; Qin, Y. AcCIPK5, a pineapple CBL-interacting protein kinase, confers salt, osmotic and cold stress tolerance in transgenic Arabidopsis. Plant Sci. 2022, 320, 111284. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Zhang, D.; Chen, Y.; Wu, J. Genome-Wide identification of members of the soybean CBL gene family and characterization of the functional role of GmCBL1 in responses to saline and alkaline stress. Plants 2024, 13, 1304. [Google Scholar] [CrossRef]
- Wu, S.J.; Ding, L.; Zhu, J.K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 1996, 8, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Fuglsang, A.T.; Guo, Y.; Cuin, T.A.; Qiu, Q.; Song, C.; Kristiansen, K.A.; Bych, K.; Schulz, A.; Shabala, S.; Schumaker, K.S.; et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 2007, 19, 1617–1634. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Pardo, J.M.; Batelli, G.; Van Oosten, M.J.; Bressan, R.A.; Li, X. The Salt Overly Sensitive (SOS) pathway: Established and emerging roles. Mol. Plant 2013, 6, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bai, X.D.; Chen, K.; Zhang, X.Y.; Gu, C.R.; Jiang, J.; Yang, C.P.; Liu, G.F. PsnWRKY70 negatively regulates NaHCO3 tolerance in Populus. Int. J. Mol. Sci. 2022, 23, 13086. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, 1178–1186. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.; Tosatto, S.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 2008, 3, 153–162. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A user-friendly online tool for drawing genetic maps. Mol. Hortic. 2021, 1, 16–20. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34 (Suppl. 2), W369–W373. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Blom, N.; Sicheritz-Ponten, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004, 4, 1633–1649. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550–571. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.; Qu, C.; Xu, Z.; Li, W.; Hao, B.; Yang, C.; Sun, G.; Liu, G. Sequence and expression analysis of the AMT gene family in poplar. Front. Plant Sci. 2015, 6, 337. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef]
- Kaya, C.; Ugurlar, F.; Adamakis, I.S. Molecular mechanisms of CBL-CIPK signaling pathway in plant abiotic stress tolerance and hormone crosstalk. Int. J. Mol. Sci. 2024, 25, 5043. [Google Scholar] [CrossRef]
- Jacob, A.G.; Smith, C. Intron retention as a component of regulated gene expression programs. Hum. Genet. 2017, 136, 1043–1057. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217–218, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lan, W.; Chen, B.; Fang, W.; Luan, S. A calcium sensor-regulated protein kinase, CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19, is required for pollen tube growth and polarity. Plant Physiol. 2015, 167, 1351–1360. [Google Scholar] [CrossRef]
- Luan, S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 2009, 14, 37–42. [Google Scholar] [CrossRef]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under Saline-Alkali stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Weinl, S.; Kudla, J. The CBL-CIPK Ca2+-decoding signaling network: Function and perspectives. New Phytol. 2009, 184, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; An, L.; Li, W. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep. 2014, 33, 203–214. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Song, X.P.; Zhang, X.Q.; Huang, Y.X.; Liang, Y.J.; Zhou, S.; Yang, C.F.; Yang, L.T.; Huang, X.; Li, Y.R. Differential gene expression analysis of SoCBL family calcineurin b-like proteins: Potential involvement in sugarcane cold stress. Genes 2022, 13, 246. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, Y.-F.; Wang, Y.; Gao, Y.; Wang, Q.; Xue, Y. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Front. Genet. 2022, 13, 1041078. [Google Scholar] [CrossRef]
- Barik, S. Special issue: Structure, function and evolution of protein domains. Int. J. Mol. Sci. 2022, 23, 6201. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Mohanta, N.; Mohanta, Y.K.; Parida, P.; Bae, H. Genome-wide identification of Calcineurin B-Like (CBL) gene family of plants reveals novel conserved motifs and evolutionary aspects in calcium signaling events. BMC Plant Biol. 2015, 15, 189. [Google Scholar] [CrossRef]
- Ishitani, M.; Liu, J.; Halfter, U.; Kim, C.S.; Shi, W.; Zhu, J.K. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 2000, 12, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hao, H.; Zhang, Y.; Bai, Y.; Zhu, W.; Qin, Y.; Yuan, F.; Zhao, F.; Wang, M.; Hu, J.; et al. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type protein kinase, is important for abscisic acid responses in Arabidopsis through phosphorylation of ABSCISIC ACID-INSENSITIVE5. Plant Physiol. 2015, 168, 659–676. [Google Scholar] [CrossRef]
- Mao, J.; Manik, S.M.; Shi, S.; Chao, J.; Jin, Y.; Wang, Q.; Liu, H. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes 2016, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Batistic, O.; Kudla, J. Analysis of calcium signaling pathways in plants. Biochim. Biophys. Acta 2012, 1820, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Drerup, M.M.; Schlucking, K.; Hashimoto, K.; Manishankar, P.; Steinhorst, L.; Kuchitsu, K.; Kudla, J. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol. Plant 2013, 6, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lv, F.; Han, X.; Xia, X.; Yin, W. The calcium sensor PeCBL1, interacting with PeCIPK24/25 and PeCIPK26, regulates Na+/K+ homeostasis in Populus euphratica. Plant Cell Rep. 2013, 32, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Egea, I.; Pineda, B.; Ortiz-Atienza, A.; Plasencia, F.A.; Drevensek, S.; Garcia-Sogo, B.; Yuste-Lisbona, F.J.; Barrero-Gil, J.; Atares, A.; Flores, F.B.; et al. The SlCBL10 Calcineurin B-Like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis. Plant Physiol. 2018, 176, 1676–1693. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Q.; Wu, J.H.; Wang, Z.Q.; Geng, Y.J.; Li, J.; Zhang, Y.; Li, S. Arabidopsis calcineurin B-like-interacting protein kinase 8 and its functional homolog in tomato negatively regulates ABA-mediated stomatal movement and drought tolerance. Plant Cell Environ. 2024, 47, 2394–2407. [Google Scholar] [CrossRef]
- Wang, L.; Feng, X.; Yao, L.; Ding, C.; Lei, L.; Hao, X.; Li, N.; Zeng, J.; Yang, Y.; Wang, X. Characterization of CBL-CIPK signaling complexes and their involvement in cold response in tea plant. Plant Physiol. Biochem. 2020, 154, 195–203. [Google Scholar] [CrossRef]
- Chuamnakthong, S.; Nampei, M.; Ueda, A. Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci. 2019, 287, 110171. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Tang, R.J.; Xu, H.X.; Lan, W.Z.; Zhao, F.; Luan, S. Calcineurin B-Like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 2421. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Chromosome | Protein Length (aa) | Molecular Weight (kDa) | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity (GRAVY) | Transmembrane Domain | Predicted Localizations |
---|---|---|---|---|---|---|---|---|---|---|
PtrCBL1 | Potri.001G090200 | Chr01:7135427..7139480 forward | 216 | 24,588.92 | 4.64 | 38.27 | 91.16 | −0.221 | 0 | Cell membrane |
PtrCBL2 | Potri.001G150200 | Chr01:12540135..12545031 reverse | 213 | 24,340.72 | 4.65 | 31.99 | 88.73 | −0.131 | 0 | Cell membrane |
PtrCBL3 | Potri.001G371700 | Chr01:38923870..38928842 forward | 223 | 25,672.27 | 4.8 | 42.63 | 95.74 | −0.203 | 0 | Cell membrane |
PtrCBL4 | Potri.003G037800 | Chr03:4115827..4119014 forward | 244 | 27,826.1 | 4.93 | 41.48 | 106.76 | −0.007 | 1 | Cell membrane |
PtrCBL5 | Potri.003G084200 | Chr03:11086170..11091011 forward | 213 | 24,393.73 | 4.7 | 32.07 | 89.67 | −0.158 | 0 | Cell membrane |
PtrCBL6 | Potri.003G141400 | Chr03:15725522..15727978 reverse | 226 | 25,727.34 | 4.59 | 36.48 | 94.12 | −0.130 | 0 | Cytoplasm |
PtrCBL7 | Potri.006G002900 | Chr06:233213..238614 reverse | 226 | 25,887.34 | 4.74 | 43.90 | 89.34 | −0.290 | 0 | Cell membrane |
PtrCBL8 | Potri.006G230200 | Chr06:23364198..23366967 reverse | 254 | 29,236.43 | 4.85 | 42.37 | 97.56 | −0.135 | 1 | Cell membrane |
PtrCBL9 | Potri.011G094900 | Chr11:12236074..12240696 forward | 222 | 25,803.36 | 4.77 | 44.55 | 90.45 | −0.239 | 0 | Cell membrane |
PtrCBL10 | Potri.012G015100 | Chr12:1770445..1773882 reverse | 213 | 24,498.86 | 4.78 | 45.93 | 93.29 | −0.274 | 0 | Cell membrane |
PtrCBL11 | Potri.015G013100 | Chr15:845065..849858 forward | 213 | 24,453.94 | 4.94 | 41.35 | 91.03 | −0.305 | 0 | Cell membrane |
PtrCBL12 | Potri.015G013200 | Chr15:851384..855678 forward | 213 | 24,009.40 | 4.69 | 39.05 | 85.96 | −0.131 | 0 | Cell membrane |
PtrCBL13 | Potri.016G003500 | Chr16:176382..181897 reverse | 226 | 25,894.42 | 4.70 | 40.10 | 91.90 | −0.247 | 0 | Cell membrane |
Gene Pairs | Ka | Ks | Ka/Ks | Date (MY) | Duplication Type |
---|---|---|---|---|---|
PtrCBL2-PtrCBL5 | 0.021 | 0.2249 | 0.0933 | 6.81 | Purifying selection |
PtrCBL3-PtrCBL3 | 0.01536 | 0.2044 | 0.0751 | 6.19 | Purifying selection |
PtrCBL4-PtrCBL8 | 0.2293 | NaN | NaN | NaN | NaN |
PtrCBL7-PtrCBL13 | 0.0247 | 0.1643 | 0.1502 | 4.97 | Purifying selection |
PtrCBL10-PtrCBL11 | 0.0337 | 0.1645 | 0.205 | 4.98 | Purifying selection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, J.; Ju, Z.; Yang, J.; Leng, X. Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar. Forests 2025, 16, 200. https://doi.org/10.3390/f16020200
Wang H, Wu J, Ju Z, Yang J, Leng X. Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar. Forests. 2025; 16(2):200. https://doi.org/10.3390/f16020200
Chicago/Turabian StyleWang, Hanzeng, Juan Wu, Zhixin Ju, Jingli Yang, and Xue Leng. 2025. "Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar" Forests 16, no. 2: 200. https://doi.org/10.3390/f16020200
APA StyleWang, H., Wu, J., Ju, Z., Yang, J., & Leng, X. (2025). Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar. Forests, 16(2), 200. https://doi.org/10.3390/f16020200