Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material, Study Sites and Experimental Design
2.2. Selection of Fertilizers, Hydrogel and Perlite and Preparation of Substrates
- C—Control, no treatment
- SG—Starch gel
- SGLF—Starch gel containing liquid fertilizer
- SF—Solid fertilizer
- HG—Hydrogel
- HGSF—Hydrogel containing solid fertilizer
- P—Perlite
- PLF—Perlite containing liquid fertilizer
- PLFP—Perlite containing liquid fertilizer diluted with fertilizer-free Perlite
- PLFHG—Perlite containing liquid fertilizer and hydrogel
2.3. Application of Substrates
2.4. Planting and Measurements
2.5. Calculations and Statistical Analyses
3. Results
3.1. Plant Survival
3.2. Height Growth
3.3. Early Plant Development
4. Discussion
5. Conclusions
Acknowledgement
Author Contribution
Conflict of interest
References
- Christersson, L. Biomass production of intensively grown poplars in the southernmost part of Sweden: Observations of characters, traits and growth potential. Biomass Bioenergy 2006, 30, 497–508. [Google Scholar] [CrossRef]
- Larsson, S.; Lundmark, T.; Stålh, G. Möjligheter till intensiv odling av skog. Swed. Gov. Com. Final Rep. 2009, 1, 28. [Google Scholar]
- Rytter, L.; Johansson, T.; Karacic, A.; Weigh, M.; Börjesson, P.; Fogdestam, N.; Hannerz, M.; Ingvarsson, P.; Rosenqvist, H.; Stener, L.G.; et al. Orienterande Studie om ett Svenskt Forskningprogram för Poppel; Arbets Rapport; Skogforsk: Uppsala, Sweden, 2011. [Google Scholar]
- Hartmann, H.T.D.; Kester, D.E. Plant Propagation: Principles and Practices; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975; p. 609. [Google Scholar]
- DeBell, D.S.; Harrington, C.A. Productivity of Populus in monoclonal and polyclonal blocks at three spacings. Can. J. For. Res. 1997, 27, 978–985. [Google Scholar] [CrossRef]
- Hofmann-Schielle, C.; Jug, A.; Makeschin, F.; Rehfuess, K.E. Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the federal republic of Germany I. Site-growth relationships. For. Ecol. Manag. 1999, 121, 41–55. [Google Scholar] [CrossRef]
- Nilsson, U.; Gemmel, P. Growth in supplementarily planted Picea abies regenerations. Scand. J. For. Res. 2007, 22, 160–167. [Google Scholar] [CrossRef]
- Scott, D.; Welch, D.; Elston, D.A. Long-term effects of leader browsing by deer on the growth of Sitka spruce (picea sitchensis). Forestry 2009, 82, 387–401. [Google Scholar] [CrossRef]
- Coll, L.M.; Delagrange, C.; Berninger, S.F. Growth, allocation and leaf gas exchanges of hybrid poplar plants in their establishment phase on previously forested sites: Effect of different vegetation management techniques. Ann. For. Sci. 2007, 64, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Eyles, A.; Worledge, D.; Sands, P.; Ottenschlaeger, M.L.; Paterson, S.C.; Mendham, D.; O’Grady, A.P. Ecophysiological responses of a young blue gum (eucalyptus globulus) plantation to weed control. Tree Physiol. 2012, 32, 1008–1020. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.L.; Loddo, D.; Zanin, G. Weed-poplar competition dynamics and yield loss in Italian short-rotation forestry. Weed Res. 2010, 50, 153–162. [Google Scholar] [CrossRef]
- Van den Driessche, R. First-year growth response of four Populus trichocarpa × Populus deltoides clones to fertilizer placement and level. Can. J. For. Res. 1999, 29, 554–562. [Google Scholar]
- Bilodeau-Gauthier, S.; Pare, D.; Messier, C.; Bélanger, N. Juvenile growth of hybrid poplars on acidic boreal soil determined by environmental effects of soil preparation, vegetation control, and fertilization. For. Ecol. Manag. 2011, 261, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Buhler, D.D.; Netzer, D.A.; Riemenschneider, D.E.; Hartzler, R.G. Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy 1998, 14, 385–394. [Google Scholar] [CrossRef]
- Fang, S.X.; Baodong, L.J. Soil nutrient availability, poplar growth and biomass production on degraded agricultural soil under fresh grass mulch. For. Ecol. Manag. 2008, 255, 1802–1809. [Google Scholar] [CrossRef]
- Nilsson, U.; Allen, H.L. Short- and long-term effects of site preparation, fertilization and vegetation control on growth and stand development of planted loblolly pine. For. Ecol. Manag. 2003, 175, 367–377. [Google Scholar] [CrossRef]
- Veimont, J.D.; Crabbe, J. Dormancy in Plants: From Whole Plant Behavior to Cellular Control; CABI: New York, NY, USA, 2000; pp. 108–109. [Google Scholar]
- Thomas, D.S. Hydrogel applied to the root plug of subtropical eucalypt seedlings halves transplant death following planting. For. Ecol. Manag. 2008, 255, 1305–1314. [Google Scholar] [CrossRef]
- Chen, S.; Moitaba, Z.; Eberhard, F.; Wang, S.; Hüttermann, A. Hydrogel modified uptake of salt ions and calcium in Populus euphratica under saline conditions. Trees 2004, 18, 175–183. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analyses for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Wonnacott, W.; Wonnacott, T. Introductory Statistics; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Hüttermann, A.Z.; Moitaba, R.K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought. Soil Tillage Res. 1999, 50, 295–304. [Google Scholar] [CrossRef]
- Sarvaš, M. Effect of desiccation on the root system of Norway spruce (Picea abies L. Karst) seedlings and a possibility of using hydrogel Stockosorb® for its protection. J. For. Sci. 2003, 11, 531–536. [Google Scholar]
- Rowe, E.C.; Williamson, J.C.; Jones, D.L.; Holliman, P.; Healey, J.R. Initial tree establishment on blocky quarry waste ameliorated with hydrogel or slate processing fines. J. Environ. Qual. 2005, 34, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Viero, P.W.M.; Little, K.M.; Oscroft, D.G. The effect of a soil-amended hydrogel on the establishment of a Eucalyptus grandis × E. camaldulensis clone grown on the sandy soils of Zululand. South. Afr. For. J. 2000, 188, 21–28. [Google Scholar]
- Arbona, V.I.; Domingo, J.; Primo-Millo, J.; Talon, E.; Gómez-Cadenas, M.A. Hydrogel substrate amendment alleviates drought effects on young Citrus plants. Plant Soil 2005, 270, 73–82. [Google Scholar] [CrossRef]
- Apostol, K.G.; Jacobs, D.F.; Dumroese, R.K. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip. Plant Soil 2009, 315, 229–240. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils, 3rd ed.; Prentice Hall: Indiana, IN, USA, 2009. [Google Scholar]
- Stanturf, J.A.; van Oosten, C. Operational Poplar and Willow Culture. In Poplars and Willow, Trees for Society and the Enviroment; Isebrands, J.G., Richardson, J., Cutts, R., Eds.; CABI: Boston, MA, USA, 2014; Volume 1, pp. 210–211. [Google Scholar]
- Zhou, H.; Ding, L.; Fan, T.; Ding, J.; Zhang, D.; Guo, Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2014, 147, 221–228. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Wang, T.; Wang, S.; Polle, A.; Hüttermann, A. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J. Plant Growth Regul. 2002, 21, 224–233. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Fritz, E.; Wang, S.; Hüttermann, A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For. Ecol. Manag. 2002, 168, 217–230. [Google Scholar] [CrossRef]
- Wang, R.; Chen, S.; Deng, L.; Fritz, E.; Hüttermann, A.; Polle, A. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees 2007, 21, 581–591. [Google Scholar] [CrossRef]
- Sun, J.; Chen, S.; Dai, S.; Wang, R.; Li, N.; Shen, X.; Zhou, X.; Lu, C.; Zheng, X.; Hu, Z.; et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 2009, 149, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Britto, D.T.; Kronzucker, H. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Wang, X.; Below, F.E. Root growth, nitrogen uptake, and tillering of wheat induced by mixed-nitrogen source. Crop Sci. 1992, 32, 997–1002. [Google Scholar] [CrossRef]
- Saravitz, C.H.; Sylvain, C.; Musset, J.; Raper, C.D.; Morot-Gaudry, J.F. Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean: Is the effect located in roots or shoots? J. Exp. Bot. 1994, 45, 1575–1584. [Google Scholar] [CrossRef]
- Schortemeyer, M.; Feil, B. Root morphology of maize under homogeneous or spatially separated supply of ammonium and nitrate at three concentration ratios. J. Plant Nutr. 1996, 19, 1089–1097. [Google Scholar] [CrossRef]
- Woolfolk, W.T.M.; Friend, A.L. Growth response of cottonwood roots to varied NH4:NO3 ratios in enriched patches. Tree Physiol. 2003, 23, 427–432. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhlenius, H.; Övergaard, R. Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings. Forests 2014, 5, 2967-2979. https://doi.org/10.3390/f5122967
Böhlenius H, Övergaard R. Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings. Forests. 2014; 5(12):2967-2979. https://doi.org/10.3390/f5122967
Chicago/Turabian StyleBöhlenius, Henrik, and Rolf Övergaard. 2014. "Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings" Forests 5, no. 12: 2967-2979. https://doi.org/10.3390/f5122967
APA StyleBöhlenius, H., & Övergaard, R. (2014). Effects of Direct Application of Fertilizers and Hydrogel on the Establishment of Poplar Cuttings. Forests, 5(12), 2967-2979. https://doi.org/10.3390/f5122967