Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimating Ecosystem Services
2.1.1. Carbon Sequestration Estimation
2.1.2. Timber Volume Estimation
2.1.3. Water Yield Estimation
2.2. Interactions in Supply of Ecosystem Services and Goods
Code | Synergy | Percentage of Plots | Code | Trade-off | Percentage of Plots |
---|---|---|---|---|---|
111 | All 3 services are in low synergy | 19.6% | 112 | Water is moderately dominant | 28.1% |
122 | Moderate synergy between timber and water | 3.7% | 113, 213 | Water is highly dominant | 10.1% |
221 | Moderate synergy between carbon and timber | 9.3% | 121 | Timber is moderately dominant | 9.6% |
212 | Moderate synergy between carbon and water | 2.1% | 211 | Carbon is moderately dominant | 6.9% |
222 | All 3 services are in moderate synergy | 1.1% | 311, 312, 321 | Carbon is highly dominant | 4.8% |
331 | High synergy between carbon and timber | 1.3% | 231 | Timber is highly dominant | 3.5% |
2.3. Analysis of Drivers
3. Results and Discussion
3.1. Ecosystem Services Provision and Interactions
Variable | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|
Net Carbon Sequestration (Mg ha−1 yr−1) | −11.7 | 9.2 | 0.6 | 2.7 |
Timber Volume (m3 ha−1 yr−1) | 0.0 | 329.1 | 55.6 | 59.6 |
Water Yield (m3 ha−1 yr−1) | 461.1 | 6298.7 | 2223.5 | 1230.0 |
Ecosystem Service | Level | N | Percent | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|---|---|
Net Carbon Sequestration (Mg ha−1 yr−1) | 1 | 271 | 71.9 | −11.7 | 1.6 | −0.5 | 2.2 |
2 | 83 | 22.0 | 1.6 | 4.0 | 2.7 | 0.7 | |
3 | 23 | 6.1 | 4.3 | 9.2 | 5.7 | 1.2 | |
Timber Volume (m3 ha−1 yr−1) | 1 | 252 | 66.8 | 0.0 | 62.2 | 22.6 | 18.0 |
2 | 108 | 28.4 | 62.2 | 168.5 | 101.5 | 28.1 | |
3 | 18 | 4.8 | 169.2 | 329.1 | 243.5 | 50.3 | |
Water Yield (m3 ha−1 yr−1) | 1 | 207 | 54.9 | 461.1 | 2050.3 | 1363.5 | 394.8 |
2 | 132 | 35.0 | 2064.2 | 3830.2 | 2772.3 | 508.8 | |
3 | 38 | 10.1 | 3915.4 | 6298.7 | 5002.0 | 670.5 |
3.2. Effects of Drivers on Individual Ecosystem Service
Predictor | Estimate | Std Error | t Ratio | Prob > |t| | |
---|---|---|---|---|---|
Carbon Sequestration | |||||
Intercept | 4.054 | 0.130 | 31.18 | <0.0001 * | |
Age ** | −0.002 | 0.001 | −2.81 | 0.0052 * | |
Silvicultural Treatment 0,1,** | −0.625 | 0.047 | −13.26 | <0.0001 * | |
Ownership 0,1 | 0.030 | 0.044 | 0.67 | 0.5032 | |
Site Quality | −0.072 | 0.023 | −3.07 | 0.0023 * | |
Disturbance 0,1,** | 0.019 | 0.059 | 0.33 | 0.7440 | |
Timber Volume | |||||
Intercept | 6.339 | 0.543 | 11.67 | <0.0001 * | |
Age ** | 0.007 | 0.004 | 2.01 | 0.0455 * | |
Silvicultural Treatment 0,1,** | −1.029 | 0.197 | −5.23 | <0.0001 * | |
Ownership 0,1 | −0.068 | 0.184 | −0.37 | 0.7137 | |
Site Quality | −0.641 | 0.098 | −6.56 | <0.0001 * | |
Disturbance 0,1 | 0.108 | 0.248 | 0.44 | 0.6630 | |
Water Yield | |||||
Intercept | 684.154 | 376.452 | 1.82 | 0.0700 | |
Age ** | −17.341 | 2.431 | −7.13 | <0.0001 * | |
Silvicultural Treatment 0,1,** | 1113.729 | 136.338 | 8.17 | <0.0001 * | |
Ownership 0,1 | −324.723 | 127.578 | −2.55 | 0.0113 * | |
Site Quality | 442.700 | 67.750 | 6.53 | <0.0001 * | |
Disturbance 0,1,** | 50.617 | 172.099 | 0.29 | 0.7688 |
Driver | Estimates | DF | L-R ChiSquare | Prob > ChiSq |
---|---|---|---|---|
Age ** | −0.029 | 1 | 29.676 | <0.0001 * |
Treatment 0,1,** | 0.936 | 1 | 8.822 | 0.0044 * |
Ownership 0,1 | −0.596 | 1 | 4.556 | 0.0363 * |
Site Quality | 0.485 | 1 | 10.523 | 0.0015 * |
Disturbance 0,1,** | 1.042 | 1 | 6.757 | 0.0139 * |
3.3. Management Implications
4. Conclusions
Acknowledgements
Author Contributions
Appendix
Name | Description | Unit |
---|---|---|
LAI | Leaf Area Index | - |
LULC | Land use land cover | - |
ET | Evapotranspiration | |
FIA | Forest Inventory and Analysis | - |
TPA_UNADJ | Trees per acre unadjusted: a factor to convert per tree carbon values to per acre carbon values. | - |
CSQTNET | Net annual carbon sequestration | Mega gram per hectare per year (Mg ha−1 yr−1) |
CSTG1 | carbon storage in year 1 | Mega gram per hectare (Mg ha−1) |
CSTG2 | carbon storage in year 2 | Mega gram per hectare (Mg ha−1) |
REMPER | Re-measurement period | Years (yrs) |
VOLCFSND | Sound cubic-foot volume | Cubic meter (m3) |
PLT_CN | Plot sequence number. Key linking the tree record to the plot record | - |
PPT | Precipitation | Millimeter |
WY | Annual water yield | Cubic meter per hectare per year (m3 ha−1 yr−1) |
MAP | Mean annual precipitation | (m) |
Strategy (LUCIS) | The Land Use Conflict Identification | - |
IC | The three digit code defining the type of interaction | - |
CSL | Carbon sequestration provision level | 1, 2, 3 |
TVL | Timber volume provision level | 1, 2, 3 |
WYL | Water yield provision level | 1, 2, 3 |
Conflicts of Interest
References
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Heal, G.; Daily, G.C.; Ehrlich, P.R.; Salzman, J. Protecting natural capital through ecosystem service districts. Stan. Envtl. L. J. 2001, 20, 333. [Google Scholar]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Izquierdo, A.E.; Clark, M.L. Spatial analysis of conservation priorities based on ecosystem services in the Atlantic forest region of Misiones, Argentina. Forests 2012, 3, 764–786. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Guo, Z.; Xiao, X.; Li, D. An assessment of ecosystem services: Water flow regulation and hydroelectric power production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Egoh, B.N.; Reyers, B.; Rouget, M.; Richardson, D.M. Identifying priority areas for ecosystem service management in South African grasslands. J. Environ. Manag. 2011, 92, 1642–1650. [Google Scholar]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2005, 8, 468–479. [Google Scholar] [CrossRef]
- Balvanera, P.; Daily, G.C.; Ehrlich, P.R.; Ricketts, T.H.; Bailey, S.A.; Kark, S.; Kremen, C.; Pereira, H. Conserving Biodiversity. Science 2001, 291, 2047. [Google Scholar] [CrossRef]
- Dwivedi, P.; Alavalapati, J.R.R.; Susaeta, A.; Stainback, A. Impact of carbon value on the profitability of slash pine plantations in the southern United States: An integrated life cycle and Faustmann analysis. Can. J. For. Res. 2009, 39, 990–1000. [Google Scholar] [CrossRef]
- Hendry, L.C.; Gholz, H.L. Aboveground phenology in north Florida slash pine plantations. For. Sci. 1986, 32, 779–788. [Google Scholar]
- Brown, M.J.; Nowak, J.; Johnson, T.G.; Oswalt, S.N.; Chamberlain, J.L.; Barnard, E.L. Florida’s Forests, 2007. Resour. Bull. SRS–188. U.S. Department of Agriculture Forest Service, Southern Research Station. Asheville, NC, USA. 132 p.. 2012. Available online: http://www.srs.fs.usda.gov/pubs/42079 (accessed on 15 January 2013).
- Shan, J.; Morris, L.A.; Hendrick, R.L. The effects of management on soil and plant carbon sequestration in slash pine plantations. J. Appl. Ecol. 2001, 38, 932–941. [Google Scholar]
- Subak, S. Forest certification eligibility as a screen for CDM sinks projects. Clim. Policy 2002, 2, 335–351. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Jerome, K.V. Managing water use from forest plantations. For. Ecol. Manag. 2009, 257, 385–389. [Google Scholar] [CrossRef]
- McLaughlin, D.; Kaplan, D.; Cohen, M. Managing forests for increased regional water yield in the Southeastern U.S. Coastal Plain. J. Am. Water Resour. Assoc. 2013, 49, 953–965. [Google Scholar] [CrossRef]
- Fassnacht, K.S.; Gower, S.T.; MacKenzie, M.D.; Nordheim, E.V.; Lillesand, T.M. Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper. Remote Sens. Environ. 1997, 61, 229–245. [Google Scholar] [CrossRef]
- Iiames, J.S.; Congalton, R.G.; Pilant, A.N.; Lewis, T.E. Leaf Area Index (LAI) change detection analysis on loblolly pine (Pinus taeda) following complete understory removal. Photogramm. Eng. Remote Sens. 2008, 74, 1389–1400. [Google Scholar] [CrossRef]
- Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Timilsina, N.; Escobedo, F.J.; Cropper, W.P., Jr.; Abd-Elrahman, A.; Brandeis, T.J.; Delphin, S.; Lambert, S. A framework for identifying carbon hotspots and forest management drivers. J. Environ. Manag. 2012, 114, 293–302. [Google Scholar]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W., Jr. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model. J. Environ. Manag. 2013, 129, 599–607. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Rodríguez, J.P. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11, 28. [Google Scholar]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Schwenk, W.S.; Donovan, T.M.; Keeton, W.S.; Nunery, J.S. Carbon storage, timber production, and biodiversity: Comparing ecosystem services with multi-criteria decision analysis. Ecol. Appl. 2012, 22, 1612–1627. [Google Scholar] [CrossRef]
- Baral, H.; Keenan, R.J.; Fox, J.C.; Stork, N.E.; Kasel, S. Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecol. Complex 2013, 13, 35–45. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The impact of proxy-based methods on mapping the distribution of ecosystem services. J. Appl. Ecol. 2010, 47, 1365–2664. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Shaw, M.R.; Cameron, D.R.; Underwood, E.C.; Daily, G.C. Conservation planning for ecosystem services. PLoS Biol. 2006, 4, 379. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Rossing, W.A.H.; Jellema, A.; Stobbelaar, D.J.; Renting, H.; van Ittersum, M.K. Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—A methodology to support discussions on land-use perspectives. Agric. Ecosyst. Environ. 2007, 120, 58–69. [Google Scholar] [CrossRef]
- Egoh, B.; Reyers, B.; Rouget, M.; Bode, M.; Richardson, D.M. Spatial congruence between biodiversity and ecosystem services in South Africa. Biol. Conserv. 2009, 142, 553–562. [Google Scholar] [CrossRef]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Hoover, C.M.; Birdsey, R.A.; Heath, L.S.; Stout, S.L. How to estimate carbon sequestration on small forest tracts. J. For. 2000, 98, 13–19. [Google Scholar]
- Woudenberg, S.W.; Conkling, B.L.; O’Connell, B.M.; LaPoint, E.B.; Turner, J.A.; Waddel, K.L. The Forest Inventory and Analysis Database: Database Description and User’s Manual Version 4.0 for Phase 2; General Technical Report RMRS-GTR-245; US Department of Agriculture Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [Google Scholar]
- Florida Geographic Data Library (FGDL). Available online: http://www.fgdl.org (accessed on 17 February 2012).
- Florida Inventory Analysis National Program. Available online: http://www.fia.fs.fed.us (accessed on 18 March 2012).
- Prism Climate Group. Available online: http://www.prism.oregonstate.edu (accessed on 8 January 2012).
- Carr, M.H.; Zwick, P.D. Smart Land-Use Analysis—The LUCIS Model; ESRI Press: Redlands, CA, USA, 2008. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements & Statistics; ESRI Press: Redlands, CA, USA, 2005; p. 252. [Google Scholar]
- Mennis, J.; Liu, J.W. Mining association rules in spatio-temporal data: An analysis of urban socioeconomic and land cover change. Trans. GIS 2005, 9, 5–17. [Google Scholar]
- Brewer, C.A.; Pickle, L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann. Assoc. Am. Geog. 2003, 92, 662–681. [Google Scholar] [CrossRef]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantations in north Florida. Ecol. Appl. 2004, 14, 1154–1171. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Douglass, J.E. The potential for water yield augmentation from forest management in the eastern United States. J. Am. Water Resour. Assoc. 1983, 19, 351–358. [Google Scholar] [CrossRef]
- Stein, T.; Kil, N.; Frank, A.; Adams, A.E.; Adams, D.C.; Escobedo, F.J. Public land management agencies’ and nonindustrial private forest landowners’ perceptions about ecosystem services. University of Florida-IFAS, 2013. Available online: https://edis.ifas.ufl.edu/fr380 (accessed on 11 June 2014).
- Heath, L.S.; Smith, J.E.; Woodall, C.W.; Azuma, D.L.; Waddell, K.L. Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership. Ecosphere 2001, 2, 6. [Google Scholar]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Economic evaluation of ecosystem goods and services under different landscape management scenarios. Land Use Policy 2014, 39, 54–64. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cademus, R.; Escobedo, F.J.; McLaughlin, D.; Abd-Elrahman, A. Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests 2014, 5, 1409-1431. https://doi.org/10.3390/f5061409
Cademus R, Escobedo FJ, McLaughlin D, Abd-Elrahman A. Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests. 2014; 5(6):1409-1431. https://doi.org/10.3390/f5061409
Chicago/Turabian StyleCademus, Ronald, Francisco J. Escobedo, Daniel McLaughlin, and Amr Abd-Elrahman. 2014. "Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA" Forests 5, no. 6: 1409-1431. https://doi.org/10.3390/f5061409
APA StyleCademus, R., Escobedo, F. J., McLaughlin, D., & Abd-Elrahman, A. (2014). Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests, 5(6), 1409-1431. https://doi.org/10.3390/f5061409