Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Invasions into Production Forests in the Tropics
References | Species | Native Range | Problem | Habitat Invaded |
---|---|---|---|---|
[20] | Chromolaena odorata | North America and Caribbean | alter the vegetation structure | humid lowland production forest in south western India |
[35] | Alstonia macrophylla | Southeast Asia | no record | heavily logged and degraded forests in lowland southwestern Sri Lanka |
[25,36] | Urochloa maxima | Tropical Africa | form monodominant stands | seasonally dry and selectively logged forest in eastern lowland Bolivia |
Urochloa brizantha | Tropical and south Africa | no record | ||
Sorghum halapense | Mediterranean regions | no record | ||
Cynodon nlemfuensis | Tropical Africa | no record | ||
Rottboellia cochinchinensis | Africa, southern Asia, Australia | no record | ||
[24] | Piper aduncum | Southern America | no record | along logging roads in a lowland rain forest in East Kalimantan (Indonesian Borneo) |
[37] | Lantana camara | Central and south America | reduce grazing land for wild herbivores | plantations and disturbed forests in Sri Lanka (and many other countries) |
[38] | Acacia mearnsii | Southeastern Australia | displace native vegetation | plantations in southern India |
[39] | Eupatorium odoratum | North and central America | affect plantation growth | Acacia, pine, eucalypt and other plantations in Vietnam |
Imperata cylindrica | Southeastern Asia | no record |
References | Species | Native Range | Problem | Habitat Invaded |
---|---|---|---|---|
[33] | Passiflora tarminiana | South America | form dense mats covering tree crown | disturbed environments in logged forest up to upper montane in Hawaii |
Ehrharta stipoides | Tropical Asia and Australia | inhibit regeneration of native species | ||
Polygonum glabrum | Temperate and tropical Asia | no record | ||
Rubus argutus | North America | no record | ||
[40] | Rubus alceifolius | Southeastern Asia | disturb regeneration of high-value native species | moist open gaps in lowland to upper montane production forest on Réunion island |
3.2. Plantation Forests as Source of Invasion
References | Species | Native Range | Problem | Habitat Invaded |
---|---|---|---|---|
[56] | Grevillea robusta | Eastern Australia | suppressing the establishment of other species | native dry forests on Hawaii |
[52] | Falcataria moluccana | Molucca, New Guinea, New Britain, Solomon Island | alter the functioning of native dominated forest | intact remnants of native wet lowland forest on lava |
[33] | Fraxinus uhdei | Mexico, Costa Rica, Guatemala | suppress growth of native vegetation | natural logged forest; coast up to volcanic upper montane in Hawaii |
[57] | Pinus caribaea | South Mexico, central America, Caribbean | no record | ultramafic maquis on New Caledonia |
[58,59] | Pinus elliottii | Southeastern USA | no record | Eucalyptus forest in Australia; cerrado and other ecosystems in southern Brazil |
[60,61,62] | Maesopsis eminii | Tropical west and central Africa | form monospecific forest cover | selectively logged lowland to submontane rainforests in northeast Tanzania |
[63] | Alnus spp. | Northwestern Africa | form pure stands | montane forest gaps in the Philippines |
[37] | Myroxylon balsamum | Northern and south America | degrade the function of natural ecosystem | forest edges in the wet and intermediate zones of Sri Lanka |
Alstonia macrophylla | Southeast Asia | no record | secondary forests in the wet and intermediate zone of Sri Lanka | |
[37,38] | Prosopis juliflora | Central and south America | no record | thorn scrublands in Sri Lanka; abandoned agricultural land in India |
[38] | Acacia mearnsii | Southern Australia | suppressing natural vegetation | montane “shola” forest in Kerala, South India |
[64] | Acacia mangium | Northeastern Queensland | convert the habitat to monospecific stands | disturbed heath forest and native tree plantations in Brunei |
4. Factors Affecting Spread and Invasion
Species Traits | Description | References |
---|---|---|
Physiology | aliens have higher photosynthetic capacity, more efficient nitrogen and water use, and longer flowering period | [77,78,79] |
Specific leaf area (SLA) | aliens have higher SLA | [77,78,79,80] |
Root-shoot ratio | aliens have lower root-shoot ratios, i.e., they put more resources into above-ground biomass | [78,81] |
Growth rate | aliens grow faster | [78,79,80] |
Plant size | aliens are taller and have higher biomass | [44,78,79] |
Fruit size and type | aliens have larger and/or fleshy fruits | [78,79,82] |
Fitness | aliens have higher values for traits related to number of flowers or seeds, germination, survival, and/or mortality | [78] |
Novel weapon | ability to release allelopathic compounds that are novel to native habitats | [80,83] |
Biotic resistance | aliens are more resistant, e.g., to herbivory | [79,83] |
Clonal spread | aliens can reproduce vegetatively | [44,77,79] |
Phenotypic plasticity | aliens can acclimate to changing environments | [80] |
Processes | Description | References |
---|---|---|
Facilitation | existing trees and soil microbes may help the establishment of aliens; established aliens and the newly introduced species may facilitate each other | [80,84] |
Propagule pressures | the total number of propagules arriving from the source populations is a key predictor of invasions, reflecting the number of source individuals, their fecundity, and their distance from the invasion site | [80,85,86] |
Residence time | the time a species has been present is a major determinant of its cumulative propagule pressure | [82,87] |
Enemy release | the absence of species-specific pests and pathogens may favor alien species over natives | [16,83] |
Hybridization | hybridization may increase the genetic variation necessary to respond to changing environments and competitive regimes | [80,83] |
Seed dispersal | fruits/seeds of aliens are more efficiently dispersed | [43,82,88] |
5. Which Silvicultural Practices Favor Invasion?
6. Potential Impacts of Invasive Plant Species
7. Management of Invasive Plant Species in Production Forests
8. Conclusions: Invasive Species and the Future of Silviculture in Tropical Forests
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blaser, J.; Sarre, A.; Poore, D.; Johnson, S. Status of Tropical Forest Management 2011; ITTO Technical Series No. 38; International Tropical Timber Organization: Yokohama, Japan, 2011. [Google Scholar]
- FAO. State of the World’s Forests; Food and Agricultural Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- ITTO. Annual Review and Assessment of the World Timber Situation; International Tropical Timber Organization: Yokohama, Japan, 2012. [Google Scholar]
- Cernusak, L.A.; Winter, K.; Dalling, J.W.; Holtum, J.A.M.; Jaramillo, C.; Korner, C.; Leakey, A.D.B.; Norby, R.J.; Poulter, B.; Turner, B.L.; et al. Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Funct. Plant Biol. 2013, 40, 531–551. [Google Scholar] [CrossRef]
- Biodiversity and transboundary conservation. Available online: http://www.itto.int/feature02/ (accessed on 1 June 2014).
- ITTO. ITTO Guidelines for the Restoration, Management and Rehabilitation of Degraded and Secondary Tropical Forests; International Tropical Timber Organization: Yokohama, Japan, 2002. [Google Scholar]
- Peres, C.A.; Barlow, J. Human influences on tropical forest wildlife. Encyclopedia of Forest Sciences; Academic Press: Oxford, UK, 2004. Available online: http://www.academia.edu/ 4904734/human_influences_on_tropical_forest_wildlife (accessed on 17 May 2014).
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of degraded tropical forest landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef]
- Putz, F.E.; Zuidema, P.A.; Synnott, T.; Pena-Claros, M.; Pinard, M.A.; Sheil, D.; Vanclay, J.K.; Sist, P.; Gourlet-Fleury, S.; Griscom, B.; et al. Sustaining conservation selectively logged tropical forests: The attained and the attainable. Conserv. Lett. 2012, 5, 296–303. [Google Scholar] [CrossRef]
- Putz, F.E. Biodiversity conservation in tropical forests managed for timber. In Silviculture in the Tropics; Gunter, S., Weber, M., Stimm, B., Mosandl, R., Eds.; Springer: Berlin, Germany, 2011; pp. 91–101. [Google Scholar]
- Zimmerman, B.L.; Kormos, C.F. Prospects for sustainable logging in tropical forests. BioScience 2012, 62, 479–487. [Google Scholar] [CrossRef]
- Young, A.M.; Larson, B.M.H. Clarifying debates in invasion biology: A survey of invasion biologists. Environ. Res. 2011, 111, 893–898. [Google Scholar] [CrossRef]
- Richardson, D.M.; Hui, C.; Nunez, M.A.; Pauchard, A. Tree invasions: Patterns, processes, challenges and opportunities. Biol. Invasions 2014, 16, 473–481. [Google Scholar] [CrossRef]
- Peh, K.S.-H. Invasive species in Southeast Asia: The knowledge so far. Biodivers. Conserv. 2010, 19, 1083–1099. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.-L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; Garcia-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Corlett, R.T. The Ecology of Tropical East Asia, 2nd ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Teo, D.H.L.; Tan, H.T.W.; Corlett, R.T.; Choong, M.W.; Lum, S.K.Y. Continental rain forest fragments in Singapore resist invasion by exotic plants. J. Biogeogr. 2003, 30, 305–310. [Google Scholar] [CrossRef]
- Leung, G.P.C.; Hau, B.C.H.; Corlett, R.T. Exotic plant invasion in the highly degraded upland landscape of Hong Kong, China. Biodivers. Conserv. 2009, 18, 191–202. [Google Scholar] [CrossRef]
- Martin, P.H.; Canham, C.D.; Marks, P.L. Why forests appear resistant to exotic plant invasions: Intentional introductions, stand dynamics, and the role of shade tolerance. Front. Ecol. Environ. 2009, 7, 142–149. [Google Scholar] [CrossRef]
- Chandrashekara, U.M.; Ramakrishnan, P.S. Successional patterns and gap phase dynamics of a humid tropical forest of the Western Ghats of Kerala, India: Ground vegetation, biomass, productivity and nutrient cycling. For. Ecol. Manag. 1994, 70, 23–40. [Google Scholar]
- Leps, J.; Novotny, V.; Cizek, L.; Molem, K.; Isua, B.; Boen, W.; Kutil, R.; Auga, J.; Kasbal, M.; Manumbor, M.; et al. Successful invasion of the neotropical species Piper aduncum in rain forests in Papua New Guinea. Appl. Veg. Sci. 2002, 5, 255–262. [Google Scholar] [CrossRef]
- Silverio, D.V.; Brando, P.M.; Balch, J.K.; Putz, F.E.; Nepstad, D.C.; Oliveira-Santos, C.; Bustamante, M.M.C. Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120427. [Google Scholar] [CrossRef]
- Murphy, H.T.; Metcalfe, D.J.; Bradford, M.G.; Ford, A.F.; Galway, K.E.; Sydes, T.A.; Westcott, D.J. Recruitment dynamics of invasive species in rainforest habitats following Cyclone Larry. Austral Ecol. 2008, 33, 495–502. [Google Scholar] [CrossRef]
- Padmanaba, M.; Sheil, D. Spread of the invasive alien species Piper aduncum via logging roads in Borneo. Trop. Conserv. Sci. 2014, 7, 35–44. [Google Scholar]
- Veldman, J.W.; Putz, F.E. Long-distance dispersal of invasive grasses by logging vehicles in a tropical dry forest. Biotropica 2010, 42, 697–703. [Google Scholar] [CrossRef]
- Dawson, W.; Mndolwa, A.S.; Burslem, D.F.R.P.; Hulme, P.E. Assessing the risks of plant invasions arising from collections in tropical botanical gardens. Biodivers. Conserv. 2008, 17, 1979–1995. [Google Scholar] [CrossRef]
- Sheil, D.; Padmanaba, M. Innocent Invaders? A preliminary assessment of Cecropia, an American tree, in Java. Plant Ecol. Divers. 2011, 4, 279–288. [Google Scholar] [CrossRef]
- Onyekwelu, J.C.; Stimm, B.; Evans, J. Plantation forestry. In Silviculture in the Tropics; Gunter, S., Weber, M., Stimm, B., Mosandl, R., Eds.; Springer: Berlin, Germany, 2011; pp. 399–454. [Google Scholar]
- Ashton, M.S.; Gunatilleke, C.V.S.; Singhakumara, B.M.P.; Gunatilleke, I.A.U.N. Restoration pathways for rain forest in southwest Sri Lanka: A review of concepts and models. For. Ecol. Manag. 2001, 154, 409–430. [Google Scholar]
- DeWalt, S.J. Population dynamics and potential for biological control of an exotic invasive shrub in Hawaiian rainforests. Biol. Invasions 2006, 8, 1145–1158. [Google Scholar] [CrossRef]
- Denslow, J.S.; Space, J.C.; Thomas, P.A. Invasive exotic plants in the tropical Pacific Islands: Patterns of diversity. Biotropica 2009, 41, 162–170. [Google Scholar] [CrossRef]
- Loope, L.L.; Hughes, R.F.; Meyer, J.-Y. Plant Invasions in Protected Areas of Tropical Pacific Islands, with Special Reference to Hawaii. In Plant Invasions in Protected Areas; Foxcroft, L.C., Pysek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 313–348. [Google Scholar]
- Friday, J.B.; Scowcroft, P.G.; Adrian, A. Responses of native and invasive plant species to selective logging in an Acacia koa-Metrosideros polymorpha forest in Hawaii. Appl. Veg. Sci. 2008, 11, 471–482. [Google Scholar] [CrossRef]
- Linnebjerg, J.F.; Hansen, D.M.; Olesen, J.M. Gut passage effect of the introduced red-whiskered bulbul (Pycnonotus jocosus) on germination of invasive plant species in Mauritius. Austral Ecol. 2009, 34, 272–277. [Google Scholar] [CrossRef]
- Binggeli, P. An Overview of Invasive Woody Plants in the Tropics; Publication number 13. School of Agricultural and Forest Sciences, University of Wales: Bangor, UK, 1998. Available online: http://pages.bangor.ac.uk/~afs101/iwpt/project3.html (accessed on 16 May 2014).
- Veldman, J.W.; Mostacedo, B.; Pena-Claros, M.; Putz, F.E. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest. For. Ecol. Manag. 2009, 258, 1643–1649. [Google Scholar]
- Weerawardane, N.D.R.; Dissanayake, J. Status of forest invasive species in Sri Lanka. In The Unwelcome Guests, Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, Yunnan, China, 17–23 August 2003; McKenzie, P., Brown, C., Jianghua, S., Jian, W., Eds.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2005. [Google Scholar]
- Sankaran, K.V.; Murphy, S.T.; Sreenivasan, M.A. When good trees turn bad: The unintended spread of introduced plantation tree species in India. In The Unwelcome Guests, Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, Yunnan, China, 17–23 August 2003; McKenzie, P., Brown, C., Jianghua, S., Jian, W., Eds.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2005. [Google Scholar]
- Thu, P.Q. Forest invasive species and their impacts on afforestation in Vietnam. In The Unwelcome Guests, Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, Yunnan, China, 17–23 August 2003; McKenzie, P., Brown, C., Jianghua, S., Jian, W., Eds.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2005. [Google Scholar]
- Baret, S.; le Bourgeois, T.; Riviere, J.-N.; Pailler, T.; Sarrailh, J.-M.; Strasberg, D. Can species richness be maintained in logged endemic Acacia heterophylla forests (Reunion Island, Indian Ocean)? Rev. Ecol. 2007, 62, 3–14. [Google Scholar]
- Richardson, D.M. Forestry trees as invasive aliens. Conserv. Biol. 1997, 12, 18–26. [Google Scholar] [CrossRef]
- Richardson, D.M.; Petit, R.J. Pines as invasive aliens: Outlook on transgenic pine plantations in the Southern hemisphere. In Landscapes, Genomics and Transgenic Conifers; Williams, C.G., Ed.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Richardson, D.M.; Rejmanek, M. Trees and shrubs as invasive alien species—A global review. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Pysek, P.; Jarosik, V.; Pergl, J.; Moravcova, L.; Chytry, M.; Kuhn, I. Temperate trees and shrubs as global invaders: The relationship between invasiveness and native distribution depends on biological traits. Biol. Invasions 2014, 16, 577–589. [Google Scholar] [CrossRef]
- Donaldson, J.E.; Hui, C.; Richardson, D.M.; Robertson, M.P.; Webber, B.L.; Wilson, J.R.U. Invasion trajectory of alien trees: The role of introduction pathway and planting history. Glob. Chang. Biol. 2014, 20, 1527–1537. [Google Scholar] [CrossRef]
- Dodet, M.; Collet, C. When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol. Invasions 2012, 14, 1765–1778. [Google Scholar] [CrossRef]
- Foxcroft, L.C.; Witt, A.; Lotter, W.D. Icons in peril: Invasive alien plants in African protected areas. In Plant Invasions in Protected Areas; Foxcroft, L.C., Pysek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 117–143. [Google Scholar]
- Hulme, P.E.; Burslem, D.F.R.P.; Dawson, W.; Edward, E.; Richard, J.; Trevelyan, R. Aliens in the arc: Are invasive trees a threat to the montane forests of East Africa? In Plant Invasions in Protected Areas; Foxcroft, L.C., Pysek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 145–165. [Google Scholar]
- Genovesi, P.; Monaco, A. Guidelines for addressing invasive species in protected areas. In Plant Invasions in Protected Areas; Foxcroft, L.C., Pysek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 487–506. [Google Scholar]
- Rundel, P.W.; Dickie, I.A.; Richardson, D.M. Tree invasions into treeless areas: Mechanisms and ecosystem processes. Biol. Invasions 2014, 16, 663–675. [Google Scholar] [CrossRef]
- Rejmanek, M. Invasive trees and shrubs: Where do they come from and what we should expect in the future? Biol. Invasions 2013, 16, 483–498. [Google Scholar] [CrossRef]
- Hughes, R.F.; Denslow, J.S. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii. Ecol. Appl. 2005, 15, 1615–1628. [Google Scholar] [CrossRef]
- Rejmanek, M.; Richardson, D.M. Eucalypts. In Encyclopedia of Biological Invasions; Simberloff, D., Rejmanek, M., Eds.; University of California Press: Berkeley and Los Angeles, USA, 2011; pp. 203–209. [Google Scholar]
- Booth, T.H. Eucalypts and their potential for invasiveness particularly in frost-prone regions. Int. J. For. Res. 2012, 2012. [Google Scholar] [CrossRef]
- Gordon, D.R.; Flory, S.L.; Cooper, A.L.; Morris, S.K. Assessing the invasion risk of Eucalyptus in the United States using the Australian Weed Risk Assessment. Int. J. For. Res. 2012, 2012. [Google Scholar] [CrossRef]
- Denslow, J.S. Invasive alien woody species in Pacific island forests. Unasylva 2002, 209, 62–63. [Google Scholar]
- Richardson, D.M. Mediterranean pines as invaders in the Southern Hemisphere. In Ecology, Biogeography, and Management of Pinus Halepensis and P. Brutia Forest Ecosystems in the Mediterranean Basin; Ne’eman, G., Trabaud, L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 131–142. [Google Scholar]
- Batianoff, G.N.; Butler, D.W. Assessment of invasive naturalized plants in south-east Queensland. Plant Prot. Q. 2002, 17, 27–34. [Google Scholar]
- Zanchetta, D.; Diniz, F.V. Study of biological contamination by Pinus spp. in three different areas in the ecological station of Itirapina (SP, Brazil). Inst. Florest. 2006, 18, 1–14. [Google Scholar]
- Sheil, D. Naturalised and invasive plant species in the evergreen forests of the East Usambara mountains, Tanzania. Afr. J. Ecol. 1994, 32, 66–71. [Google Scholar] [CrossRef]
- Cordeiro, N.J.; Patrick, D.A.G.; Munisi, B.; Gupta, V. Role of dispersal in the invasion of an exotic tree in an East African sub montane forest. J. Trop. Ecol. 2004, 20, 449–457. [Google Scholar] [CrossRef]
- Hall, J.M.; Gillespie, T.W.; Mwangoka, M. Comparison of agroforests and protected forests in the East Usambara mountains, Tanzania. Environ. Manag. 2011, 48, 237–247. [Google Scholar]
- Baguinon, N.T.; Quimado, M.O.; Francisco, G.J. Country report on forest invasive species in the Philippines. In The Unwelcome Guests, Proceedings of the Asia-Pacific Forest Invasive Species Conference, Kunming, Yunnan, China, 17–23 August 2003; McKenzie, P., Brown, C., Jianghua, S., Jian, W., Eds.; Food and Agriculture Organization of the United Nations: Roma, Italy, 2005. [Google Scholar]
- Osunkoya, O.O.; Othman, F.E.; Kahar, R.S. Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Melastoma beccarianum. Ecol. Res. 2005, 20, 205–214. [Google Scholar] [CrossRef]
- DeWalt, S.J.; Denslow, J.S.; Ickes, K. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 2004, 85, 471–483. [Google Scholar] [CrossRef]
- Le Bourgeois, T.; Baret, S.; de Chenon, R.D. Biological control of Rubus alceifolius (Rosaceae) in La Réunion Island (Indian Ocean): From investigations on the plant to the release of the biocontrol agent Cibdela janthina (Argidae). In Proceedings of the XIII International Symposium on the Biocontrol of Weeds, Waikoloa, HI, USA, 11–16 September 2011; pp. 153–160.
- Te Beest, M.; Elschot, K.; Olff, H.; Etienne, R.S. Invasion success in a marginal habitat: An experimental test of competitive ability and drought tolerance in Chromolaena odorata. PLoS One 2013, 8. [Google Scholar] [CrossRef]
- Tondoh, J.E.; Kone, A.W.; N’Dri, J.K.; Tamene, L.; Brunet, D. Changes in soil quality after subsequent establishment of Chromolaena odorata fallows in humid savannahs, Ivory Coast. Catena 2013, 101, 99–107. [Google Scholar] [CrossRef]
- Koutika, L.-S.; Rainey, H.J. Chromolaena Odorata in different ecosystems: Weed or fallow plant? Appl. Ecol. Environ. Res. 2010, 8, 131–142. [Google Scholar]
- Rogers, H.M.; Hartemink, A.E. Soil seed bank and growth rates of an invasive species, Piper aduncum, in the lowlands of Papua New Guinea. J. Trop. Ecol. 2000, 16, 243–251. [Google Scholar] [CrossRef]
- Yoneda, T. Fruit production and leaf longevity in the tropical shrub Piper aduncum L. in Sumatra. Tropics 2006, 15, 209–217. [Google Scholar] [CrossRef]
- Hartemink, A.E. The invasive shrub Piper aduncum in Papua New Guinea: A review. J. Trop. For. Sci. 2010, 22, 202–213. [Google Scholar]
- Rejmanek, M.; Richardson, D.M. What attributes make some plant species more invasive? Ecology 1996, 77, 1655–1661. [Google Scholar] [CrossRef]
- Richardson, D.M.; Williams, P.A.; Hobbs, R.J. Pine invasions in the southern hemisphere: Determinants of spread and invadability. J. Biogeogr. 1994, 21, 511–527. [Google Scholar] [CrossRef]
- Hall, J.B. Maesopsis eminii and its status in the East Usambara mountains. East Usambara Catchment Forest Project (EUCFP); Technical Report 13. Ministry of Tourism, Natural Resources and Environment, Tanzania and Department of International Development Cooperation: Merikasarmi, Finland, 1995. Available online: http://easternarc.or.tz/downloads/ E-Usam/EUCAMP/tecpap13.pdf (accessed on 20 May 2014).
- Fine, P.V.A. The invasibility of tropical forests by exotic plants. J. Trop. Ecol. 2002, 18, 687–705. [Google Scholar]
- Lake, J.C.; Leishman, M.R. Invasion success of exotic plants in natural ecosystems: The role of disturbance, plant attributes and freedom from herbivores. Biol. Conserv. 2004, 117, 215–226. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef]
- Pysek, P.; Richardson, D.M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasion; Nentwig, W., Ed.; Springer: Berlin, Germany, 2007; pp. 97–125. [Google Scholar]
- Lamarque, L.J.; Delzon, S.; Lortie, C.J. Tree invasions: A comparative test of the dominant hypotheses and functional traits. Biol. Invasions 2011, 13, 1969–1989. [Google Scholar] [CrossRef]
- Wilsey, B.J.; Polley, H.W. Aboveground productivity and root—Shoot allocation differ between native and introduced grass species. Oecologia 2006, 150, 300–309. [Google Scholar] [CrossRef]
- Pysek, P.; Krivanek, M.; Jarosik, V. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 2009, 90, 2734–2744. [Google Scholar] [CrossRef]
- Hufbauer, R.A.; Torchin, M.E. Integrating ecological and evolutionary theory of biological invasions. In Biological Invasion; Nentwig, W., Ed.; Springer: Berlin, Germany, 2007; pp. 79–96. [Google Scholar]
- Ricciardi, A.; Hoopes, M.F.; Marchetti, M.P.; Lockwood, J.L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 2013, 83, 263–282. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Wilson, J.R.U.; Richardson, D.M.; Rouget, M.; Proches, S.; Amis, M.A.; Henderson, L.; Thuiller, W. Residence time and potential range: Crucial considerations in modelling plant invasions. Divers. Distrib. 2007, 13, 11–22. [Google Scholar] [CrossRef]
- Wilson, J.R.U.; Dormontt, E.E.; Prentis, P.J.; Lowe, A.J.; Richardson, D.M. Something in the way you move: Dispersal pathways affect invasion success. Trends Ecol. Evol. 2009, 24, 136–144. [Google Scholar] [CrossRef]
- Christen, D.C.; Matlack, G.R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 2009, 11, 453–465. [Google Scholar] [CrossRef]
- Da Silva, P.H.M.; Poggiani, F.; Sebbenn, A.M.; Mori, E.S. Can Eucalyptus invade native forest fragments close to commercial stands? For. Ecol. Manag. 2011, 261, 2075–2080. [Google Scholar]
- Villegas, Z.; Pena-Claros, M.; Mostacedo, B.; Alarcon, A.; Licona, J.C.; Leano, C.; Pariona, W.; Choque, U. Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest. For. Ecol. Manag. 2009, 258, 971–977. [Google Scholar]
- Akindele, S.O.; Onyekwelu, J.C. Silviculture in secondary forests. In Silviculture in the Tropics; Gunter, S., Weber, M., Stimm, B., Mosandl, R., Eds.; Springer: Berlin, Germany, 2011; pp. 351–367. [Google Scholar]
- Holmes, T.P.; Aukema, J.E.; von Holle, B.; Liebhold, A.; Sills, E. Economic impacts of invasive species in forests: Past, present, and future. Ann. N. Y. Acad. Sci. 2009, 1162, 18–38. [Google Scholar] [CrossRef]
- Aukema, J.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.; Englin, J.; Frankel, S.; Haight, R.; Holmes, T.; Liebhold, A. Economic impacts of non-native forest insects in the United States. PLoS ONE 2011, e24587. [Google Scholar] [CrossRef]
- Forseth, I.N.; Innis, A.F. Kudzu (Pueraria montana): History, physiology, and ecology combine to make a major ecosystem threat. Crit. Rev. Plant Sci. 2004, 23, 401–413. [Google Scholar] [CrossRef]
- Dukes, J.S.; Pontius, J.; Orwig, D.A.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.J.; Cooke, B.J.; Theoharides, K.A.; Stange, E.E.; Harrington, R.A.; et al. Responses of insect pests, pathogens and invasive species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Miller, J.H.; Manning, S.T.; Enloe, S.F. A Management Guide for Invasive Plants in Southern Forests; USDA General Technical Report SRS-131; USDA Southern Research Station: Asheville, NC, USA, 2013. [Google Scholar]
- Sist, P.; Ferreira, F.N. Sustainability of reduced-impact logging in the Eastern Amazon. For. Ecol. Manag. 2007, 243, 199–209. [Google Scholar]
- Putz, F.E.; Sist, P.; Fredericksen, T.; Dykstra, D. Reduced-impact logging: Challenges and opportunities. For. Ecol. Manag. 2008, 256, 1427–1433. [Google Scholar]
- Edwards, D.P.; Gilroy, J.J.; Woodcock, P.; Edwards, F.A.; Larsen, T.H.; Andrews, D.J.R.; Derhe, M.A.; Docherty, T.D.S.; Hsu, W.H.; Mitchell, S.L.; et al. Land-sharing versus land-sparing logging: Reconciling timber extraction with biodiversity conservation. Glob. Chang. Biol. 2014, 20, 183–191. [Google Scholar] [CrossRef]
- Kueffer, C.; McDougall, K.; Alexander, J.; Daehler, C.; Edwards, P.; Haider, S.; Milbau, A.; Parks, C.; Pauchard, A.; Reshi, Z.A.; et al. Plant invasions into mountain protected areas: Assessment, prevention and control at multiple spatial scales. In Plant Invasions in Protected Areas; Foxcroft, L.C., Pysek, P., Richardson, D.M., Genovesi, P., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 89–113. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Padmanaba, M.; Corlett, R.T. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management. Forests 2014, 5, 1982-1998. https://doi.org/10.3390/f5081982
Padmanaba M, Corlett RT. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management. Forests. 2014; 5(8):1982-1998. https://doi.org/10.3390/f5081982
Chicago/Turabian StylePadmanaba, Michael, and Richard T. Corlett. 2014. "Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management" Forests 5, no. 8: 1982-1998. https://doi.org/10.3390/f5081982
APA StylePadmanaba, M., & Corlett, R. T. (2014). Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management. Forests, 5(8), 1982-1998. https://doi.org/10.3390/f5081982