A Comparison of the Composition and Diversity of Tree Populations along a Hydrological Gradient in Floodplains (Southern Québec, Canada)
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Floods and Hydrological Data
River Sectors Massawippi (MAS) Saint-François (STF) | Massawippi (MAS) | Sherbrooke (STF) | Windsor (STF) | Richmond (STF) | Drummondville (STF) |
---|---|---|---|---|---|
Gauging stations | 02OE019 | 02OE005 | 02OF004 | 02OF001 | 02OF002 |
Period observed | 1952–1996 | 1919–2011 | 1936–1972 | 1915–1965 | 1960–2010 |
Mean channel width (m) | 30 | 140 | 180 | 180 | 260 |
Mean channel height (m) | 1–1.5 | 1–1.5 | 1–2 | 1–2 | 1–3 |
River bed (depth in m) | 1.5–4 | 4–8 | 4–6 | 3–5 | 4–8 |
Mean annual discharge (m3/s) | 10 | 101 | 165 | 183 | 205 |
Peak discharge (m3/s) | 135 | 1553 | 2080 | 2080 | 2719 |
Flood occurrence (return period) | 37 | 61 | 27 | 44 | _ |
Land uses: Farmlands (%) | 29.1 | 37.0 | 22.6 | 46.0 | |
Forest areas (%) | 68.5 | <31.0 | 69.7 | 47.1 | |
Urban areas (%) | 0.8 | 31.3 | 0.8 | 3.6 |
Biophysical variables | MAS Sector | STF Sector | |||||
---|---|---|---|---|---|---|---|
Variable | Variable Description | Flood Recurrence (0–20 years) | Flood Recurrence (20–100 years) | Outside of the Floodplains | Flood Recurrence (0–20 years) | Flood Recurrence (20–100 years) | Outside of the Floodplains |
Slope (%) | Classes defined by System of Soil classification [47] Nearly level (0%–2%) | 64.3% | 59.1% | 9.9% | 78.6% | 85.7% | 17.6% |
Very gentle to gentle slopes (2.5%) | 14.3% | 30.6% | – | 10.7% | – | – | |
Gentle to moderate slopes (5%–10%) | 7.1% | 10.3% | 10.1% | 3.6% | 7.2% | 5.9% | |
Strong to very strong slopes (>10%) | 14.3% | – | 80.0% | 7.1% | 7.1% | 76.5% | |
Micro-topography | Succession of mounds and troughs (MT); presence of bars (B); narrow channel (NC); Gully; (G); Outcrop (O) | MT, B, NC | MT | G | MT, B, NC | MT | G, O |
Drainage | Classes defined by System of Soil classification [47] Very good to good | 7.1% | 6.9% | 70.1% | 78.6% | 71.9% | 70.5% |
Good to moderate | 21.4% | 20.5% | 40.0% | 14.2% | 14.3% | 17.5% | |
Bad to very bad | 71.4% | 72.6% | 9.9% | 7.2% | 14.1% | 12.0% | |
Water table level | L: less than 1 meter deep | L: 3.6% | L: 5.3% | L: – | L: 8.9% | L: 5.3% | L: 8.8% |
G: greater than 1 meter deep | G: 96.4% | G: 94.7% | G: – | G: 91.1% | G: 94.7% | G: 91.2% | |
Soil texture | L: loam; LS: loamy sand; SL: sandy loam; SiL: Silt loam; S: sand. CS: coarse sand. FS: fine sand. System of Soil classification [47] | L, LS, SL, FS | L, LS, SL, FS | S, CS, LS, SL | L, SL, SL | L, LS, SL, FS, S | S, CS, LS, SL |
Particle size (%) | Clay (>5%) | 4.3% | 5.2% | 5.3% | 2.5% | 2.6% | 2.5% |
Sand (>50%) | 32.6% | 27.7% | 32.4% | 46.8% | 46.8% | 51.4% | |
Silt (>60%) | 63.1% | 67.1% | 62.3% | 50.7% | 50.6% | 46.1% | |
Soil pH (CaCl2) | 3.5–4.5 | 35.7% | 57.4% | 79.9% | 21.4% | 57.1% | 100% |
4.5–5.5 | 57.2% | 42.6% | 20.1% | 39.3% | 35.8% | – | |
5.5–6.5 | 7.1% | – | – | 39.3% | 7.1% | – | |
Soil biomass (litter) | 0–1 cm | 66.7% | 40.6% | 19.9% | 82.1% | 36.7% | 17.6% |
1–3.5 cm | 27.1% | 50.0% | 30.1% | 14.3% | 63.3% | 23.5% | |
>3.5 cm | 6.2% | 9.4% | 50.0% | 3.6% | – | 58.9% | |
Deciduous vs. coniferous | Proportion of deciduous trees in quadrat (200 m2) by zones and sectors | 78.6% | 79.6% | 70.1% | 90.2% | 80.4% | 27.8% |
Density of trees | Average density of trees in quadrat (200 m2) by zones and sectors | 24.1 | 30.8 | 32.5 | 23.1 | 30.8 | 32.5 |
2.3. Field Sampling
2.4. Statistical Analysis
3. Results
3.1. Species Richness
3.2. Biodiversity Index and Beta Diversity
3.3. Distribution of Tree Species
4. Discussion
4.1. Composition and Species Diversity
Dominant Tree Species | Total Tree Stems | Relative Density a (%) | Tree Diameter min-max (cm) | Tree Diameter (<10 cm) | Tree Diameter (10–30 cm) | Tree Diameter (>30 cm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FFz | MFz | NFz | FFz | MFz | NFz | FFz | MFz | NFz | FFz | MFz | NFz | FFz | MFz | NFz | FFz | MFz | NFz | |
Abies balsamea | 101 | 87 | 358 | 3.8 | 3.3 | 13.6 | 1.4–37.2 | 0.5–39.8 | 0.5–30.5 | 87 | 46 | 242 | 11 | 39 | 115 | 3 | 2 | 1 |
Acer negundo | 81 | 3 | – | 3.1 | 0.1 | – | 1.2–54.0 | 14.9–34.7 | 13.4–26.9 | 33 | – | – | 35 | 2 | – | 13 | 1 | – |
Acer rubrum | 28 | 35 | 161 | 1.1 | 1.3 | 6.1 | 1.7–39.0 | 1.2–44.9 | 0.5–56.1 | 11 | 13 | 74 | 12 | 19 | 83 | 5 | 2 | 3 |
Acer saccharum | 117 | 44 | 51 | 4.4 | 1.8 | 1.9 | 0.6–72.0 | 0.7–47.5 | 1.2–59.0 | 92 | 28 | 26 | 21 | 12 | 21 | 4 | 4 | 4 |
Betula alleghaniensis | 42 | 34 | 22 | 1.6 | 1.3 | 0.8 | 1.3–40.0 | 2.0–29.0 | 9.0–36.0 | 18 | 19 | 1 | 21 | 15 | 19 | 3 | – | 2 |
Betula populifolia | 18 | 17 | 2 | 0.7 | 0.6 | 0.1 | 3.2–15.7 | 3.7–18.3 | 12.7–15.9 | 11 | 9 | – | 7 | 8 | 2 | – | – | – |
Carpinus caroliniana | – | 61 | – | – | 2.3 | – | – | 0.9–12.3 | – | – | 59 | – | – | 2 | – | – | – | – |
Fraxinus nigra | 74 | 95 | 66 | 2.8 | 3.6 | 2.5 | 1.2–42.6 | 1.0–25.3 | 1.2–11.8 | 41 | 70 | 65 | 31 | 25 | 1 | 2 | – | – |
Fraxinus pennsylvanica | 252 | 76 | 8 | 9.6 | 2.9 | 0.3 | 0.2–58.4 | 0.4–52.9 | 0.4–40.0 | 174 | 20 | 19 | 79 | 2 | 4 | 13 | – | – |
Pinus strobus | – | – | 31 | – | – | 1.2 | – | – | 2.0–66.2 | – | – | 1 | – | – | 8 | – | – | 22 |
Populus tremuloides | 67 | 18 | 11 | 2.5 | 0.7 | 0.4 | 1.8–21.5 | 7.3–37.2 | 4.0–37.6 | 60 | 3 | 2 | 7 | 10 | 6 | 0 | 5 | 3 |
Prunus serotina | 71 | 45 | 14 | 2.7 | 1.7 | 0.5 | 0.9–39.0 | 2.7–57.5 | 5.0–41.0 | 41 | 8 | 2 | 27 | 30 | 10 | 3 | 7 | 2 |
Thuya occidentalis | 32 | 10 | 15 | 1.2 | 0.4 | 0.6 | 4.2–36.0 | 4.7–36.1 | 7.1–33.5 | 5 | 2 | 3 | 20 | 5 | 9 | 7 | 3 | 3 |
Tilia americana | 39 | 13 | – | 1.5 | 0.5 | – | 2.0–54.7 | 1.30–27.2 | – | 22 | 6 | – | 16 | 7 | – | 1 | – | – |
Tsuga canadensis | – | 20 | 123 | – | 0.7 | 4.7 | – | 1.5–18.3 | 1.2–42.8 | – | 5 | 45 | – | 15 | 67 | – | – | 11 |
Ulmus rubra | 56 | 8 | 7 | 2.1 | 0.3 | 0.3 | 0.9–42.2 | 0.9–29.7 | 1.6–16.8 | 38 | 3 | 4 | 17 | 5 | 3 | 1 | – | – |
Total | 978 | 566 | 869 | – | – | – | – | – | – | 633 | 291 | 484 | 304 | 196 | 348 | 55 | 24 | 51 |
4.2. Tree Forest Structure
5. Conclusions
Acknowledgments
Author Contributions
Appendix
Tree Species | Species Code | Total Tree Stems | Tree Species | Species Code | Total Tree Stems | ||||
---|---|---|---|---|---|---|---|---|---|
Flood zones (FFz and MFz) and no-flood zones (NFz) | FFz | MFz | NFz | FFz | MFz | NFz | |||
Abies balsamea (L.) Mill. | ABBA | 101 | 87 | 358 | Ostrya virginiana Mill. | OSVI | – | 3 | 13 |
Acer negundo L. | ACNE | 81 | 3 | – | Picea glauca (Moench) | PIGL | – | 4 | 1 |
Acer saccharinum L. | ACRI | 16 | 1 | – | Picea mariana (Mill.) | PIMA | 1 | 1 | 3 |
Acer rubrum L. | ACRU | 28 | 35 | 161 | Picea rubens Sarg. | PIRU | – | 9 | 9 |
Acer saccharum Marsh. | ACSA | 117 | 44 | 51 | Pinus strobus L. | PIST | – | – | 31 |
Betula alleghaniensis Britt. | BEAL | 42 | 34 | 22 | Populus balsamifera L. | POBA | 3 | 7 | – |
Betula papyrifera Marsh. | BEPA | 2 | 4 | 13 | Populus deltoides Bartr. | PODE | 1 | 4 | 3 |
Betula populifolia Marsh. | BEPO | 18 | 17 | 2 | Populus grandidentata Michx. | POGR | 3 | 4 | 6 |
Carpinus caroliniana Walt. | CACA | – | 61 | – | Populus tremuloides Michx. | POTR | 67 | 18 | 11 |
Cornus altenifolia L. | COAL | 3 | – | – | Prunus serotina Ehrh. | PRSE | 71 | 45 | 14 |
Corylus cornuta Marsh. | COCO | – | 2 | – | Quercus rubra L. | QURU | – | 9 | 3 |
Fagus grandifolia Ehrh. | FAGR | 1 | 13 | 10 | Salix sp. | SALI | 3 | 1 | – |
Fraxinus americana L. | FRAM | – | 11 | 5 | Thuja occidentalis L. | THOC | 32 | 10 | 15 |
Fraxinus nigra Marsh. | FRNI | 74 | 95 | 66 | Tilia americana L. | TIAM | 39 | 13 | – |
Fraxinus pennsylvanica Marsh. | FRPE | 252 | 76 | 8 | Tsuga canadensis (L.) Carr. | TSCA | 0 | 20 | 123 |
Juglans cinerea L. | JUCI | – | 1 | – | Ulmus americana L. | ULAM | 6 | 5 | – |
Larix laricina (Du Roi) Koch | LALA | 2 | 3 | – | Ulmus rubra Mühl. | ULRU | 56 | 8 | 7 |
Malus pumila Mill. | MAPU | 4 | – | – | Unknown | UKN | 10 | 5 | 12 |
Total of trees | 741 | 487 | 696 | 292 | 166 | 251 | |||
Number of tree species | 14 | 16 | 10 | 12 | 17 | 14 |
Conflicts of Interest
References
- Amoros, C.; Bornette, G.; Henry, C. A vegetation-based method for ecological diagnosis of riverine wetlands. Environ. Manag. 2000, 25, 211–227. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, N.L.; Postel, S.L.; Richter, B.; Warner, R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef]
- Cooper, D.J.; Andersen, D.C.; Chimner, R.A. Multiple pathways for woody plant establishment on floodplains at local to regional scales. J. Ecol. 2003, 91, 182–196. [Google Scholar] [CrossRef]
- Blöschl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At what scales do climate variability and land cover change impact on flooding and low flows? Hydrol. Proc. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Eckhardt, K.U.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Van der Nat, D.; Tockner, K.; Edwards, P.J.; Ward, J.V.; Gurnell, A.M. Habitat change in braided flood plains (Tagliamento, NE-Italy). Fresh Biol. 2003, 48, 1799–1812. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef]
- Camporeale, C.; Perucca, E.; Ridolfi, L.; Gurnell, A.M. Modeling the interactions between river morphodynamics and riparian vegetation. Rev. Geophr. 2013, 51, 379–414. [Google Scholar]
- Battaglia, L.L.; Sharitz, R.R. Responses of floodplain forest species to spatially condensed gradients: A test of the flood-shade tolerance trade off hypothesis. Oecologia 2006, 147, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Bornette, G.; Tabacchi, E.; Hupp, C.; Puijalon, S.; Rostan, J.C. A model of plant strategies in fluvial hydrosystems. Fresh. Biol. 2008, 53, 1692–1705. [Google Scholar] [CrossRef]
- Ward, J.V.; Tockner, K.; Arscott, D.B.; Claret, C. Riverine landscape diversity. Fresh. Biol. 2002, 47, 517–539. [Google Scholar] [CrossRef]
- Bendix, J.; Cowell, C.M. Disturbance and riparian tree establishment in the Sespe Wilderness, California, USA. Phys. Geogr. 2013, 34, 149–158. [Google Scholar]
- Rodríguez-González, P.M.; Campelo, F.; Albuquerque, A.; Rivaes, R.; Ferreira, M.T.; Santos Pereira, J. Sensitivity of black alder (Alnus glutinosa [L.] Gaertn.) growth to hydrological changes in wetland forests at the rear edge of the species distribution. Plant Ecol. 2014, 215, 233–245. [Google Scholar]
- Mouw, J.E.B.; Stanford, J.A.; Alaback, P.B. Influences of flooding and hyporheic exchange on floodplain plant richness and productivity. River Res. Appl. 2009, 25, 929–945. [Google Scholar] [CrossRef]
- Charron, I.; Johnson, E.A. The importance of fires and floods on tree ages along mountainous gravel-bed streams. Ecol. Appl. 2006, 16, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; Gergel, S.E.; Dixon, M.D.; Miller, J.R. Distribution and abundance of trees in floodplain forests of the Wisconsin River: Environmental influences at different scales. J. Veg. Sci. 2014, 15, 729–738. [Google Scholar] [CrossRef]
- Rivaes, R.P.; Rodriguez-Gonzalez, P.M.; Ferreira, M.T.; Pinheiro, A.N.; Politti, E.; Egger, G.; Garcia-Arias, A.; Frances, F. Modeling the evolution of riparian woodlands facing climate change in three European rivers with contrasting flow regimes. PLoS ONE 2014, 9, e110200. [Google Scholar] [CrossRef] [PubMed]
- Gilvear, D.; Willby, N. Channel dynamics and geomorphic variability as controls on gravel bar vegetation, River Tummel, Scotland. River Res. Appl. 2006, 22, 457–474. [Google Scholar] [CrossRef]
- Pollock, M.; Naiman, R.; Hanley, T. Plant species richness in riparian wetlands-a test of biodiversity theory. Ecology 1998, 79, 94–105. [Google Scholar]
- Bendix, J. Stream power influence on southern Californian riparian vegetation. J. Veg. Sci. 1999, 10, 243–252. [Google Scholar] [CrossRef]
- Nilsson, C.; Grelsson, G.; Johansson, M.; Sperens, U. Patterns of plant species richness along riverbanks. Ecology 1989, 70, 77–84. [Google Scholar] [CrossRef]
- Cook, H.F. Floodplain nutrient and sediment dynamics on the Kent Stour. J. Water Environ. 2007, 21, 173–181. [Google Scholar] [CrossRef]
- Bailey, S.E.; Guimond, J.K. Aboveground biomass and nutrient limitation in relation to river connectivity in Montane floodplain marshes. Wetlands 2009, 29, 1243–1254. [Google Scholar] [CrossRef]
- Brovelli, A.; Batlle-Aguilar, J.; Barry, D.A. Analysis of carbon and nitrogen dynamics in riparian soils: Model development. Sci. Total Environ. 2012, 429, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Rokosch, A.E.; Bouchard, V.; Fennessy, S.; Dick, R. The use of soil parameters as indicators of quality in forested depressional wetlands. Wetlands 2009, 29, 666–677. [Google Scholar] [CrossRef]
- Asaeda, T.; Pattiyage, I.; Gomes, A.; Takeda, E. Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Res. Appl. 2010, 26, 960–976. [Google Scholar] [CrossRef]
- Barrett, R.; Nielsen, D.L.; Croome, R. Association between the plant between the plant communities of floodplain wetlands, water regime and wetland type. River Res. Appl. 2010, 26, 866–876. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Asada, T.; Hassan, F.M.; Warner, B.G.; Douabul, A.A.; al-Hilli, M.R.A.; Alwan, A.A. Vegetation response to Re-flooding in the Mesopotamian Wetlands, South Irak. Wetlands 2010, 30, 177–188. [Google Scholar] [CrossRef]
- Bendix, J.; Hupp, C.R. Hydrological and geomorphological impacts on riparian plant communities. Hydrol. Proces. 2000, 14, 2977–2990. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Lee, W.G.; Schulz, K.A.C. Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems. Ecosphere 2013, 4, 133. [Google Scholar] [CrossRef]
- Roxburgh, S.H.; Shea, K.; Wilson, J.B. The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence. Ecology 2004, 85, 359–371. [Google Scholar] [CrossRef]
- Friedman, J.M.; Auble, G.T.; Andrews, E.D.; Kittel, G.; Madole, R.F.; Griffin, E.R.; Allred, T.M. Transverse and longitudinal variation in woody riparian vegetation along a Montane River. West North Am. Nat. 2006, 66, 78–91. [Google Scholar] [CrossRef]
- Hupp, C.R.; Rinaldi, M. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (Central Italy). Ann. Assoc. Am. Geogr. 2007, 97, 12–30. [Google Scholar] [CrossRef]
- Franklin, S.C.; Kupfer, J.A.; Pezeshki, S.R.; Gentry, R.; Smith, R.D. Complex effects of channelization and levee construction on western Tennessee floodplain forest function. Wetlands 2009, 29, 451–464. [Google Scholar] [CrossRef]
- Drouin, A.; Saint-Laurent, D.; Lavoie, L.; Ouellet, C. High-Precision elevation model to evaluate the spatial distribution of soil organic carbon in active Floodplains. Wetlands 2011, 31, 1151–1164. [Google Scholar] [CrossRef]
- Saint-Laurent, D.; Lavoie, L.; Drouin, A.; St-Laurent, J.; Ghaleb, B. Floodplain sedimentation rates, soil properties and recent flood history in southern Québec. Glob. Planet. Chang. 2010, 70, 76–91. [Google Scholar] [CrossRef]
- Berthelot, J.S. Structure et Évolution des Peuplements Riverains en Fonction des Zones de Récurrence D’inondation (Bassin Centre-sud du Québec). Master’s Thesis, Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Québec, QC, Canada, 2014. [Google Scholar]
- EC-MEF (Environment Canada and Ministry of Environment of Québec). Flood Risk Map : Saint-François River, Quebec. Government of Canada and Ministry of Environment, Québec. Designated areas as subject to recurrent and severe flooding. 1982. Available online: http://www.ec.gc.ca/eau-water/default.asp?lang=En&n=09DACE2F-1 (accessed on 7 March 2014).
- CEHQ (Centre D’expertise Hydrique du Québec) (2013). Cartographie des Zones de Risques d’inondation. Ministère du Développement Durable, de la Faune et des Parcs. 2013. Available online: http://www.cehq.gouv.qc.ca/zones-inond/cartographie/ (accessed on 12 March 2014).
- Lavoie, L.; Saint-Laurent, D.; St-Laurent, J. Pedological and sedimentological analyses of alluvial soils and paleosols on floodplain terraces. Can. J. Soil Sci. 2006, 86, 813–826. [Google Scholar] [CrossRef]
- Castonguay, S.; Saint-Laurent, D. Reconstructing Reforestation: Changing Land Use Patterns along the Saint-François River in the Eastern Townships. In Method and Meaning in Canadian Environmental History; MacEachern, A., Turkel, E.J., Eds.; Th. Nelson: Toronto, ON, Canada, 2009; pp. 273–292. [Google Scholar]
- Bélanger, D.; Grenier, F.; Poulin, C. Évolution de la Rivière Saint-François par le Profil, l’occupation des Rives, la Sédimentation et l’érosion; Rapport d’analyse et documents cartographiques; Université de Sherbrooke: Sherbrooke, QC, Canada, 2001; p. 35. [Google Scholar]
- Desmeules, J. Bassin Versant de la Saint-François: Ressources Humaines; Ministère des Richesses naturelles; Direction Générale des Eaux: Québec, QC, Canada, 1977; p. 98. [Google Scholar]
- PRDITT (Plan Régional de Développement Intégré des Ressources Naturelles et du Territoire). Portrait de la Forêt Naturelle du Centre-du-Québec. Available online: http://www.cre.centre-du-quebec.qc.ca/client/uploads/317/103942213210642.pdf (accessed on 10 April 2014).
- Ville de Sherbrooke. Schéma D’aménagement et de Développement Révisé. Règlement no. 875. Avril 2013. Available online: http://www.ville.sherbrooke.qc.ca/fileadmin/fichiers/Planification/Sch%C3%A9ma%20-%20Version%2015%20avril%20adopt%C3%A9e.pdf (accessed on 16 September 2014).
- Cogesaf (Conseil de Gouvernance de l’eau des Bassins Versants de la Rivière Saint-François). Analyse du Bassin Versant de la Rivière Saint-François. 2006. Available online: http://cogesaf.qc.ca/analyse-du-bassin-versant-de-la-riviere-saint-francois/ (accessed on 20 September 2014).
- Government of Canada. Canadian System of Soil Classification, 3rd ed.Soil Classification Working Group, Research Branch, Agriculture and Agri-Food Canada, Publication 1646; Government of Canada: Ottawa, ON, Canada, 1998.
- Saint-Laurent, D.; Gervais-Beaulac, V.; Berthelot, J.S. Variability of soil properties in different flood-risk zones and link with hydroclimatic changes (Southern Québec, Canada). Geoderma 2014, 214–215, 80–90. [Google Scholar] [CrossRef]
- Saint-Laurent, D.; Mesfioui, M.; Evin, G. Hydroclimatic variability and relation with flood events (Southern Québec, Canada). Water Res. 2009, 36, 43–56. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Biswas, S.R.; Mallik, A.U. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 2010, 91, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, C.G. Age structure and disturbance history of a southern Appalachian virgin forest. Ecology 1980, 61, 1169–1184. [Google Scholar] [CrossRef]
- Frey, B.R.; Ashton, M.S.; McKenna, J.J.; Ellum, D.; Finkral, A. Topographic and temporal patterns in tree seedling establishment, growth, and survival among masting species of southern New England mixed-deciduous forests. For. Ecol. Manag. 2007, 245, 54–63. [Google Scholar] [CrossRef]
- Stella, J.C.; Battles, J.J.; Orr, B.K.; McBride, J.R. Synchrony of seed dispersal, hydrology and local climate in a semi-arid river reach in California. Ecosystems 2006, 9, 1200–1214. [Google Scholar] [CrossRef]
- Mahoney, J.M.; Rood, S.B. Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands 1998, 18, 634–645. [Google Scholar] [CrossRef]
- Denslow, J.S.; Battaglia, L.L. Stand composition and structure across a changing hydrologic gradient: Jean Lafitte National Park. Wetlands 2002, 22, 738–752. [Google Scholar] [CrossRef]
- Wharton, C.H.; Kitchens, W.M.; Pendleton, E.C.; Sipe, T.W. The ecology of bottomland hardwood swamps of the southeast: A community profile. FWS/OBS 1982, 81, 37. [Google Scholar]
- Goodburn, J.M.; Lorimer, G.G. Population structure in old-growth and managed northern hardwoods: An examination of the balanced diameter distribution concept. For. Ecol. Manag. 1999, 118, 11–29. [Google Scholar] [CrossRef]
- Foster, D.R. Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah forest, southwestern New Hamphire, USA. J. Ecol. 1988, 76, 105–134. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berthelot, J.-S.; Saint-Laurent, D.; Gervais-Beaulac, V.; Présent, A. A Comparison of the Composition and Diversity of Tree Populations along a Hydrological Gradient in Floodplains (Southern Québec, Canada). Forests 2015, 6, 929-956. https://doi.org/10.3390/f6040929
Berthelot J-S, Saint-Laurent D, Gervais-Beaulac V, Présent A. A Comparison of the Composition and Diversity of Tree Populations along a Hydrological Gradient in Floodplains (Southern Québec, Canada). Forests. 2015; 6(4):929-956. https://doi.org/10.3390/f6040929
Chicago/Turabian StyleBerthelot, Jean-Sébastien, Diane Saint-Laurent, Vernhar Gervais-Beaulac, and Aurélien Présent. 2015. "A Comparison of the Composition and Diversity of Tree Populations along a Hydrological Gradient in Floodplains (Southern Québec, Canada)" Forests 6, no. 4: 929-956. https://doi.org/10.3390/f6040929
APA StyleBerthelot, J. -S., Saint-Laurent, D., Gervais-Beaulac, V., & Présent, A. (2015). A Comparison of the Composition and Diversity of Tree Populations along a Hydrological Gradient in Floodplains (Southern Québec, Canada). Forests, 6(4), 929-956. https://doi.org/10.3390/f6040929