Streamflow Regime Variations Following Ecological Management on the Loess Plateau, China
Abstract
:1. Introduction
Corresponding Stations | Year | Management Actions (%) | Total (%) | |||
---|---|---|---|---|---|---|
Terrace | Afforestation | Pasture | Sediment Trapping Dams | |||
Wuqi Liujiahe | 1959 | 0.04 | 0.77 | 0.02 | 0.01 | 0.8 |
1969 | 0.52 | 2.43 | 0.19 | 0.15 | 3.3 | |
1979 | 1.26 | 4.22 | 0.53 | 0.29 | 6.3 | |
1989 | 1.98 | 8.14 | 2.47 | 0.29 | 12.9 | |
1999 | 2.99 | 12.35 | 3.95 | 0.29 | 19.6 | |
2006 | 3.88 | 22.14 | 10.06 | 0.29 | 36.4 | |
Zhangcunyi Huangling | 1959 | 0.02 | 0.05 | 0.00 | 0.00 | 0.1 |
1969 | 0.18 | 0.16 | 0.01 | 0.01 | 0.4 | |
1979 | 0.72 | 0.28 | 0.02 | 0.04 | 1.0 | |
1989 | 0.69 | 0.53 | 0.08 | 0.05 | 1.4 | |
1999 | 1.04 | 0.81 | 0.13 | 0.05 | 2.0 | |
2006 | 1.35 | 0.96 | 0.17 | 0.05 | 2.5 | |
Jiaokou | 1959 | 0.03 | 0.65 | 0.01 | 0.01 | 0.7 |
1969 | 0.40 | 2.04 | 0.11 | 0.17 | 2.7 | |
1979 | 1.07 | 3.54 | 0.31 | 0.24 | 5.2 | |
1989 | 1.56 | 6.83 | 1.43 | 0.24 | 10.1 | |
1999 | 2.35 | 10.36 | 2.28 | 0.24 | 15.2 | |
2006 | 3.04 | 18.57 | 5.79 | 0.24 | 27.6 | |
Zhuangtou | 1959 | 0.03 | 0.44 | 0.01 | 0.01 | 0.5 |
1969 | 0.31 | 1.40 | 0.07 | 0.05 | 1.8 | |
1979 | 0.76 | 2.43 | 0.21 | 0.12 | 3.5 | |
1989 | 1.20 | 4.69 | 0.97 | 0.17 | 7.0 | |
1999 | 4.77 | 11.80 | 1.75 | 0.17 | 18.5 | |
2006 | 6.18 | 21.16 | 4.44 | 0.17 | 32.0 |
2. Study Area and Data
2.1. Study Site
No. | Stations | Area (km2) | Streamflow Records | Runoff Ranges (×10−3 mm/d) | Annual Average | |||
---|---|---|---|---|---|---|---|---|
Runoff (mm/a) | Precipitation (mm/a) | PET (mm/a) | Vegetation Coverage (%) | |||||
1 | Wuqi | 3408 | 1963–2011 | 0.15~41831 | 28.0 | 415.3 | 1786.3 | 34.2 |
2 | Liujiahe | 7325 | 1959–2011 | 5.66~30195 | 32.3 | 446.5 | 1743.9 | 32.5 |
3 | Zhangcunyi | 4715 | 1958–2011 | 0.47~3701 | 23.0 | 540.0 | 1640.4 | 65.9 |
4 | Huangling | 2266 | 1967–2011 | 0.31~8922 | 46.8 | 563.7 | 1643.5 | 68.1 |
5 | Jiaokou | 17180 | 1958–2011 | 1.51~7041 | 25.9 | 502.8 | 1693.5 | 47.7 |
6 | Zhuangtou | 25654 | 1958–2011 | 2.06~6577 | 32.5 | 534.3 | 1690.1 | 44.7 |
2.2. Database
3. Methodology
Trends and Change Point Analysis
4. Results
4.1. Temporal Trends in Annual Streamflow, Precipitation, and PET
4.2. Precipitation, PET, and Streamflow Variation over Time
Stations | Annual Streamflow | Annual Precipitation | Annual PET | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lag 1 | BS-MK | Sen | Change Point | lag 1 | BS-MK Test | Sen | lag 1 | BS-MK | Sen | |||||
Corr. | S | Sig. | β (mm/a) | Year | Corr. | S | Sig. | β (mm/a) | Corr. | S | Sig. | β (mm/a) | ||
Wuqi | −0.06 | −0.339 | ** | −0.30 | 1979 | 2002 | −0.14 | −0.101 | ns | −1.01 | 0.15 | −0.067 | ns | 0.79 |
Liujiahe | −0.10 | −0.264 | * | −0.24 | 1979 | 1999 | −0.18 | −0.129 | ns | −1.57 | 0.24 | −0.090 | ns | −1.23 |
Zhangcunyi | 0.18 | −0.275 | * | −0.15 | 1978 | 1994 | −0.23 | −0.172 | * | −1.66 | 0.27 | −0.027 | ns | −0.36 |
Huangling | 0.14 | −0.152 | ns | −0.27 | 1984 | 1994 | −0.20 | −0.087 | ns | −1.02 | 0.31 | −0.070 | ns | −1.14 |
Jiaokou | 0.01 | −0.323 | ** | −0.21 | 1979 | 1994 | −0.22 | −0.166 | * | −1.63 | 0.24 | −0.077 | ns | −1.26 |
Zhuangtou | 0.15 | −0.323 | ** | −0.26 | 1978 | 1994 | −0.26 | −0.166 | * | −1.37 | 0.24 | −0.072 | ns | −1.24 |
Objects | Stations | PI | PII | PIII | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (mm) | SD (mm) | CV | Mean (mm) | S.D. (mm) | CV | Mean (mm) | SD (mm) | CV | ||
Runoff | Wuqi | 32.47 A | 12.80 a | 0.39 | 25.49 B | 7.99 b | 0.31 | 16.15 C | 3.12 c | 0.19 |
Liujiahe | 37.21 A | 11.29 a | 0.30 | 31.94 A | 8.28 a | 0.26 | 22.65 B | 4.86 c | 0.21 | |
Zhangcunyi | 26.98 A | 11.98 a | 0.44 | 25.42 A | 7.07 a | 0.28 | 20.15 B | 3.86 b | 0.24 | |
Huangling | 50.95 A | 33.38 a | 0.62 | 48.64 A | 23.33 a | 0.51 | 43.02 B | 9.98 b | 0.31 | |
Jiaokou | 29.35 A | 10.84 a | 0.37 | 27.76 A | 7.94 a | 0.29 | 20.66 B | 4.47 b | 0.22 | |
Zhuangtou | 36.33 A | 12.62 a | 0.35 | 35.64 A | 9.47 a | 0.28 | 23.78 B | 4.92 b | 0.25 | |
Precipitation | Wuqi | 436.4 | 108.7 | 0.25 | 408.8 | 84.5 | 0.21 | 385.3 | 74.7 | 0.19 |
Liujiahe | 472.6 | 109.8 | 0.23 | 429.9 | 82.0 | 0.19 | 429.4 | 80.6 | 0.19 | |
Zhangcunyi | 573.2 | 112.7 | 0.20 | 537.3 | 87.6 | 0.16 | 524.4 | 94.8 | 0.19 | |
Huangling | 584.2 | 101.2 | 0.17 | 555.7 | 87.5 | 0.16 | 546.8 | 109.1 | 0.20 | |
Jiaokou | 525.7 | 110.9 | 0.21 | 501.4 | 81.2 | 0.16 | 494.3 | 83.1 | 0.18 | |
Zhuangtou | 552.1 | 105.1 | 0.19 | 517.3 | 90.9 | 0.18 | 524.3 | 83.6 | 0.16 | |
PET | Wuqi | 1783.4 | 145.9 | 0.08 | 1789.2 | 153.5 | 0.09 | 1783.6 | 94.9 | 0.05 |
Liujiahe | 1778.9 | 141.4 | 0.08 | 1705.5 | 163.8 | 0.10 | 1754.5 | 92.3 | 0.05 | |
Zhangcunyi | 1679.9 A | 135.7 | 0.08 | 1550.6 B | 144.2 a | 0.09 | 1686.6 A | 136.7 a | 0.08 | |
Huangling | 1661.3 AB | 151.7 a | 0.09 | 1546.3 B | 134.7 b | 0.09 | 1686.9 A | 136.7 b | 0.08 | |
Jiaokou | 1733.2 A | 125.6 b | 0.07 | 1606.5 B | 130.4 a | 0.08 | 1728.0 A | 129.8 a | 0.08 | |
Zhuangtou | 1730.9 A | 121.1 a | 0.07 | 1638.2 B | 164.0 a | 0.10 | 1690.8 A | 84.1 b | 0.05 |
4.3. Daily Streamflow Regime and Changes
Stations | PII | PIII | ||||||
---|---|---|---|---|---|---|---|---|
∆Qt°t (mm) | ∆Q5 (%) | ∆Q50 (%) | ∆Q95 (%) | ∆Qt°t (mm) | ∆Q5 (%) | ∆Q50 (%) | ∆Q95 (%) | |
Wuqi | −7.0 | −21.5 | −5.8 | 99.0 | −16.3 | −23.6 | −19.7 | 5.6 |
Liujiahe | −5.3 | −7.1 | 10.9 | 42.5 | −14.6 | −28.8 | −16.6 | 11.9 |
Zhangcunyi | −1.6 | −11.5 | 3.2 | 40.5 | −6.8 | −34.0 | −27.0 | −48.1 |
Huangling | −2.3 | −30.9 | 1.0 | 61.6 | −7.9 | −29.8 | −13.8 | −17.8 |
Jiaokou | −2.5 | −17.5 | 10.2 | 30.5 | −9.3 | −24.7 | −23.0 | −15.7 |
Zhuangtou | −3.1 | −12.7 | 11.9 | 19.5 | −13.0 | −37.4 | −30.7 | −80.1 |
5. Discussion
5.1. Processes of Streamflow Reduction between Ecological Management Periods
Phase 1: by Impeding Floods
Phase 2: by Reducing Streamflow Effectively
5.2. Can Streamflow Be Successfully Moderated?
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Milly, P.C.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [PubMed]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44, W00A07. [Google Scholar] [CrossRef]
- Haddad, K.; Rahman, A. Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework-Quantile Regression vs. Parameter Regression Technique. J. Hydrol. 2012, 430, 142–161. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Zhang, X.; Walling, D.E.; Quine, T.A.; Wen, A. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling loess plateau region of China. Land Degrad. Dev. 1997, 8, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Walling, D.E.; Yang, Q.; He, X.; Wen, Z.; Qi, Y.; Feng, M. Cs-137 budget during the period of 1960s in a small drainage basin on the Loess Plateau of China. J. Environ. Radioactiv. 2006, 86, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Shao, M. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Zheng, F.; He, X.; Gao, X.; Zhang, C.E.; Tang, K. Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China. Agric. Ecosyst. Environ. 2005, 108, 85–97. [Google Scholar] [CrossRef]
- Tang, K. The Changes of Erosion, Runoff and Sediment in the Yellow River. Science China Press: Beijing, China, 1993. [Google Scholar]
- Xu, J.X. A study of physico-geographical factors for formation of hyperconcentrated flows in the Loess Plateau of China. Geomorphology 1998, 24, 245–255. [Google Scholar] [CrossRef]
- Shi, C.; Dian, Z.; You, L. Changes in sediment yield of the Yellow River basin of China during the Holocene. Geomorphology 2002, 46, 267–283. [Google Scholar] [CrossRef]
- Ran, D.; Liu, L.; Zhao, L.; Bai, Z.; Liu, B.; Wang, H. The Soil Conservation Practices and Streamflow and Sediment Load Changes in the Hekou-Longmen Region of Middle Reaches of Yellow River. Yellow River Water Conservancy Press: Zhengzhou, China, 2000. [Google Scholar]
- Yao, W.; Li, Z.B.; Kang, L.L.; Ran, D. The Effects of Controlling Soil Erosion on Environment on the Loess Plateau; Science and Technology Press: Beijing, China, 2005. [Google Scholar]
- Uchida, E.; Xu, J.; Rozelle, S. Grain for green: Cost-effectiveness and sustainability of China’s conservation set-aside program. Land Econ. 2005, 81, 247–264. [Google Scholar] [CrossRef]
- Tang, K. Soil and Water Conservation in China; Science China Press: Beijing, China, 2004; In Chinese. [Google Scholar]
- Yao, W.; Xu, J.; Ran, D. Analysis and Evaluation of the Water Sand Changing Regime in Catchments of Yellow River Basin; Yellow River Water Conservancy Press: Zhengzhou, China, 2011; In Chinese. [Google Scholar]
- Zhang, S.; kang, L.; Wei, Y. Research of the Impact of Human Activities on Streamflow and Sediment Load in the Middle Reaches of Yellow River. Yellow River Water Conservancy Press: Zhengzhou, China, 2010; In Chinese. [Google Scholar]
- Xu, X.; Zhang, H.; Zhang, O. Development of check-dam systems in gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar]
- Wang, G.; Wu, B.; Wang, Z.Y. Sedimentation problems and management strategies of Sanmenxia Reservoir, Yellow River, China. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.; Chen, L.; Lü, Y.; Gao, Y. Check dam in the Loess Plateau of China: Engineering for environmental services and food security. Environ. Sci. Technol. 2011, 45, 10298–10299. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Lu, X.; Xin, Z.; Yang, X. Cumulative sediment trapping by reservoirs in large river basins: A case study of the Yellow River basin. Glob. Planet. Change 2013, 100, 308–319. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Quinton, J.N.; Edwards, G.M.; Morgan, R.P.C. The influence of vegetation species and plant properties on runoff and soil erosion: Results from a rainfall simulation study in south east Spain. Soil Use Manag. 1997, 13, 143–148. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Gao, Z.; Fu, Y.; Li, Y.; Liu, J.; Chen, N.; Zhang, X. Trends of streamflow, sediment load and their dynamic relation for the catchments in the middle reaches of the Yellow River over the past five decades. Hydrol. Earth Syst. Sci. 2012, 16, 3219–3231. [Google Scholar] [CrossRef]
- Cai, Q. Soil erosion and management on the Loess Plateau. J. Geogr. Sci. 2001, 11, 53–70. [Google Scholar]
- Zhao, G.; Mu, X.; Tian, P.; Wang, F.; Gao, P. Climate changes and their impacts on water resources in semiarid regions: A case study of the Wei River basin, China. Hydrol. Process. 2013, 27, 3852–3863. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, L.; McVicar, T.R.; Chille, B.; Gau, P. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China. Hydrol. Process. 2007, 21, 2124–2134. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, X.; Ma, Q.; Zhang, J.; Ma, T.; Sun, Y. Spatiotemporal characteristics of precipitation and extreme events on the Loess Plateau of China between 1957 and 2009. Hydrol. Process. 2013. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, L.; Xu, Z.; Scott, D.F. Evaluation of methods for estimating the effects of vegetation change and climate variability on streamflow. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Li, R.; Yang, Q.; Wei, L. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China. Hydrol. Process. 2008, 22, 1996–2004. [Google Scholar] [CrossRef]
- Ran, D.; Zuo, Z.; Wu, Y.; Li, X.; Li, Z. Streamflow and Sediment Load Changes Response to Human Activites in the Middle Reaches of the Yellow River. Science China Press: Beijing, China, 2012. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inform. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Huang, Y.; Walker, J.W. Long-term trends in streamflow from semiarid rangelands: Uncovering drivers of change. Glob. Change Biol. 2008, 14, 1676–1689. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, B.Y.; Zhang, W.B. Study on Standard of Erosive Rainfall. J. Soil Water Conserv. 2000, 14, 6–11. [Google Scholar]
- Haddad, K.; Rahman, A.; Green, J. Design rainfall estimation in Australia: A case study using L moments and generalized least squares regression. Stoch. Env. Res. Risk A 2011, 25, 815–825. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, B.; Wang, S.; Zhu, L.; Zhang, L.; Jiao, L.; Wang, C. Reducing soil erosion by improving community functional diversity in semi-arid grasslands. J. Appl. Ecol. 2015. [Google Scholar] [CrossRef]
- Zeng, B.; Ma, W. Study on impact of artificial grass coverage on water-borne silt yield. In Collected Papers on Sino-Canada Study of Soil Erosion Regularity on Loess Plateau of West Shanxi, China; Water and Hydropower Publishing House: Beijing, China, 1990. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, T.; Lei, Y.; Zhang, X.; Li, R. Streamflow Regime Variations Following Ecological Management on the Loess Plateau, China. Forests 2016, 7, 6. https://doi.org/10.3390/f7010006
Zhang J, Zhang T, Lei Y, Zhang X, Li R. Streamflow Regime Variations Following Ecological Management on the Loess Plateau, China. Forests. 2016; 7(1):6. https://doi.org/10.3390/f7010006
Chicago/Turabian StyleZhang, Jianjun, Tingting Zhang, Yongnan Lei, Xiaoping Zhang, and Rui Li. 2016. "Streamflow Regime Variations Following Ecological Management on the Loess Plateau, China" Forests 7, no. 1: 6. https://doi.org/10.3390/f7010006
APA StyleZhang, J., Zhang, T., Lei, Y., Zhang, X., & Li, R. (2016). Streamflow Regime Variations Following Ecological Management on the Loess Plateau, China. Forests, 7(1), 6. https://doi.org/10.3390/f7010006