Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. The Upper Heihe Basin
2.2. Data Used in the Study
3. Distributed Ecohydrological Model
3.1. Representation of the Landscape
3.2. Simulation of Ecohydrological Processes
3.3. Model Calibration and Performance Evaluation Metrics
Coniferous Forest | Shrub | Steppe | Alpine Meadow | Alpine Sparse Vegetation | Desert | |
---|---|---|---|---|---|---|
Dominant species | Picea crassifolia Kom. | Potentilla fruticosa Linn. | Stipa purpurea Griseb | Kobresia pygmaea Clarke | Saussurea medusa Maxim. | Sympegma regelii Bunge |
Root depth (m) | 2.0 | 1.0 | 0.4 | 0.4 | 0.1 | 0.0 |
Surface storage (mm) | 30.0 | 25.0 | 10.0 | 15.0 | 15.0 | 5.0 |
Leaf reflectance to visible light | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | — |
Leaf reflectance to near-infrared radiation | 0.35 | 0.58 | 0.58 | 0.58 | 0.58 | — |
Leaf transmittance to visible light | 0.05 | 0.07 | 0.07 | 0.07 | 0.07 | — |
Leaf transmittance to near-infrared radiation | 0.10 | 0.25 | 0.25 | 0.25 | 0.25 | — |
Maximum Rubsico capacity of top leaf (10−5 mol·m−2·s−1) | 6.0 | 6.0 | 3.3 | 3.3 | 3.0 | — |
Intrinsic quantum efficiency (mol·mol−1) | 0.08 | 0.08 | 0.05 | 0.05 | 0.05 | — |
Mean (standard deviation) of saturated hydraulic conductivity (mm·hour−1) | 18.71 (7.86) | 20.32 (6.64) | 18.59 (8.89) | 24.64 (9.83) | 25.23 (6.48) | 11.18 (5.87) |
Mean (standard deviation) of the saturated soil moisture content (cm3·cm−3) | 0.470 (0.010) | 0.465 (0.009) | 0.468 (0.011) | 0.465 (0.014) | 0.458 (0.011) | 0.475 (0.033) |
Mean (standard deviation) of the residual soil moisture content (cm3·cm−3) | 0.100 (0.002) | 0.100 (0.001) | 0.100 (0.001) | 0.096 (0.019) | 0.099 (0.005) | 0.100 (0.000) |
Mean (standard deviation) of n in van Genuchten Model | 1.195 (0.011) | 1.205 (0.019) | 1.197 (0.012) | 1.205 (0.023) | 1.215 (0.022) | 1.187 (0.005) |
Mean (standard deviation) of α in van Genuchten Model | 0.020 (0.003) | 0.021 (0.003) | 0.021 (0.003) | 0.022 (0.004) | 0.022 (0.004) | 0.017 (0.003) |
4. Results and Discussion
4.1. Model Validation
4.2. Water Balance Characteristics and Spatio-Temporal Variability of Runoff
Catchment | Drainage Area (km2) | Precipitation (mm/a) | Actual ET (mm/a) | Runoff (mm/a) | Runoff Ratio |
---|---|---|---|---|---|
East Tributary | 2457 | 529.8 | 344.9 | 186.9 | 0.35 |
West Tributary | 4586 | 485.3 | 304.8 | 178.3 | 0.37 |
Entire catchment | 10,005 | 479.9 | 310.8 | 169.0 | 0.35 |
Season | Water Balance Components | East Tributary | West Tributary | Whole Catchment |
---|---|---|---|---|
Spring (Mar.–May) | Precipitation (mm/a) | 98.2 | 76.8 | 81.4 |
Actual ET (mm/a) | 71.1 | 64.2 | 66.0 | |
Runoff (mm/a) | 19.0 | 18.2 | 19.3 | |
Summer (Jun.–Aug.) | Precipitation (mm/a) | 297.6 | 294.3 | 281.6 |
Actual ET (mm/a) | 201.8 | 176.5 | 180.1 | |
Runoff (mm/a) | 83.8 | 80.2 | 78.3 | |
Autumn (Sep.–Nov.) | Precipitation (mm/a) | 124.8 | 100.3 | 105.4 |
Actual ET (mm/a) | 65.6 | 56.3 | 58.5 | |
Runoff (mm/a) | 70.8 | 63.7 | 62.5 | |
Winter (Dec.–Feb.) | Precipitation (mm/a) | 9.2 | 13.9 | 11.5 |
Actual ET (mm/a) | 6.2 | 6.3 | 6.2 | |
Runoff (mm/a) | 13.2 | 16.6 | 8.9 |
4.3. Spatial Pattern of Water Balance and Relation to Vegetation
East Tributary | ||||||
---|---|---|---|---|---|---|
Elevation Interval and the Area | Major Vegetation Types | Area Ratio | Precipitation (mm/a) | Actual ET (mm/a) | Runoff Depth (mm/a) | Runoff Ratio |
2800–2999 m (89 km2) | Shrub | 16% | 413.2 | 371.1 | 39.1 | 0.09 |
Steppe | 22% | 410.9 | 358.0 | 50.9 | 0.12 | |
Coniferous forest | 12% | 402.0 | 376.7 | 25.3 | 0.06 | |
Alpine meadow | 51% | 395.0 | 359.5 | 37.8 | 0.10 | |
3400–3599 m (458 km2) | Shrub | 42% | 498.0 | 428.4 | 75.9 | 0.15 |
Steppe | 2% | 460.1 | 413.8 | 50.3 | 0.11 | |
Coniferous forest | 1% | 468.9 | 406.6 | 61.9 | 0.13 | |
Alpine meadow | 52% | 513.4 | 439.6 | 78.1 | 0.15 | |
4200–4399 m (78 km2) | Alpine meadow | 8% | 564.4 | 400.9 | 170.0 | 0.30 |
Alpine sparse vegetation | 87% | 606.0 | 299.6 | 307.8 | 0.51 | |
West Tributary | ||||||
Elevation interval and the area | Major vegetation types | Area ratio | Precipitation (mm/a) | Actual ET (mm/a) | Runoff depth (mm/a) | Runoff ratio |
3000–3199 m (123 km2) | Shrub | 24% | 436.5 | 381.1 | 53.2 | 0.12 |
Steppe | 12% | 439.6 | 398.6 | 37.7 | 0.09 | |
Coniferous forest | 13% | 450.8 | 421.9 | 34.1 | 0.08 | |
Alpine meadow | 51% | 418.5 | 383.8 | 36.0 | 0.09 | |
3400–3599 m (590 km2) | Shrub | 18% | 447.5 | 384.4 | 68.8 | 0.15 |
Steppe | 2% | 466.6 | 401.5 | 68.3 | 0.15 | |
Coniferous forest | 1% | 458.1 | 402.5 | 56.4 | 0.12 | |
Alpine meadow | 78% | 437.8 | 384.4 | 65.6 | 0.15 | |
4200–4399 m (634 km2) | Alpine meadow | 35% | 458.4 | 337.3 | 129.7 | 0.28 |
Alpine sparse vegetation | 60% | 526.8 | 264.8 | 259.0 | 0.49 |
Vegetation Type and Area Covered by Each Type (km2) | Precipitation (mm/a) | Actual ET (mm/a) | Runoff Depth (mm/a) | Runoff Ratio | Runoff Amount (108 m3/a) | |
---|---|---|---|---|---|---|
Desert | 91 | 253.1 | 238.0 | 15.1 | 0.06 | 0.01 |
Shrub | 1652 | 495.9 | 355.0 | 140.9 | 0.28 | 2.33 |
Steppe | 1063 | 396.7 | 331.5 | 65.2 | 0.16 | 0.69 |
Coniferous forest | 561 | 402.1 | 331.6 | 70.5 | 0.18 | 0.40 |
Alpine meadow | 4549 | 488.5 | 348.7 | 147.8 | 0.30 | 6.72 |
Alpine sparse vegetation | 2009 | 547.3 | 237.2 | 310.1 | 0.57 | 6.23 |
Snow or glaciers | 80 | 586.7 | 82.7 | 846.2 | 1.44 | 0.68 |
4.4. Comparison with Previous Studies in the Same and Similar Regions
5. Conclusions
- (1)
- At the basin scale, the model provides a good simulation of streamflow discharge in the two tributaries and the entire catchment of the study area. It also captures the spatial pattern of soil moisture appropriately. In addition, the simulated actual evapotranspiration and remote sensing-based estimation have close long-term average values and similar spatial patterns over the entire study catchment. The GBEHM may be useful for ecohydrological simulation and prediction in cold high-altitude regions.
- (2)
- Analysis of the water balance characteristics shows that water balance characteristics are closely related to the altitude and vegetation patterns in the study catchment. Regarding the annual water balance characteristics, the low-altitude regions with elevations below 3200 m are water limited. The actual annual evapotranspiration and vegetation distribution and growth are controlled by water availability (precipitation). Seasonal analysis indicates that river runoffs are mainly in summer and autumn, and runoff in spring is generated from precipitation and snow melt.
- (3)
- In the upper Heihe basin, the precipitation and runoff share a similar pattern, increasing with elevation. Actual evapotranspiration has a similar pattern with the four major vegetation types (i.e., steppe, shrub, coniferous forest and alpine meadow) along the elevation. The highest actual evapotranspiration is at the elevations of 3000–3600 m, where shrub and alpine meadow are the two dominant vegetation types. Precipitation controls the spatial pattern of annual runoff and determines the spatial pattern of vegetation together with the air temperature. Climate variability in the high mountainous region has a significant effect on ecohydrological patterns.
- (4)
- At the same time, vegetation type enhanced the differences in annual runoff and actual evapotranspiration. In the same elevation interval with similar precipitation, differences in the runoff depth (and the actual evapotranspiration) were caused mainly by the vegetation types. For the whole study area, the water yield per unit area from different vegetation types is in order of alpine sparse vegetation, alpine meadow, shrub, coniferous forest and steppe. The three major vegetation types, namely, alpine meadow (with an area of 4549 km2), alpine sparse vegetation (with an area of 2009 km2) and shrub (with an area of 1652 km2), located in relatively higher elevation contribute most of the river runoff.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhou, G.; Wei, X.; Luo, Y.; Zhang, M.; Li, Y.; Qiao, Y.; Liu, H.; Wang, C. Forest recovery and river discharge at the regional scale of Guangdong Province, China. Water Resour. Res. 2010, 46, 5109–5115. [Google Scholar] [CrossRef]
- Liu, W.; Wei, X.; Liu, S.; Liu, Y.; Fan, H.; Zhang, M.; Yin, J.; Zhan, M. How do climate and forest changes affect long-term streamflow dynamics? A case study in the upper reach of Poyang River basin. Ecohydrology 2015, 8, 46–57. [Google Scholar] [CrossRef]
- He, Z.B.; Zhao, W.Z.; Liu, H.; Tang, Z.X. Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains. Hydrol. Process. 2012, 26, 613–621. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Chang, H.J.; Jung, I.W. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J. Hydrol. 2010, 388, 186–207. [Google Scholar] [CrossRef]
- Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; et al. Large Shift in Source of Fine Sediment in the Upper Mississippi River. Environ. Sci. Technol. 2011, 45, 8804–8810. [Google Scholar] [CrossRef] [PubMed]
- Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 209–222. [Google Scholar] [CrossRef]
- Zhou, D.G.; Huang, R.H. Response of water budget to recent climatic changes in the source region of the Yellow River. Chin. Sci. Bull. 2012, 57, 2155–2162. [Google Scholar] [CrossRef]
- Wu, L.; Long, T.Y.; Liu, X.; Guo, J.S. Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the Jialing River Watershed, China. J. Hydrol. 2012, 475, 26–41. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Climate Change Impacts on Streamflow and Subbasin-Scale Hydrology in the Upper Colorado River Basin. PLoS ONE 2013, 8, e71297. [Google Scholar] [CrossRef] [PubMed]
- Cuo, L.; Zhang, Y.X.; Gao, Y.H.; Hao, Z.C.; Cairang, L.S. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Yang, H.B.; Qi, J.; Xu, X.Y.; Yang, D.W.; Lv, H.F. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Ma, H.; Yang, D.W.; Tan, S.K.; Gao, B.; Hu, Q.F. Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J. Hydrol. 2010, 389, 317–324. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yang, H.B.; Yang, D.W.; Ma, H. Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrol. Res. 2013, 44, 940–952. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; Liu, G. Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrol. Earth Syst. Sci. 2013, 17, 4471–4480. [Google Scholar] [CrossRef]
- Peel, M. Hydrology: Catchment vegetation and runoff. Prog. Phys. Geogr. 2009, 33, 837–844. [Google Scholar] [CrossRef]
- Samaniego, L.; Bardossy, A. Simulation of the impacts of land use/cover and climatic changes on the runoff characteristics at the mesoscale. Ecol. Model. 2006, 196, 45–61. [Google Scholar] [CrossRef]
- Marshall, E.; Randhir, T.O. Spatial modeling of land cover change and watershed response using Markovian cellular automata and simulation. Water Resour. Res. 2008, 44, W044234. [Google Scholar] [CrossRef]
- Yang, D.W.; Gao, B.; Jiao, Y.; Lei, H.M.; Zhang, Y.L.; Yang, H.B.; Cong, Z.T. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci. China Earth Sci. 2015, 58, 36–45. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res. 1996, 101, 21403–21422. [Google Scholar] [CrossRef]
- Yang, D.W.; Koike, T.; Tanizawa, H. Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan. Hydrol. Process. 2004, 18, 3119–3132. [Google Scholar] [CrossRef]
- Yang, D.W.; Li, C.; Ni, G.H.; Hu, H.P. Application of a distributed hydrological model to the Yellow River basin. Acta Geogr. Sin. 2004, 59, 143–154. (In Chinese) [Google Scholar]
- Xu, J.J.; Yang, D.W.; Yi, Y.H.; Lei, Z.D.; Chen, J.; Yang, W.J. Spatial and temporal variation of runoff in the Yangtze River basin during the past 40 years. Quat. Int. 2008, 186, 32–42. [Google Scholar] [CrossRef]
- Cong, Z.T.; Yang, D.W.; Gao, B.; Yang, H.B.; Hu, H.P. Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour. Res. 2009, 45, W00A13. [Google Scholar] [CrossRef]
- Valeriano, O.; Koike, T.; Yang, K.; Yang, D.W. Optimal Dam Operation during Flood Season Using a Distributed Hydrological Model and a Heuristic Algorithm. J. Hydrol. Eng. 2010, 15, 580–586. [Google Scholar] [CrossRef]
- Alam, Z.R.; Rahman, M.M.; Islam, A.S. Assessment of Climate Change Impact on the Meghna River Basin using geomorphology based hydrological model (GBHM). In Proceedings of the ICWFM 2011—The 3rd International Conference on Water and Flood Management, Dhaka, Bangladesh, 8–10 January 2011.
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Wang, L.; Koike, T.; Yang, K.; Jackson, T.J.; Bindlish, R.; Yang, D.W. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99). J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Wang, L.; Koike, T. Comparison of a distributed biosphere hydrological model with GBHM. Annu. J. Hydraul. Eng. 2009, 53, 103–108. [Google Scholar]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Flanner, M.G.; Kluzek, E.; Lawrence, P.J.; Levis, S.; Swenson, S.C.; Thornton, P.E.; Dai, A.G.; et al. Technical Description of Version 4.0 of the Community Land Model (CLM), NCAR Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 2010; p. 257. [Google Scholar]
- Tague, C.; Band, L. RHESSys: Regional Hydro-ecologic simulation system: An object-oriented approach to spatially distributed modeling of carbon, water and nutrient cycling. Earth Interact. 2004, 19, 1–42. [Google Scholar] [CrossRef]
- Maneta, M.; Silverman, N. A spatially-distributed model to simulate water, energy and vegetation dynamics using information from regional climate models. Earth Interact. 2013, 17, 1–44. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Bras, R.L.; Vivoni, E.R. Vegetation-Hydrology Dynamics in Complex Terrain of Semiarid Areas: I. A mechanistic Approach to Modeling Dynamic Feedbacks. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Jia, Y.W.; Wang, H.; Yan, D.H. Distributed model of hydrological cycle system in Heihe River basin I Model development and Verification. J. Hydraul. Eng. 2006, 37, 534–542. (In Chinese) [Google Scholar]
- Wang, L.; Koike, T.; Yang, K.; Jin, R.; Li, H. Frozen soil parameterization in a distributed biosphere hydrological model. Hydrol. Earth Syst. Sci. 2010, 14, 557–571. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cheng, G.D.; Li, X.; Han, X.J.; Wang, L.; Li, H.Y.; Chang, X.L.; Flerchinger, G.N. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed. Hydrol. Process. 2013, 27, 3762–3776. [Google Scholar] [CrossRef]
- Zhou, J.; Pomeroy, J.W.; Zhang, W.; Cheng, G.D.; Wang, G.X.; Chen, C. Simulating cold regions hydrological processes using a modular model in the west of China. J. Hydrol. 2014, 509, 13–24. [Google Scholar] [CrossRef]
- Zang, C.F.; Liu, J.G. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. J. Hydrol. 2013, 502, 27–36. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Sun, Y.; Liu, X.; Wang, N.; Savenije, H. Water demand management: A case study of the Heihe River Basin in China. Phys. Chem. Earth 2005, 30, 408–419. [Google Scholar] [CrossRef]
- Herzschuh, U.; Kurschner, H.; Mischke, S. Temperature variability and vertical vegetation belt shifts during the last similar to ~50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quat. Res. 2006, 66, 133–146. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.Q.; Gao, W.Y. Rapid Shrinking of Glaciers in the Middle Qilian Mountain Region of Northwest China during the Last similar to 50 Years. J. Earth Sci. 2011, 22, 539–548. [Google Scholar] [CrossRef]
- Deng, S.F.; Yang, T.B.; Zeng, B.; Zhu, X.F.; Xu, H.J. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- National Meteorological Information Center, the China Meteorological Administration. Available online: http://cdc.nmic.cn (accessed on 24 December 2015).
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Wu, L.; Li, X. Dataset of the First Glacier Inventory in China; Cold and Arid Regions Science Data Center: Lanzhou, China, 2004. [Google Scholar]
- Guo, W.; Liu, S.; Yao, X.; Xu, J.; Shangguan, D.; Wu, L.; Zhao, J.; Liu, Q.; Jiang, Z.; Wei, J.; et al. The Second Glacier Inventory Dataset of China (Version 1.0); Cold and Arid Regions Science Data Center: Lanzhou, China, 2014. [Google Scholar]
- Wei, J.F.; Liu, S.Y.; Guo, W.Q.; Yao, X.J.; Xu, J.L.; Bao, W.J.; Jiang, Z.L. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar] [CrossRef]
- Cold and Arid Regions Science Data Center at Lanzhou. Available online: http://westdc.westgis.ac.cn (accessed on 24 December 2015).
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-filled seamless SRTM data (Version 4). International Centre for Tropical Agriculture. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 31 July 2015).
- Hou, X. China Vegetation Map (1:1,000,000); Science Press: Beijing, China, 2001. (In Chinese) [Google Scholar]
- Zhou, J.H.; Zheng, Y.R. Vegetation Map of the Upper Heihe Basin V2.0; Heihe Plan Science Data Center: Lanzhou, China, 2014. [Google Scholar]
- Fan, W. Heihe 1 km LAI Production; Heihe Plan Science Data Center: Lanzhou, China, 2014. [Google Scholar]
- Shi, X.; Yu, D.; Pan, X. A framework for the 1:1,000,000 soil database of China. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; pp. 1–5.
- Dai, Y.J.; Shangguan, W.; Duan, Q.Y.; Liu, B.Y.; Fu, S.H.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.P.; Li, X.H.; Luo, W.M.; Ma, M.G.; Guo, J.W.; Kang, J.; Zhu, Z.L.; Zhao, S.J. A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Ma, M. HiWATER: WATERNET Observation Dataset in the Upper Reaches of the Heihe River Basin in 2013; Cold and Arid Regions Science Data Center: Lanzhou, China, 2014. [Google Scholar]
- Wu, B.F. Monthly Evapotranspiration Datasets (2000–2012) with 1 km Spatial Resolution over the Heihe River Basin; Heihe Plan Science Data Center: Lanzhou, China, 2013. [Google Scholar]
- Wu, B.F.; Yan, N.N.; Xiong, J.; Bastiaanssen, W.; Zhu, W.W.; Stein, A. Validation of ETWatch using field measurements at diverse landscapes: A case study in Hai Basin of China. J. Hydrol. 2012, 436, 67–80. [Google Scholar] [CrossRef]
- Yang, D.W.; Herath, S.; Musiake, K. Development of a geomorphology-based hydrological model for large catchments. Annu. J. Hydraul. Eng. 1998, 42, 169–174. [Google Scholar] [CrossRef]
- Yang, D.W.; Herath, S.; Musiake, K. Comparison of different distributed hydrological models for characterization of catchment spatial variability. Hydrol. Process. 2000, 14, 403–416. [Google Scholar] [CrossRef]
- Yang, D.W.; Herath, S.; Musiake, K. Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation. Hydrol. Process. 2001, 15, 2085–2099. [Google Scholar] [CrossRef]
- Yang, D.W.; Herath, S.; Musiake, K. A hillslope-based hydrological model using catchment area and width functions. Hydrol. Sci. J. 2002, 47, 49–65. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis, and transpiration. Int. J. Remote Sens. 1985, 8, 1335–1372. [Google Scholar] [CrossRef]
- Sellers, P.J.; Mintz, Y.; Sub, Y.C.; Dalcher, A. A Simple Biosphere Model (SiB) for Use within General Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B.; Hall, F.G. Canopy reflectance, photosynthesis, and transpiration Part III: Are analysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992, 42, 187–216. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ball, J.T.; Grivet, C.; Berry, J.A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agric. For. Meteorol. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ribas-Carbo, M.; Berry, J.A. Coupled Photosynthesis-Stomatal Conductance Model for leaves of C4 plants. Aust. J. Plant Physiol. 1992, 19, 519–538. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.Y.; Ding, Y.J. Spatial Variation of Degree-day Factors on the Observed Glaciers in Western China. Acta Geogr. Sin. 2006, 61, 89–98. (In Chinese) [Google Scholar] [CrossRef]
- Gao, X.; Ye, B.S.; Zhang, S.Q.; Qiao, C.J.; Zhang, X.W. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, H.; Wei, Y.; Zhao, L.; Zou, S.; Qiu, Y.; Yin, Z. Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydrochemical tracers. Hydrol. Process. 2012, 26, 1457–1466. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Lei, H.; Yang, H. Impact of cryosphere hydrological processes on the river runoff in the upper reaches of Heihe River. J. Hydraul. Eng. 2015, 46, 1064–1071. (In Chinese) [Google Scholar]
- Gao, H.; Hrachowitz, M.; Fenicia, F.; Gharari, S.; Savenije, H. Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China. Hydrol. Earth Syst. Sci. 2014, 18, 1895–1915. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Ding, Y.; Wu, J.; Gao, M.; Yi, S.; Zhao, C.; Ye, B.; Li, M.; Wang, S. Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. J. Arid Land 2013, 5, 366–384. [Google Scholar] [CrossRef]
- Yaseef, N.R.; Yakir, D.; Rotenberg, E.; Schiller, G.; Cohen, S. Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology 2009. [Google Scholar] [CrossRef]
- Wang, X.; Ronny, B.; Li, X.; Kang, E. Water balance change for a re-vegetated xerophyte shrub area. Hydrol. Sci. J. 2004, 49, 283–295. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, P.; Xiong, W.; Shen, Z.; Guo, M.; Shi, Z.; Du, A.; Wang, L. Water-yield reduction after afforestation and related processes in the semiarid Liupan Mountains, Northwest China. J. Am. Water Resour. Assoc. 2008, 44, 1086–1097. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Qin, Y.; Wang, Y.; Yang, D.; Zheng, Y. Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China. Forests 2016, 7, 10. https://doi.org/10.3390/f7010010
Gao B, Qin Y, Wang Y, Yang D, Zheng Y. Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China. Forests. 2016; 7(1):10. https://doi.org/10.3390/f7010010
Chicago/Turabian StyleGao, Bing, Yue Qin, Yuhan Wang, Dawen Yang, and Yuanrun Zheng. 2016. "Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China" Forests 7, no. 1: 10. https://doi.org/10.3390/f7010010
APA StyleGao, B., Qin, Y., Wang, Y., Yang, D., & Zheng, Y. (2016). Modeling Ecohydrological Processes and Spatial Patterns in the Upper Heihe Basin in China. Forests, 7(1), 10. https://doi.org/10.3390/f7010010