Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Data
2.3. Spatio-Temporal Statistics
2.4. Spatio-Temporal Aggregation Trends
3. Results
3.1. Spatio-Temporal Aggregation of HCFs
3.2. Trends of the Spatio-Temporal HCFs Pattern
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- González-Olabarria, J.R.; Mola-Yudego, B.; Coll, L. Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain). Risk Anal. 2015, 35, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Juan, P.; Mateu, J.; Saez, M. Pinpointing spatio-temporal interactions in wildfire patterns. Stoch. Environ. Res. Risk Assess. 2012, 26, 1131–1150. [Google Scholar] [CrossRef]
- Badia-Perpinyà, A.; Pallares-Barbera, M. Spatial distribution of ignitions in Mediterranean periurban and rural areas: The case of Catalonia. Int. J. Wildland Fire 2006, 15, 187–196. [Google Scholar] [CrossRef]
- Martínez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Verdú, F.; Salas, J.; Vega-García, C. A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005. Int. J. Wildland Fire 2012, 21, 498–509. [Google Scholar] [CrossRef]
- Prestemon, J.P.; Chas-Amil, M.L.; Touza, J.M.; Goodrick, S.L. Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations. Int. J. Wildland Fire 2012, 21, 743–754. [Google Scholar] [CrossRef]
- Genton, M.G.; Butry, D.T.; Gumpertz, M.L.; Prestemon, J.P. Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. Int. J. Wildland Fire 2006, 15, 87–97. [Google Scholar] [CrossRef]
- Gonzalez-Olabarria, J.R.; Brotons, L.; Gritten, D.; Tudela, A.; Teres, J.A. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int. J. Wildland Fire 2012, 21, 905–914. [Google Scholar] [CrossRef]
- Boychuk, D.; Martell, D.L. A Markov chain model for evaluating seasonal forest fire fighter requirements. For. Sci. 1988, 34, 647–661. [Google Scholar]
- Padilla, M.; Vega-Garcia, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildland Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- De la Riva, J.; Pérez-Cabello, F.; Lana-Renault, N.; Koutsias, N. Mapping wildfire occurrence at regional scale. Remote Sens. Environ. 2004, 92, 363–369. [Google Scholar] [CrossRef]
- Amatulli, G.; Peréz-Cabello, F.; de la Riva, J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol. Model. 2007, 200, 321–333. [Google Scholar] [CrossRef]
- Serra, L.; Saez, M.; Mateu, J.; Varga, D.; Juan, P.; Díaz-Ávalos, C.; Rue, H. Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence: The case of Catalonia, 1994–2008. Environ. Ecol. Stat. 2014, 531–563. [Google Scholar] [CrossRef]
- Najafabadi, A.T.P.; Gorgani, F.; Najafabadi, M.O. Modeling forest fires in Mazandaran Province, Iran. J. For. Res. 2015, 26, 851–858. [Google Scholar] [CrossRef]
- Vega Orozco, C.; Tonini, M.; Conedera, M.; Kanveski, M. Cluster recognition in spatial-temporal sequences: the case of forest fires. Geoinformatica 2012, 16, 653–673. [Google Scholar] [CrossRef]
- Serra, L.; Juan, P.; Varga, D.; Mateu, J.; Saez, M. Spatial pattern modelling of wildfires in Catalonia, Spain 2004–2008. Environ. Model. Softw. 2013, 40, 235–244. [Google Scholar] [CrossRef]
- Fuentes-Santos, I.; Marey-Pérez, M.F.; González-Manteiga, W. Forest fire spatial pattern analysis in Galicia (NW Spain). J. Environ. Manag. 2013, 128, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Turner, R. Point patterns of forest fire locations. Environ. Ecol. Stat. 2009, 16, 197–223. [Google Scholar] [CrossRef]
- Gralewicz, N.J.; Nelson, T.A.; Wulder, M.A. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. Int. J. Wildland Fire 2012, 21, 230–242. [Google Scholar] [CrossRef]
- Tanskanen, H.; Venäläinen, A. The relationship between fire activity and fire weather indices at different stages of the growing season in Finland. Boreal Environ. Res. 2008, 13, 285–302. [Google Scholar]
- Hering, A.S.; Bell, C.L.; Genton, M.G. Modeling spatio-temporal wildfire ignition point patterns. Environ. Ecol. Stat. 2009, 16, 225–250. [Google Scholar] [CrossRef]
- Pereira, M.G.; Caramelo, L.; Orozco, C.V.; Costa, R.; Tonini, M. Space-time clustering analysis performance of an aggregated dataset: The case of wildfires in Portugal. Environ. Model. Softw. 2015, 72, 239–249. [Google Scholar] [CrossRef]
- Møller, J.; Díaz-Avalos, C. Structured Spatio-Temporal Shot-Noise Cox Point Process Models, with a View to Modelling Forest Fires. Scand. J. Stat. 2010, 37, 2–25. [Google Scholar] [CrossRef]
- Gabriel, E.; Diggle, P.J. Second-order analysis of inhomogeneous spatio-temporal point process data. Stat. Neerl. 2009, 63, 43–51. [Google Scholar] [CrossRef]
- Henry, M.; Yool, S. Assessing Relationships between Forest Spatial Patterns and Fire History with Fusion of Optical and Microwave Remote Sensing. Geocarto Int. 2004, 19, 25–37. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C. The relationship between landscape patterns and human-caused fire occurrence in Spain. For. Syst. 2013, 22, 71–81. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available online: http://www.umass.edu/landeco/research/fragstats.html (accessed on 11 January 2016).
- Pearson, K. Notes on the History of Correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- EEA (European Environment Agency). European Forest Types. Categories and Types for Sustainable Forest Management Reporting and Policy; EEA: Copenhagen, Denmark, 2006. [Google Scholar]
- Rempel, R.S.; Kaukinen, D.; Carr, A.P. Patch Analyst and Patch Grid; Ontario Ministry of Natural Resources Centre for Northern Forest Ecosystem Research: Thunder Bay, ON, Canada, 2012. [Google Scholar]
- Ruiz Cejudo, J.A.; Madrigal Olmo, J. Caracterización de la interfaz-urbano forestal en la provincia de Valencia: implicaciones en la evaluación riesgo y en la prevención de incendios forestales. In Proceedings of the 6° Congreso Forestal Español; Vitoria-Gasteiz, España, 10–14 June 2013; p. 16.
- Generalitat Valenciana. Conselleria de governació i justicia. Plan de prevención de incendios forestales de la demarcación de Altea. In Instrucciones para la Redacción de Planes de Prevención de Incendios Forestales en Espacios Naturales Protegidos Distintos de Parques Naturales; Generalitat Valenciana: Valencia, Spain, 2012. [Google Scholar]
- Chas-Amil, M.L.; Touza, J.; Prestemon, J.P. Spatial distribution of human-caused forest fires in Galicia (NW Spain). Ecol. Environ. 2010, 137, 247–258. [Google Scholar]
- Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns; John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Diggle, P.; Chetwynd, A.G.; Häggkvist, R.; Morris, S.E. Second-order analysis of space-time clustering. Stat. Methods Med. Res. 1995, 4, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, E.; Rowlingson, B.; Diggle, P.J. Stpp: An R Package for Plotting, Simulating and Analysing Spatio-Temporal Point Patterns. J. Stat. Softw. 2013, 53, 1–29. [Google Scholar] [CrossRef]
- Ripley, B.D. The Second-Order Analysis of Stationary Point Processes. J. Appl. Probab. 1976, 13, 255–266. [Google Scholar] [CrossRef]
- Ghorbani, M. Testing the weak stationarity of a spatio-temporal point process. Stoch. Environ. Res. Risk Assess. 2013, 27, 517–524. [Google Scholar] [CrossRef]
- Berman, M.; Diggle, P. Estimating Weighted Integrals of the Second-Order Intensity of a Spatial Point Process. J. R. Stat. Soc. Ser. B 1989, 51, 81–92. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; The R Core Team: Auckland, New Zealand, UK, 2005; Volume 1. [Google Scholar]
- Alonso-Betanzos, A.; Fontenla-Romero, O.; Guijarro-Berdiñas, B.; Hernández-Pereira, E.; Paz Andrade, M.I.; Iménez, E.; Legido Soto, J.L.; Carballas, T. An intelligent system for forest fire risk prediction and fire fighting management in Galicia. Expert Syst. Appl. 2003, 25, 545–554. [Google Scholar] [CrossRef]
- Telesca, L.; Pereira, M.G. Time-clustering investigation of fire temporal fluctuations in Portugal. Nat. Hazards Earth Syst. Sci. 2010, 10, 661–666. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Prestemon, J.P.; Mcclean, C.J.; Touza, J. Human-ignited wild fire patterns and responses to policy shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- Boubeta, M.; Lombardía, M.J.; Marey-Pérez, M.F.; Morales, D. Prediction of forest fires occurrences with area-level Poisson mixed models. J. Environ. Manag. 2015, 154, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalo, J.; Zubizarreta-Gerendiain, A.; Ricardo, A.; Marques, S.; Botequim, B.; Borges, J.G.; Oliveira, M.M.; Tomé, M.; Pereira, J.M.C. Modelling wildfire risk in pure and mixed forest stands in Portugal. Allg. Forst Jagdztg. 2012, 183, 238–248. [Google Scholar]
- Cardil, A.; Molina, D.M.; Kobziar, L.N. Extreme temperature days and their potential impacts on southern Europe. Nat. Hazards Earth Syst. Sci. 2014, 14, 3005–3014. [Google Scholar] [CrossRef]
- De Haan, J.; Icove, D.J. Kirk’s Fire Investigation, 7th ed.; Pearson Education: New York, NY, USA, 2012. [Google Scholar]
- Rachaniotis, N.P.; Pappis, C.P. Scheduling fire-fighting tasks using the concept of “deteriorating jobs”. Can. J. For. Res. 2006, 36, 652–658. [Google Scholar] [CrossRef]
- Haight, R.G.; Fried, J.S. Deploying wildland fire suppression resources with a scenario-based standard response model. INFOR 2007, 45, 31–39. [Google Scholar] [CrossRef]
- Barreal, J.; Loureiro, M.L. Modelling spatial patterns and temporal trends of wildfires in Galicia (NW Spain). For. Syst. 2015, 24, e022. [Google Scholar]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Rodrigues, M.; de la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 2009, 50, 125–143. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, J.; Martínez-Fernández, J.; Vega-García, C. Pastoral wildfires in the Mediterranean: Understanding their linkages to land cover patterns in managed landscapes. J. Environ. Manag. 2012, 98, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Vega-García, C.; Chuvieco, E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landsc. Ecol. 2006, 21, 595–605. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Gonzalez-Olabarria, J.R.; Mola-Yudego, B.; Pukkala, T.; Palahi, M. Using multiscale spatial analysis to assess fire ignition density in Catalonia, Spain. Ann. For. Sci. 2011, 68, 861–871. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Nat. Hazards Earth Syst. Sci. 2013, 13, 311–327. [Google Scholar] [CrossRef]
Location | Pp | Weather | Land Use | Interfaces | Landscape Metrics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | P | Wil | Agr | Urb | WUI | WAI | UAI | NP | MdPS | MPE | PAR | SDI | ||
Ourense | 37.1 | 17.8 | 1076 | 67.0 | 31.5 | 1.0 | 4.3 | 90.4 | 2.9 | 493 | 21.7 | 16.1 | 0.37 | 0.71 |
Asturias | 275.4 | 16.9 | 1169 | 56.1 | 39.4 | 4.3 | 4.7 | 82.8 | 10.9 | 1516 | 8.8 | 10.5 | 0.66 | 0.84 |
La Rioja | 112.7 | 17.4 | 606 | 36.9 | 59.9 | 2.9 | 4.2 | 81.9 | 10.6 | 4469 | 0.6 | 3.1 | 1.54 | 0.80 |
Tarragona | 89.9 | 18.9 | 583 | 45.3 | 50.9 | 3.7 | 3 | 86.6 | 4.8 | 1542 | 6.3 | 9.2 | 0.83 | 0.83 |
Alicante | 135.9 | 20.3 | 541 | 53.6 | 42.0 | 4.0 | 7.5 | 65.7 | 12.2 | 1401 | 5.3 | 8.2 | 0.55 | 0.85 |
Guadalajara | 298.3 | 19.6 | 478 | 24.5 | 68.7 | 6.6 | 3.8 | 85.1 | 9.8 | 1023 | 8.2 | 10.8 | 0.54 | 0.79 |
Caceres | 32.7 | 18.4 | 1073 | 81.0 | 17.5 | 0.9 | 3.9 | 88.7 | 6.9 | 782 | 7.6 | 8.4 | 0.43 | 0.55 |
Badajoz | 29.6 | 22.3 | 580 | 49.1 | 49.0 | 1.3 | 4.4 | 80 | 12.3 | 441 | 12.7 | 12 | 0.31 | 0.79 |
Jaen | 78.9 | 20.4 | 568 | 40.9 | 57.2 | 1.8 | 3.4 | 86.2 | 8.8 | 966 | 5.2 | 7.5 | 0.54 | 0.77 |
Location | Land Use | CA | NP | MPS | MdPS | PSSD | MPE | ED | PAR | MSI |
---|---|---|---|---|---|---|---|---|---|---|
Ourense | Agriculture | 31.5 | 316 | 159.6 | 28.7 | 0.705 | 11.6 | 23 | 324.7 | 2.896 |
Wildland | 67 | 127 | 843.9 | 11.2 | 7.136 | 30.4 | 24.2 | 508.3 | 2.386 | |
Urban | 1 | 44 | 37.7 | 10.6 | 0.086 | 6.5 | 1.8 | 284.1 | 2.434 | |
Water | 0.5 | 6 | 124.1 | 25.2 | 0.207 | 16 | 0.6 | 438.2 | 4.157 | |
Asturias | Agriculture | 39.4 | 793 | 79.5 | 11.2 | 0.795 | 9.4 | 46.8 | 773.8 | 3.015 |
Wildland | 56.1 | 422 | 212.6 | 9.5 | 2.594 | 16.7 | 44 | 569.9 | 2.904 | |
Urban | 4.3 | 289 | 23.7 | 3.8 | 0.216 | 4.5 | 8.1 | 472.3 | 2.445 | |
Water | 0.2 | 12 | 31.8 | 19.3 | 0.030 | 10.6 | 0.8 | 412.0 | 5.084 | |
La Rioja | Agriculture | 59.9 | 1494 | 64.1 | 0.8 | 0.952 | 4.3 | 40.2 | 916.4 | 1.814 |
Wildland | 36.9 | 2302 | 25.7 | 0.4 | 0.668 | 2.7 | 38.9 | 2198.3 | 2.047 | |
Urban | 2.9 | 621 | 7.4 | 0.9 | 0.044 | 16.4 | 6.4 | 679.3 | 1.860 | |
Water | 0.4 | 52 | 11.1 | 1.5 | 0.030 | 4.5 | 1.5 | 543.8 | 2.470 | |
Catalonia | Agriculture | 50.9 | 722 | 112.8 | 6.4 | 0.123 | 9.4 | 42.6 | 580.8 | 2.565 |
Wildland | 45.3 | 616 | 117.7 | 5.5 | 2.206 | 10.6 | 40.7 | 1290.5 | 2.920 | |
Urban | 3.7 | 199 | 30.1 | 9.4 | 0.079 | 3.8 | 4.8 | 340.1 | 2.184 | |
Water | 0.1 | 5 | 21.0 | 20 | 0.012 | 7.8 | 0.2 | 376.6 | 4.676 | |
Alicante | Agriculture | 42 | 804 | 83.6 | 6.5 | 0.342 | 6.7 | 33.9 | 487.1 | 2.369 |
Wildland | 53.6 | 352 | 243.8 | 3.1 | 4.228 | 14 | 30.7 | 810.5 | 2.255 | |
Urban | 4 | 226 | 28.5 | 7.1 | 0.115 | 4.3 | 6 | 345.3 | 2.219 | |
Water | 0.3 | 19 | 29.0 | 9.8 | 0.042 | 9.6 | 1.2 | 620.1 | 5.406 | |
Guadalajara | Agriculture | 68.7 | 388 | 283.4 | 8.3 | 2.251 | 13.7 | 33.2 | 726.3 | 2.323 |
Wildland | 24.5 | 460 | 85.4 | 7.1 | 0.468 | 10.7 | 30.8 | 501.5 | 2.833 | |
Urban | 6.6 | 165 | 64.4 | 12.1 | 0.401 | 4.6 | 4.7 | 195.9 | 1.861 | |
Water | 0.1 | 10 | 13.4 | 11.6 | 0.009 | 7.3 | 0.5 | 473.7 | 5.040 | |
Caceres | Agriculture | 17.5 | 493 | 56.7 | 9.5 | 0.201 | 6.1 | 18.7 | 381.4 | 2.407 |
Wildland | 81 | 138 | 939.2 | 4.5 | 10.875 | 22.9 | 19.7 | 745.2 | 2.153 | |
Urban | 0.9 | 110 | 13.1 | 6.2 | 0.022 | 2.4 | 1.6 | 268.5 | 1.962 | |
Water | 0.6 | 41 | 24.7 | 6.6 | 0.066 | 4.3 | 1.1 | 354.2 | 2.846 | |
Badajoz | Agriculture | 49 | 202 | 387.9 | 13.4 | 1.409 | 11.2 | 14.1 | 243.8 | 2.014 |
Wildland | 49.1 | 135 | 582.0 | 10.9 | 4.315 | 15.8 | 13.4 | 421.2 | 2.507 | |
Urban | 1.3 | 62 | 34.3 | 16.4 | 0.077 | 8.3 | 3.2 | 239.4 | 2.911 | |
Water | 0.6 | 42 | 22.7 | 12.3 | 0.042 | 8.9 | 2.3 | 420.7 | 4.471 | |
Jaen | Agriculture | 57.2 | 298 | 306.9 | 5.1 | 2.659 | 11.8 | 21.9 | 686.2 | 2.093 |
Wildland | 40.9 | 524 | 124.8 | 5.3 | 2.353 | 6.2 | 20.3 | 513.5 | 2.273 | |
Urban | 1.8 | 123 | 23.8 | 5.5 | 0.086 | 3.6 | 2.7 | 323.5 | 2.043 | |
Water | 0.1 | 21 | 9.4 | 4.7 | 0.025 | 2.6 | 0.3 | 487.3 | 2.658 |
Variable | Spatial x24 | Temporal y16 | Variable | Spatial x24 | Temporal y16 |
---|---|---|---|---|---|
FF | 0.609 | 0.813 | WAI | 0.539 | 0.192 |
Pp | −0.218 | 0.391 | UAI | −0.562 | −0.418 |
Tmax | −0.123 | −0.688 | NP | −0.768 | −0.162 |
P | 0.696 | 0.693 | MdPS | 0.648 | 0.488 |
Wil | 0.683 | 0.327 | MPE | 0.649 | 0.514 |
Agr | −0.681 | −0.371 | PAR | −0.744 | −0.157 |
Urb | −0.422 | 0.198 | SDI | −0.627 | 0.035 |
WUI | −0.221 | 0.154 |
Class | NP | MPS | MdPS | PSSD | MPE | ED | PAR | MSI | |
---|---|---|---|---|---|---|---|---|---|
Spatial x24 | Agr | −0.696 | 0.042 | 0.659 | −0.108 | 0.378 | −0.444 | −0.521 | 0.635 |
Wil | −0.769 | 0.711 | 0.580 | 0.709 | 0.777 | −0.403 | −0.712 | 0.109 | |
Urb | −0.761 | 0.107 | 0.200 | −0.054 | 0.245 | −0.597 | −0.575 | 0.204 | |
Temporal y16 | Agr | 0.009 | −0.459 | 0.572 | −0.344 | 0.161 | 0.421 | 0.073 | 0.915 |
Wil | −0.257 | 0.163 | 0.389 | 0.145 | 0.569 | 0.459 | −0.241 | 0.364 | |
Urb | −0.089 | 0.174 | −0.200 | 0.304 | 0.062 | 0.227 | 0.040 | 0.044 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns. Forests 2016, 7, 185. https://doi.org/10.3390/f7090185
Costafreda-Aumedes S, Comas C, Vega-Garcia C. Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns. Forests. 2016; 7(9):185. https://doi.org/10.3390/f7090185
Chicago/Turabian StyleCostafreda-Aumedes, Sergi, Carles Comas, and Cristina Vega-Garcia. 2016. "Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns" Forests 7, no. 9: 185. https://doi.org/10.3390/f7090185
APA StyleCostafreda-Aumedes, S., Comas, C., & Vega-Garcia, C. (2016). Spatio-Temporal Configurations of Human-Caused Fires in Spain through Point Patterns. Forests, 7(9), 185. https://doi.org/10.3390/f7090185