Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Data Extraction
- -
- The site was situated in a temperate region, defined according to the nemoral zonobiom in Walter and Breckle [29], covering Central and Eastern Europe, the United Kingdom, large parts of Eastern North America, and smaller parts in Western North America. It equally covers New Zealand, Korea, and Eastern China.
- -
- At least half of the catchment had to be covered by the treated forest to minimize the risk of being influenced by a second unmeasured change in the catchment.
- -
- Forest management needed to be clearly described. Forest should be a main subject in the abstract, so that we could assume that the management is described in detail in the main text.
- -
- Water quality had to be measured in streams or rivers. No soil or lake water quality was considered.
- -
- Nitrogen was given in the form of nitrate or nitrate-nitrogen as response variable to forest management. Studies were excluded if the abstract contained no hint that water chemistry was measured.
- -
- The study design needed to provide a control, and was either a control–impact or a before–after experimental design.
- -
- Forest harvest could be classed into one of the following categories: clearcut, selective harvest, or patchcut.
- -
- Time of nitrate measurement was given in relation to the forest harvest (e.g., measured in the first year after clearcut).
2.2. Statistical Analysis
2.2.1. Between-Site Variability
2.2.2. Study Weights
2.2.3. Publication Bias
3. Results
3.1. Data Extraction and Description
3.2. Assessing the Influence of Forest Harvest on Nitrate Concentrations
3.3. Between-Site Variability
3.4. Study Weights and Evidence Assessments
3.5. Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gundersen, P.; Laurén, A.; Finér, L.; Ring, E.; Koivusalo, H.; Sætersdal, M.; Weslien, J.O.; Sigurdsson, B.D.; Högbom, L.; Laine, J.; et al. Environmental services provided from riparian forests in the nordic countries. Ambio 2010, 39, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Mosier, A.; Syers, J.K.; Freney, J.R. Agriculture and the Nitrogen Cycle—Assessing the Impacts of Fertilizer Use on Food Production and the Environment; Island Press: Washington, DC, USA, 2004; p. 344. [Google Scholar]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Directive 2000/60/EC of the European Parliament. Off. J. Eur. Communities 2000, 327, 1–72. [Google Scholar]
- Twery, M.J.; Hornbeck, J.W. Incorporating water goals into forest management decisions at a local level. For. Ecol. Manag. 2001, 143, 87–93. [Google Scholar] [CrossRef]
- Borja, Á.; Galparsoro, I.; Solaun, O.; Muxika, I.; Tello, E.M.; Uriarte, A.; Valencia, V. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuar. Coast. Shelf Sci. 2006, 66, 84–96. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Binkley, D. Patterns and Processes of Variation in Nitrogen and Phosphorus Concentrations in Forested Streams; Technical Report Tech. Bull. 838; Research Triangle Park, National Council for Air and Stream Improvement: Cary, NC, USA, 2001. [Google Scholar]
- Sun, G.; Riedel, M.; Jackson, R.; Kolka, R.; Amatya, D.; Shepard, J. Influences of management of Southern forests on water quantity and quality. In Southern Forest Science: Past, Present, and Future; USDA For. Serv., Gen. Tech. Rep: Asheville, NC, USA, 2004; Volume GTR SRS-75, pp. 195–234. [Google Scholar]
- Boggs, J.; Sun, G.; McNulty, S. Effects of timber harvest on water quantity and quality in small watersheds in the Piedmont of North Carolina. J. For. 2016, 114, 27–40. [Google Scholar] [CrossRef]
- Hegg, C.; Jeisy, M.; Waldner, P. Wald und Trinkwasser—Eine Literaturstudie; Technical Report; Eidg. Forschungsanstalt für Wald, Schnee und Landschaft: Birmensdorf, Switzerland, 2004. [Google Scholar]
- Keenan, R.J.; van Dijk, A.I. Planted forests and water. In Ecosystem Goods and Services from Plantation Forests; Bauhus, J., van der Meer, P., Kanninen, M., Eds.; Earthscan: London, UK, 2010; Chapter 4; pp. 77–95. [Google Scholar]
- Clarke, J.; Kelly-Quinn, M.; Blacklocke, S.; Bruen, M. The effect of forest windrowing on physico-chemical water quality in Ireland. Sci. Total Environ. 2015, 514, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.M.; Reynolds, S.K.; McCutchen, M.D.; Canfield, T.J. Meta-analysis of nitrogen removal in riparian buffers. J. Environ. Qual. 2007, 36, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The role of riparian vegetation in protecting and improving water qulity in streams. J. Am. Water Resour. Assoc. 2010, 46, 1–18. [Google Scholar] [CrossRef]
- Scott, N.A.; Likens, G.E.; Eaton, J.S.; Siccama, T.G. Trace metal loss following whole-tree harvest of a northeastern deciduous forest, U.S.A. Biogeochemistry 2001, 54, 197–217. [Google Scholar] [CrossRef]
- Worrall, F. Changes in stream nitrate concentrations due to land management practices, ecological succession, and climate: Developing a systems approach to integrated catchment response. Water Resour. Res. 2003, 39, 1–14. [Google Scholar] [CrossRef]
- Neal, C.; Reynolds, B.; Neal, M.; Wickham, H.; Hill, L.; Williams, B. The impact of conifer harvesting on stream water quality: the Afon Hafren, mid-Wales. Hydrol. Earth Syst. Sci. 2004, 8, 503–520. [Google Scholar] [CrossRef]
- Neal, C.; Reynolds, B.; Wilkinson, J.; Hill, T.; Neal, M.; Hill, S.; Harrow, M. The impacts of conifer harvesting on runoff water quality: A regional survey for Wales. Hydrol. Earth Syst. Sci. 1998, 2, 323–344. [Google Scholar] [CrossRef]
- Dissmeyer, G. Drinking Water from Forests and Grasslands; Technical Report; USDA Forest Service Southern Research Station: Asheville, NC, USA, 2000.
- Forsell, N.; Korosuo, A.; Havlík, P.; Valin, H.; Lauri, P.; Gusti, M.; Kindermann, G.; Obersteiner, M. Study on Impacts on Resource Efficiency of Future EU Demand For Bioenergy (ReceBio); Technical Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Passeport, E.; Vidon, P.; Forshay, K.J.; Harris, L.; Kaushal, S.S.; Kellogg, D.Q.; Lazar, J.; Mayer, P.; Stander, E.K. Ecological engineering practices for the reduction of excess nitrogen in human-influenced landscapes: A guide for watershed managers. Environ. Manag. 2013, 51, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, P.; Schmidt, I.K.; Raulund-Rasmussen, K. Leaching of nitrate from temperate forests effects of air pollution and forest management. Environ. Rev. 2006, 14, 1–57. [Google Scholar] [CrossRef]
- Jerabkova, L.; Prescott, C.E.; Titus, B.D.; Hope, G.D.; Walters, M.B. A meta-analysis of the effects of clearcut and variable-retention harvesting on soil nitrogen fluxes in boreal and temperate forests. Can. J. For. Res. 2011, 41, 1852–1870. [Google Scholar] [CrossRef]
- Dise, N.; Wright, R. Nitrogen leaching from European forests in relation to nitrogen deposition. For. Ecol. Manag. 1995, 71, 153–161. [Google Scholar] [CrossRef]
- Collaboration for Environmental Evidence. Guidlines for Systematic Review and Evidence Synthesis in Environmental Management; Technical Report; Centre for Evidence-Based Conservation: Bangor, UK, 2013. [Google Scholar]
- Walter, H.; Breckle, S.W. Vegetation und Klimazonen; Ulmer: Stuttgart, Germany, 1999. [Google Scholar]
- Swank, W.T.; Vose, J.M.; Elliott, K.J. Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a southern Appalachian catchment. For. Ecol. Manag. 2001, 143, 163–178. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer, 3.10 ed.; WebPlotDigitizer: Austin, TX, USA, 2016; Available online: http://arohatgi.info/ (accessed on 1 September 2015).
- Reynolds, B.; Stevens, P.A.; Hughes, S.; Parkinson, J.A.; Weatherley, N.S. Stream chemistry impacts of conifer harvesting in Welsh catchments. Water Air Soil Pollut. 1995, 79, 147–170. [Google Scholar] [CrossRef]
- Arthur, M.A.; Coltharp, G.B.; Brown, D.L. Effects of best management practices on forest streamwater quality in eastern Kentucky. J. Am. Water Resour. Assoc. 1998, 34, 481–495. [Google Scholar] [CrossRef]
- Bracken, M.B. Statistical methods fo analysis of effects of treatment in overviews of randomized trials. In Effective Care of the Newborn Infant; Sinclair, J.C., Bracken, M.B., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 13–20. [Google Scholar]
- Lajeunesse, M.J. Recovering Missing or Partial Data from Studies: A Survey of Conversions and Imputations for Meta-analysis. In Handbook of Meta-Analysis in Ecology and Evolution; Koricheva, J., Gurevitch, J., Mengersen, K., Eds.; Princeton University Press: Princeton, NJ, USA, 2013; pp. 195–206. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; R package version 3.1-128; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Rosenberg, M.S.; Rothstein, H.R.; Gurevitch, J. Effect Sizes: Conventional Choices and Calculations. In Handbook of Meta-Analysis in Ecology and Evolution; Koricheva, J., Gurevitch, J., Mengersen, K., Eds.; Princeton University Press: Oxford, UK, 2013; pp. 61–85. [Google Scholar]
- Bolker, B. Linear and generalized linear mixed models. In Ecological Statistics: Contemporary Theory and Application; Fox, G.A., Negrete-Yankelevich, S., Sosa, V.J., Eds.; Oxford University Press: Oxford, UK, 2015; Chapter 13; pp. 309–333. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: New York, NY, USA, 2009; p. 450. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevitch, J.; Nakagawa, S. Research synthesis methods in ecology. In Ecological Statistics: Contemporary Theory and Application; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2015; Chapter 9. [Google Scholar]
- Nakagawa, S.; Santos, E.S.A. Methodological issues and advances in biological meta-analysis. Evolut. Ecol. 2012, 26, 1253–1274. [Google Scholar] [CrossRef]
- Mupepele, A.C.; Walsh, J.C.; Sutherland, W.J.; Dormann, C.F. An evidence assessment tool for ecosystem services and conservation studies. Ecol. Appl. 2016, 26, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Koricheva, J.; Gurevitch, J.; Mengersen, K. (Eds.) Handbook of Meta-Analysis in Ecology and Evolution; Princeton University Press: Princeton, NJ, USA, 2013; p. 498.
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ Clin. Res. 1997, 315, 629. [Google Scholar] [CrossRef]
- Gerstner, K.; Dormann, C.F.; Stein, A.; Manceur, A.M.; Seppelt, R. Effects of land use on plant diversity—A global meta-analysis. J. Appl. Ecol. 2014, 51, 1690–1700. [Google Scholar] [CrossRef]
- Silsbee, D.G.; Larson, G.L. A comparison of streams in logged and unlogged areas of Great Smoky Mountains National Park. Hydrobiologia 1983, 102, 99–111. [Google Scholar] [CrossRef]
- Clinton, B.D. Stream water responses to timber harvest: Riparian buffer width effectiveness. For. Ecol. Manag. 2011, 261, 979–988. [Google Scholar] [CrossRef]
- Siemion, J.; Burns, D.A.; Murdoch, P.S.; Germain, R.H. The relation of harvesting intensity to changes in soil, soil water, and stream chemistry in a northern hardwood forest, Catskill Mountains, USA. For. Ecol. Manag. 2011, 261, 1510–1519. [Google Scholar] [CrossRef]
- Meininger, W.S. The iNfluence of Contemporary Forest Management on Stream Nutrient Concentrations in an Industrialized Forest in the Oregon Cascades. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2011. [Google Scholar]
- Neal, C.; Reynolds, B.; Norris, D.; Kirchner, J.W.; Neal, M.; Rowland, P.; Wickham, H.; Harman, S.; Armstrong, L.; Sleep, D.; et al. Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: An openly accessible data resource for research, modelling, environmental management and education. Hydrol. Process. 2011, 25, 3818–3830. [Google Scholar] [CrossRef]
- Graynoth, E. Effects of logging on stream environments and faunas in Nelson. N. Z. J. Mar. Freshw. Res. 1979, 13, 79–109. [Google Scholar] [CrossRef]
- Cummins, T.; Farrell, E.P. Biogeochemical impacts of clearfelling and reforestation on blanket-peatland streams II. Major ions and dissolved organic carbon. For. Ecol. Manag. 2003, 180, 557–570. [Google Scholar] [CrossRef]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Rothe, A.; Kölling, C.; Moritz, K. Waldbewirtschaftung und Grundwasserschutz—Der aktuelle Kenntnisstand. AFZ Der Wald 1998, 53, 291–295. [Google Scholar]
- Meesenburg, H.; Horváth, B.; Meiwes, K.J. Stoffhaushalt von Waldökosystemen NW-Deutschlands unter hoher Stickstoffbelastung. Ber. Freibg. Forstl. Forsch. 2003, 49, 57–69. [Google Scholar]
- Puhlmann, H.; Von Wilpert, K. Silvicultural management options to preserve the seepage-water quality under forests - Case study Conventwald. Hydrol. Wasserbewirsch. 2009, 53, 96. [Google Scholar]
- Prescott, C.E. The influence of the forest canopy on nutrient cycling. Tree Physiol. 2002, 22, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Reich, P.B.; Knops, J.M.H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 2006, 441, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.C.; von Oheimb, G.; Scherer-Lorenzen, M.; Yang, B.; Trogisch, S.; Bruelheide, H.; Ma, K.; Härdtle, W. Mixed afforestation of young subtropical trees promotes nitrogen acquisition and retention. J. Appl. Ecol. 2014, 51, 224–233. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occurs? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Kreutzweiser, D.P.; Hazlett, P.W.; Gunn, J.M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environ. Rev. 2008, 16, 157–179. [Google Scholar] [CrossRef]
- Göttlein, A.; Baumgarten, M.; Huber, C.; Weis, W.; Papen, H.; Butterbach-Bahl, K.; Gasche, R. Femel- und Kahlhieb im Vergleich, Ökologie der Mischwaldbegründung in einem stickstoffbelasteten Fichtenbestand. LWF aktuell Magazin für Wald Wissenschaft und Praxis 2003, 41, 6–8. [Google Scholar]
- Wenger, W. Bedeutung des Waldes für die Trinkwassergewinnung. LWF aktuell Magazin für Wald Wissenschaft und Praxis 2002, 34, 3–8. [Google Scholar]
- Miller, H.G. The influence of stand development on nutrient demand, growth and allocation. Plant Soil 1995, 168–69, 225–232. [Google Scholar] [CrossRef]
- Kölling, C.; Neustifter, H. Stickstoffeintrag in Wälder und Nitratkonzentration im Sickerwasse—Ergebnisse aus dem Messnetz der Bayerischen Waldklimastationen. AFZ Der Wald 1997, 52, 1107–1110. [Google Scholar]
- Weis, W. Beeinflusst der Standort den Nitrataustrag? LWF aktuell Magazin für Wald Wissenschaft und Praxis 2002, 34, 21–24. [Google Scholar]
- Borchert, H. Veränderung des Waldes in Bayern in den letzten hundert Jahren. LWF Wissen 2002, 58, 2–50. [Google Scholar]
- Knoke, T.; Stimm, B.; Ammer, C.; Moog, M. Mixed forests reconsidered: A forest economics contribution on an ecological concept. For. Ecol. Manag. 2005, 213, 102–116. [Google Scholar] [CrossRef]
- Shepard, J.P. Water quality protection in bioenergy production: The US system of forestry Best Management Practices. Biomass Bioenergy 2006, 30, 378–384. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz. Waldbericht der Bundesregierung; Technical Report; BMELV: Berlin, Germany, 2009. [Google Scholar]
- Kindler, E. Analyse zur erweiterten Nachhaltigkeitsberichterstattung deutscher Länderforstbetriebe. Appl. Agric. For. Res. 2015, 2, 131–144. [Google Scholar]
- BMELV. German Forests—Nature and Economic Factor; Technical Report; Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz: Berlin, Germany, 2011. [Google Scholar]
- Galloway, J.N. Acid deposition: Perspectives in time and space. Water Air Soil Pollut. 1995, 85, 15–24. [Google Scholar] [CrossRef]
- Sucker, C.; Wilpert, K.V.; Puhlmann, H. Acidification reversal in low mountain range streams of Germany. Environ. Monit. Assess. 2011, 174, 65–89. [Google Scholar] [CrossRef] [PubMed]
- Paré, D.; Thiffault, E. Nutrient budgets in forests under increased biomass harvesting scenarios. Curr. For. Rep. 2016, 2, 81–91. [Google Scholar] [CrossRef]
- Campbell, J.L.; Hornbeck, J.W.; Mitchell, M.J.; Adams, M.B.; Castro, M.S.; Driscoll, C.T.; Kahl, J.S.; Kochenderfer, J.N.; Likens, G.E.; Lynch, J.A.; et al. Input-output budgets of inorganic nitrogen for 24 forest watersheds in the Northeastern United States: A review. Water Air Soil Pollut. 2004, 151, 373–396. [Google Scholar] [CrossRef]
- Vitousek, P.M. Nitrate losses from disturbed ecosystems. Science 1979, 204, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Sudduth, E.B.; Perakis, S.S.; Bernhardt, E.S. Nitrate in watersheds: Straight from soils to streams? J. Geophys. Res. Biogeosci. 2013, 118, 291–302. [Google Scholar] [CrossRef]
- Gisi, U. Bodenökologie; Thieme Verlag: Stuttgart, Germany, 1997; p. 350. [Google Scholar]
- Rüetschi, D.; Wülser, R. Die künstliche Grundwasseranreicherung der Wasserversorgung Basel; Technical Report; Annual Report of the Lake Constance-Rhine-Waterworks Association: Basel, Switzerland, 1999; pp. 71–84. [Google Scholar]
- Fenn, M.E.; Poth, M.A.; Aber, J.D.; Baron, J.S.; Bormann, B.T.; Johnson, D.W.; Lemly, A.D.; McNulty, S.G.; Ryan, D.F.; Stottlemyer, R. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecol. Appl. 1998, 8, 706–733. [Google Scholar] [CrossRef]
- Schleppi, P.; Waldner, P.; Hegg, C. Einfluss des Waldes auf Nitrat-Gehalte im Wasser. Bündner Wald 2003, 4, 27–30. [Google Scholar]
- Bredemeier, M.; Cohen, S.; Godbold, D.L.; Lode, E.; Pichler, V.; Schleppi, P. (Eds.) Forest Management and the Water Cycle—An Ecosytem-Based Approach; Springer: New York, NY, USA, 2011.
- Covington, W.; Sackett, S. Soil mineral nitrogen changes following prescribed burning in ponderosa pine. For. Ecol. Manag. 1992, 54, 175–191. [Google Scholar] [CrossRef]
- Ledgard, S.; Sprosen, M.; Penno, J.; Rajendram, G. Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant Soil 2001, 229, 177–187. [Google Scholar] [CrossRef]
- Stednick, J.D. Long-term water quality changes following timber harvesting. In Hydrological and Biological Responses to Forest Practices; Stednick, J.D., Ed.; Springer: New York, NY, USA, 2008; Chapter 10; pp. 139–155. [Google Scholar]
- Mengersen, K.; Schmid, C.H.; Jennions, M.D.; Gurevitch, J. Statistical Models and Approaches to Inference. In Handbook of Meta-Analysis in Ecology and Evolution; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2013; Chapter 8; pp. 89–107. [Google Scholar]
- Binkley, D.; Burnham, H.; Lee Allen, H. Water quality impacts of forest fertilization with nitrogen and phosphorus. For. Ecol. Manag. 1999, 121, 191–213. [Google Scholar] [CrossRef]
- Boggs, J.; Sun, G.; Jones, D.; McNulty, S.G. Effect of soils on water quantity and quality in Piedmont forested headwater watersheds of North Carolina. J. Am. Water Resour. Assoc. 2013, 49, 132–150. [Google Scholar] [CrossRef]
Environmental Variable | Description |
---|---|
Harvest treatment | Clearcut: 26 sites |
Patchcut at high intensity: nine sites, and low intensity: six sites | |
Selective harvest at high intensity: three sites, and low intensity: eight sites. | |
Forest age | 20 to 100 years, with four exceptionally old sites of 450 and 600 years. |
Forest composition | Coniferous forests: 27 sites |
Mixed forests: 14 sites | |
Deciduous forests: 11 sites | |
Time after harvest | The time of -measurements in relation to forest harvest ranged from 1 to 54 years. Forty-five effect sizes were from the first year after intervention, decreasing to 39 in the second and 33 in the third year. Two thirds of effect sizes were from the first 12 years. |
Harvest year | Earliest harvest took place in 1926, but measurements on this site were taken only 50 years later [51]. First forest harvests with measurements directly after the intervention were from the 1960s. Most studies (15) investigated harvesting between 2000 and 2006. The last forest harvests investigated took place in 2006, and were published in 2011 [52,53,54,55]. The 10 sites harvested in the 1980s were those with the most long-term research, and provided 117 data points around 12 years of investigation after harvest. |
Catchment size | Sites covering small catchments with less than 100 ha were most abundant (37). One catchment was as large as 2031 ha [56], and the remaining sites all ranged between 100 and 600 ha. |
Mean annual temperature | Ranged from 4.6 to 14 , whereas most sites were between 5 to 13 . Catskill, USA had the lowest mean temperature (4.6 to 5.2 ). The warmest sites were in Hubbard Brook, USA and Japan with 14 . |
Annual precipitation | Ranged from 1156 mm/annum in Cloosh, Ireland, to 3333 mm/annum in the Hoh river valley, USA. |
Altitude | The lowest place was at 63 m a.s.l, the same catchment that obtained lowest precipitation in Cloosh, Ireland [57]. Great Smoky Mountains National, USA had the most elevated site (1162 m). |
Predictor | Degrees of Freedom | F-Statistic | p-Value |
---|---|---|---|
Time after harvest (spline) | 11.46 | 11.07 | <0.001 |
Harvest treatment | 4 | 7.07 | <0.001 |
Forest composition | 2 | 8.82 | <0.001 |
Altitude | 1 | 25.32 | <0.001 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mupepele, A.-C.; Dormann, C.F. Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis. Forests 2017, 8, 5. https://doi.org/10.3390/f8010005
Mupepele A-C, Dormann CF. Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis. Forests. 2017; 8(1):5. https://doi.org/10.3390/f8010005
Chicago/Turabian StyleMupepele, Anne-Christine, and Carsten F. Dormann. 2017. "Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis" Forests 8, no. 1: 5. https://doi.org/10.3390/f8010005
APA StyleMupepele, A. -C., & Dormann, C. F. (2017). Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis. Forests, 8(1), 5. https://doi.org/10.3390/f8010005