Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Materials and Processing
2.3. Identifying the Key Phenology Phase
2.4. Extracting Index Metrics and Relevant Thresholds
3. Results
3.1. MODIS-Based Time-Series Analyses for Different Land Cover Types
3.2. Selection of Indices and Relevant Thresholds
3.3. Landsat-Based Tropical Evergreen Forest Map of the Study Area in 2010
3.4. Distribution of Evergreen Forests on Different Elevation Gradients
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Shimada, M.; Liu, J.; Li, C.; Kou, W.; Moore, B., III. Forest cover maps of china in 2010 from multiple approaches and data sources: Palsar, landsat, modis, fra, and nfi. ISPRS J. Photogramm. Remote Sens. 2015, 109, 1–16. [Google Scholar] [CrossRef]
- Pongratz, J.; Reick, C.H.; Raddatz, T.; Claussen, M. Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys. Res. Lett. 2010, 37, 162–169. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Roy, P.S.; Joshi, P.K.; Gilani, H.; Murthy, M.S.R.; Jin, C.; Wang, J. Mapping forests in monsoon asia with alos palsar 50-m mosaic images and modis imagery in 2010. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Park, J.; Fukami, K. Near real-time flood volume estimation from modis time-series imagery in the indus river basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 578–586. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. From the cover: Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.F.; Cannon, C.H.; Chen, J.; Ye, C.X.; Swetnam, R.D. Developing indicators of economic value and biodiversity loss for rubber plantations in Xishuangbanna, southwest China: A case study from menglun township. Ecol. Indic. 2014, 36, 788–797. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Wendt, D.G. Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates. Remote Sens. Environ. 2002, 81, 36–44. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of palsar and multi-temporal landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series modis data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping deciduous rubber plantation areas and stand ages with palsar and landsat images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Iii, B.M. Mapping paddy rice agriculture in southern china using multi-temporal modis images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Jiang, L.; Zhang, J. Rubber plantations in xishuangbanna: Remote sensing identification and digital mapping. Resour. Sci. 2012, 34, 1769–1780. [Google Scholar]
- Senf, C.; Pflugmacher, D.; Linden, S.V.D.; Hostert, P. Mapping rubber plantations and natural forests in Xishuangbanna (southwest China) using multi-spectral phenological metrics from modis time series. Remote Sens. 2013, 5, 2795–2812. [Google Scholar] [CrossRef]
- Xie, D.; Sun, P.; Zhang, J.; Zhu, X. Autumn Crop Identification Using High-Spatial-Temporal Resolution Time Series Data Generated by Modis and Landsat Remote Sensing Images. In Proceedings of the IGARSS 2014—2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2118–2121.
- Editorial Board of the Year Statistical Book of Xishuangbanna. The Year Statistical Book of Xishuangbanna in 2010; Dehong Nationalities Publishing House: Dehong, China, 2011. [Google Scholar]
- Lü, X.T.; Yin, J.X.; Tang, J.W. Diversity and composition of understory vegetation in the tropical seasonal rain forest of Xishuangbanna, SW China. Rev. Biol. Trop. 2011, 59, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. Ledaps Calibration, Reflectance, Atmospheric Correction Preprocessing Code, Version 2; ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2013. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating palsar and modis imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Lu, N.; Hernandez, A.J.; Ramsey, R.D. Land cover dynamics monitoring with landsat data in kunming, china: A cost-effective sampling and modelling scheme using google earth imagery and random forests. Geocarto Int. 2014, 30, 186–201. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Liu, F.J.; Huang, C.; Pang, Y.; Li, M.; Song, D.X.; Song, X.P.; Channan, S.; Sexton, J.O.; Jiang, D.; Zhang, P. Assessment of the three factors affecting myanmar’s forest cover change using landsat and modis vegetation continuous fields data. Int. J. Digit. Earth 2016, 9, 1–24. [Google Scholar] [CrossRef]
- Setiawan, Y.; Pawitan, H.; Prasetyo, L.B.; Lubis, M.I.; Parlindungan, M.; Nurdiana, A. Characterizing spatial distribution and environments of sumatran peat swamp area using 250 m multi-temporal modis data. Procedia Environ. Sci. 2016, 33, 117–127. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series modis 250 m vegetation index data for crop classification in the U.S. Central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Dorjsuren, M.; Liou, Y.-A.; Cheng, C.-H. Time series MODIS and in situ data analysis for mongolia drought. Remote Sens. 2016, 8, 509. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series modis data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
ID | Land Cover Types | Pixels |
---|---|---|
1 | Evergreen forests | 26904 |
2 | Rubber plantations | 8392 |
3 | Farmlands | 268 |
4 | Built-lands | 785 |
5 | Water bodies | 538 |
Land Cover Types | NDVI | EVI | LSWI |
---|---|---|---|
Evergreen Forests | 0.743 ± 0.044 | 0.426 ± 0.076 | 0.312 ± 0.059 |
Rubber Plantations | 0.563 ± 0.077 | 0.342 ± 0.069 | 0.053 ± 0.095 |
Farmlands | 0.526 ± 0.067 | 0.337 ± 0.051 | 0.113 ± 0.079 |
Built-lands | 0.341 ± 0.089 | 0.203 ± 0.055 | −0.029 ± 0.084 |
Water bodies | 0.015 ± 0.078 | 0.008 ± 0.034 | 0.618 ± 0.095 |
Class | Ground Truth Samples (pixels) | Total Class pixels | Producer’s Accuracy | ||
---|---|---|---|---|---|
Evergreen Forests | Others | ||||
Classified results | Evergreen forests | 3774 | 353 | 4127 | 91% |
Others | 373 | 3843 | 4425 | 93% | |
Total ground truth pixels | 4238 | 6240 | 10,478 | ||
User’s accuracy | 89% | 94% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, W.; Liang, C.; Wei, L.; Hernandez, A.J.; Yang, X. Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery. Forests 2017, 8, 34. https://doi.org/10.3390/f8020034
Kou W, Liang C, Wei L, Hernandez AJ, Yang X. Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery. Forests. 2017; 8(2):34. https://doi.org/10.3390/f8020034
Chicago/Turabian StyleKou, Weili, Changxian Liang, Lili Wei, Alexander J. Hernandez, and Xuejing Yang. 2017. "Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery" Forests 8, no. 2: 34. https://doi.org/10.3390/f8020034
APA StyleKou, W., Liang, C., Wei, L., Hernandez, A. J., & Yang, X. (2017). Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery. Forests, 8(2), 34. https://doi.org/10.3390/f8020034