Effect of Gap Sizes on Specific Leaf Area and Chlorophyll Contents at the Castanopsis kawakamii Natural Reserve Forest, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Gap Area Determination
2.2. Leave Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Gap Sizes on LA, LDM, and SLA
3.2. Gap Sizes on Leaf Chlorophyll Contents
4. Discussion
4.1. Effect of Gap Size on LA, LDM, and SLA
4.2. Effect of Gap Size on Chlorophyll Contents
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abrams, M.D.; Kubiske, M.E. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank. For. Ecol. Manag. 1990, 31, 245–253. [Google Scholar] [CrossRef]
- Brokaw, N.; Busing, R.T. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 2000, 15, 183–188. [Google Scholar] [CrossRef]
- Brown, N. The implications of climate and gap microclimate for seedling growth conditions in a Bornean lowland rain forest. J. Trop. Ecol. 1993, 9, 153–168. [Google Scholar] [CrossRef]
- Wright, S.J.; Bunker, D.; Dalling, J.; Davies, S.; Díaz, S.; Engelbrecht, B.; Harms, K.; Kitajima, K.; Kraft, N.; Marks, C. Towards a functional trait based research program within the Center for Tropical Forest Science. 2006. Available online: https://s3.amazonaws.com/academia.edu.documents/41566891/Traits_report_20060817.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1540885648&Signature=faLhjslLAjf7vRyngv08Joy02j8%3D&response-content-disposition=inline%3B%20filename%3DTowards_a_functional_trait_based_researc.pdf (accessed on 30 October 2018).
- Swenson, N.G.; Enquist, B.J. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 2007, 94, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Kunstler, G.; Lavergne, S.; Courbaud, B.; Thuiller, W.; Vieilledent, G.; Zimmermann, N.E.; Kattge, J.; Coomes, D.A. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecol. Lett. 2012, 15, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Roscher, C.; Schumacher, J.; Gubsch, M.; Lipowsky, A.; Weigelt, A.; Buchmann, N.; Schmid, B.; Schulze, E.-D. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 2012, 7, e36760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majeková, M.; de Bello, F.; Doležal, J.; Lepš, J. Plant functional traits as determinants of population stability. Ecology 2014, 95, 2369–2374. [Google Scholar] [CrossRef] [Green Version]
- Soliveres, S.; Maestre, F.T.; Bowker, M.A.; Torices, R.; Quero, J.L.; García-Gómez, M.; Cabrera, O.; Cea, A.P.; Coaguila, D.; Eldridge, D.J. Functional traits determine plant co-occurrence more than environment or evolutionary relatedness in global drylands. Perspect. Plant Ecol. Evol. Syst. 2014, 16, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanta, V.; Klimešová, J.; Martincová, K.; Janeček, Š.; Doležal, J.; Rosenthal, J.; Lepš, J.; Klimeš, L. A test of the explanatory power of plant functional traits on the individual and population levels. Perspect. Plant Ecol. Evol. Syst. 2011, 13, 189–199. [Google Scholar] [CrossRef]
- Lienin, P.; Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 2012, 13, 301–311. [Google Scholar] [CrossRef]
- Berner, L.T.; Law, B.E. Plant traits, productivity, biomass and soil properties from forest sites in the Pacific Northwest, 1999–2014. Sci. Data 2016, 3, 160002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Lu, D.; Zhang, W. Effects of gaps on regeneration of woody plants: A meta-analysis. J. For. Res. 2014, 25, 501–510. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L.; Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 2007, 94, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poorter, L.; Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 2006, 87, 1733–1743. [Google Scholar] [CrossRef]
- Rijkers, T.; Pons, T.; Bongers, F. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 2000, 14, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Shipley, B.; Vile, D.; Garnier, E.; Wright, I.; Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: Reconciling empirical and mechanistic models. Funct. Ecol. 2005, 19, 602–615. [Google Scholar] [CrossRef]
- Oliva, M.A.; Kuki, K.N.; Mielke, M.S.; Ventrella, M.C.; Galvão, M.F.; Pinto, L.R. Key leaf traits indicative of photosynthetic plasticity in tropical tree species. Trees 2015, 29, 247–258. [Google Scholar] [CrossRef]
- Hoffmann, W.; Franco, A.; Moreira, M.; Haridasan, M. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Funct. Ecol. 2005, 19, 932–940. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, G.; Li, M.; Zhang, M.; Zhang, L.; Zhang, X.; An, L.; Xu, S. C:N:P Stoichiometry and Leaf Traits of Halophytes in an Arid Saline Environment, Northwest China. PLoS ONE 2015, 10, e0119935. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.; Lavorel, S.; Garnier, E.; Diaz, S.; Buchmann, N.; Gurvich, D.; Reich, P.; Ter Steege, H.; Morgan, H.; Van Der Heijden, M. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chu, P.; Chen, D.; Bai, Y. Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Funct. Ecol. 2016, 30, 985–997. [Google Scholar] [CrossRef]
- Rodriguez, H.G.; Maiti, R.; Kumari, C.A. Biodiversity of Leaf Traits in Woody Plant Species in Northeastern Mexico: A Synthesis. For. Res. 2016, 5, 169. [Google Scholar] [CrossRef]
- Green, B.R.; Durnford, D.G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu. Rev. Plant Biol. 1996, 47, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-M.; Lee, Y.-J. Seasonal changes of chlorophyll content in field-grown rice crops and their relationships with growth. Proc. Natl. Sci. Counc. Repub. China B Life Sci. 2001, 25, 233–238. [Google Scholar]
- Demey, A.; Staelens, J.; Baeten, L.; Boeckx, P.; Hermy, M.; Kattge, J.; Verheyen, K. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 2013, 371, 53–66. [Google Scholar] [CrossRef]
- An, H.; Shangguan, Z. Generality of leaf traits relationships of dominant species along the secondary succession in the Loess Plateau of China. Afr. J. Biotechnol. 2012, 11, 1624–1631. [Google Scholar] [CrossRef]
- Hunt, R. Plant Growth Curves. The Functional Approach to Plant Growth Analysis; Edward Arnold Ltd.: London, UK, 1982. [Google Scholar]
- Hunt, R.; Cornelissen, J. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol. 1997, 135, 395–417. [Google Scholar] [CrossRef] [Green Version]
- Buajan, S.; Liu, J.F.; He, Z.S.; Feng, X.P.; Muhammad, A.; Taimoor, H.F. Effect of Gap Size on The Dynamic of Micro Environments dring the Daytime at Castanopsis kawakamii Natural Reserve Forest, Sanming City, China. Environ. Nat. Resour. J. 2016, 14, 30–43. [Google Scholar] [CrossRef]
- Hu, L.L.; Zhu, J.J. Determination of the tridimensional shape of canopy gaps using two hemispherical photographs. Agric. For. Meteorol. 2009, 149, 862–872. [Google Scholar] [CrossRef]
- Vile, D.; Garnier, E.; Shipley, B.; Laurent, G.; Navas, M.-L.; Roumet, C.; Lavorel, S.; Diaz, S.; Hodgson, J.G.; Lloret, F. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J.; Cobb, E.D.; Spatz, H.-C. Predicting the allometry of leaf surface area and dry mass. Am. J. Bot. 2009, 96, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aase, J. Relationship between leaf area and dry matter in winter wheat. Agron. J. 1978, 70, 563–565. [Google Scholar] [CrossRef]
- Milla, R.; Reich, P.B. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proc. R. Soc. Lond. B Biol. Sci. 2007, 274, 2109–2115. [Google Scholar] [CrossRef] [PubMed]
- Suoto, C.P.; Premoli, A.C.; Reich, P.B. Complex bioclimatic and soil gradients shape leaf trait variation in Embothrium coccineum (Proteaceae) among austral forests in Patagonia. Rev. Chilena Hist. Nat. 2009, 82, 209–222. [Google Scholar] [CrossRef]
- Karavin, N. Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. Cerris. Bangladesh J. Bot. 2014, 42, 301–306. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.; Falster, D.S.; Groom, P.K.; Hikosaka, K.; Lee, W.; Lusk, C.H.; Niinemets, Ü.; Oleksyn, J. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 2005, 14, 411–421. [Google Scholar] [CrossRef]
- Givnish, T.J. Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 1987, 106, 131–160. [Google Scholar] [CrossRef]
- Xu, F.; Guo, W.; Xu, W.; Wei, Y.; Wang, R. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Prog. Nat. Sci. 2009, 19, 1789–1798. [Google Scholar] [CrossRef]
- Buajan, S.; Liu, J.F.; He, Z.S.; Feng, X.P.; Muhammad, A. The effect of light on micro-environment and specific leaf area within the gap, subtropical forest, China. Pak. J. Bot. 2017, 49, 273–282. [Google Scholar]
- Yulin, L.; Johnson, D.A.; Yongzhong, S.; Jianyuan, C.; Zhang, T. Specific leaf area and leaf dry matter content of plants growing in sand dunes. Bot. Bull. Acad. Sin. 2005, 46, 127–134. [Google Scholar]
- Niinemets, Ü.; Kull, K. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol. 2003, 24, 209–219. [Google Scholar] [CrossRef]
- Fernandes, V.F.; Almeida, L.B.d.; Feijó, E.V.R.d.S.; Silva, D.d.C.; Oliveira, R.A.d.; Mielke, M.S.; Costa, L.C.d.B. Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Revista Brasileira de Farmacognosia 2013, 23, 419–424. [Google Scholar] [CrossRef]
- Junfeng, W.; Yulong, F. The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants. Acta Phytoecol. Sin. 2004, 28, 781–786. [Google Scholar]
- Stanton, K.M.; Weeks, S.S.; Dana, M.N.; Mickelbart, M.V. Light exposure and shade effects on growth, flowering, and leaf morphology of Spiraea alba du roi and Spiraea tomentosa L. HortScience 2010, 45, 1912–1916. [Google Scholar]
- Dalling, J.; Winter, K.; Hubbell, S. Variation in growth responses of neotropical pioneers to simulated forest gaps. Funct. Ecol. 2004, 18, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Prado Júnior, J.; Schiavini, I.; Vale, V.; Lopes, S.; Arantes, C.; Oliveira, A. Functional leaf traits of understory species: Strategies to different disturbance severities. Braz. J. Biol. 2015, 75, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Horticult. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, W.E. The relation between chlorophyll content and rate of photosynthesis. J. Gen. Physiol. 1935, 18, 573–597. [Google Scholar] [CrossRef] [PubMed]
- Mathura, S.; Fossey, A.; Beck, S.L. Comparative study of chlorophyll content in diploid and tetraploid black wattle (Acacia mearnsii). Forestry 2006, 79, 381–388. [Google Scholar] [CrossRef]
- Srichaikul, B.; Bunsang, R.; Samappito, S.; Butkhup, L.; Bakker, G. Comparative Study of Chlorophyll Content in Leaves of Thai Morus alba Linn. Species. Plant Sci. Res. 2011, 3, 17–20. [Google Scholar] [CrossRef]
- Fan, X.; Zang, J.; Xu, Z.; Guo, S.; Jiao, X.; Liu, X.; Gao, Y. Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol. Plant. 2013, 35, 2721–2726. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Sankar, B.; Sridharan, R.; Panneerselvam, R. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 2008, 32, 79–83. [Google Scholar]
- Bojović, B.; Marković, A. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujev. J. Sci. 2009, 31, 69–74. [Google Scholar]
- Hyyryläinen, A.; Rautio, P.; Turunen, M.; Huttunen, S. Seasonal and inter-annual variation in the chlorophyll content of three co-existing Sphagnum species exceeds the effect of solar UV reduction in a subarctic peatland. SpringerPlus 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Houter, N.C.; Pons, T.L. Gap size effects on photoinhibition in understorey saplings in tropical rainforest. Plant Ecol. 2005, 179, 43–51. [Google Scholar] [CrossRef]
Chlorophyll Content (mg/g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | ||||||||||
Chl a | Chl b | TChl | CAR | Chl a | Chlb | TChl | CAR | ||||
Small gap size | Summer | Chl a | 0.328 ** | 0.927 ** | 0.883 ** | 0.392 ** | 0.311 ** | 0.369 ** | 0.283 * | Medium gap size | |
Chl b | 0.916 ** | 0.594 ** | 0.459 ** | ns | ns | ns | ns | ||||
TChl | 0.962 ** | 0.991 ** | 0.862 ** | 0.404 ** | 0.335 ** | 0.386 ** | 0.320 ** | ||||
CAR | 0.300 ** | ns | ns | 0.384 ** | 0.304 ** | 0.362 ** | 0.348 ** | ||||
Winter | Chl a | ns | ns | ns | 0.378 ** | 0.917 ** | 0.989 ** | 0.896 ** | |||
Chl b | ns | ns | ns | 0.285 * | 0.896 ** | 0.966 ** | 0.926 ** | ||||
TChl | ns | ns | ns | 0.351 ** | 0.985 ** | 0.960 ** | 0.925 ** | ||||
CAR | ns | ns | ns | 0.271 * | 0.898 ** | 0.931 ** | 0.934 ** | ||||
Large gap size | Summer | Chl a | 0.902 ** | 0.988 ** | 0.922 ** | 0.634 ** | 0.610 ** | 0.631 ** | 0.593 ** | Non-gap area | |
Chl b | 0.801 ** | 0.958 ** | 0.749 ** | 0.545 ** | 0.502 * | 0.534 * | 0.464 * | ||||
TChl | 0.914 ** | 0.975 ** | 0.881 ** | 0.618 ** | 0.587 ** | 0.612 ** | 0.562 ** | ||||
CAR | 0.333 ** | ns | ns | 0.690 ** | 0.712 ** | 0.703 ** | 0.718 ** | ||||
Winter | Chl a | ns | −0.315 ** | −0.227 * | 0.495 ** | 0.972 ** | 0.997 ** | 0.954 ** | |||
Chl b | ns | −0.345 ** | −0.266 * | 0.498 ** | 0.955 ** | 0.988 ** | 0.980 ** | ||||
TChl | ns | −0.328 ** | −0.243 * | 0.501 ** | 0.995 ** | 0.980 ** | 0.969 ** | ||||
CAR | ns | −0.334 ** | −0.255 * | 0.489 ** | 0.966 ** | 0.964 ** | 0.976 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buajan, S.; Liu, J.; He, Z.; Feng, X. Effect of Gap Sizes on Specific Leaf Area and Chlorophyll Contents at the Castanopsis kawakamii Natural Reserve Forest, China. Forests 2018, 9, 682. https://doi.org/10.3390/f9110682
Buajan S, Liu J, He Z, Feng X. Effect of Gap Sizes on Specific Leaf Area and Chlorophyll Contents at the Castanopsis kawakamii Natural Reserve Forest, China. Forests. 2018; 9(11):682. https://doi.org/10.3390/f9110682
Chicago/Turabian StyleBuajan, Supaporn, Jinfu Liu, Zhongsheng He, and Xueping Feng. 2018. "Effect of Gap Sizes on Specific Leaf Area and Chlorophyll Contents at the Castanopsis kawakamii Natural Reserve Forest, China" Forests 9, no. 11: 682. https://doi.org/10.3390/f9110682
APA StyleBuajan, S., Liu, J., He, Z., & Feng, X. (2018). Effect of Gap Sizes on Specific Leaf Area and Chlorophyll Contents at the Castanopsis kawakamii Natural Reserve Forest, China. Forests, 9(11), 682. https://doi.org/10.3390/f9110682