Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forest Inventory Data
2.2. Field Measurement Data
2.3. Estimation of Forest Biomass Carbon Stock
2.4. Calculation of Forest BCS
3. Results
3.1. Models for Forest BCS Estimation
3.2. BCS Dynamics of Forests in China
3.3. BCS in Different Forest Age Classes
3.4. Regional Differences of Forest BCS
4. Discussions
4.1. Methodology for Forest BCS Estimation
4.2. Uncertainties in BCS Estimations
4.3. Implications for Future Forest BCS in China
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Yu, G.R.; Wang, Q.F.; Zhang, Y.J. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 2014, 23, 323–333. [Google Scholar] [CrossRef]
- Grassi, G.; House, J.; Dentener, F.; Federici, S.; den Elzen, M.; Penman, J. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 2017, 7, 220–226. [Google Scholar] [CrossRef]
- Piao, S.L.; Huang, M.T.; Liu, Z.; Wang, X.H.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emission responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Volkova, L.; Roxburgh, S.H.; Weston, C.J.; Benyon, R.G.; Sullivan, A.L.; Polglase, P.J. Importance of disturbance history on net primary productivity in the world’s most productive forests and implications for the global carbon cycle. Glob. Chang. Biol. 2018, 24, 4293–4303. [Google Scholar] [CrossRef] [PubMed]
- Forkel, M.; Carvalhais, N.; Rodenbeck, C.; Keeling, R.; Heimann, M.; Thonicke, K.; Zaehle, S.; Reichstein, M. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 2016, 351, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Wang, Y.P.; Peng, S.S.; Rayner, P.J.; Ciais, P.; Silver, J.D.; Piao, S.L.; Zhu, Z.C.; Lu, X.J.; Zheng, X.G. Dominant regions and drivers of the variability of the global land carbon sink across timescales. Glob. Chang. Biol. 2018, 24, 3954–3968. [Google Scholar] [CrossRef] [PubMed]
- Law, B.E.; Hudiburg, T.W.; Berner, L.T.; Kent, J.J.; Buotte, P.C.; Harmon, M.E. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 2018, 115, 3663–3668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crouzeilles, R.; Curran, M.; Ferreira, M.S.; Lindenmayer, D.B.; Grelle, C.E.; Benayas, J.M.R. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 2016, 7, 11666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Sandra, B.; Michael, L.; Mitcard, E.T. A Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.H.; Ju, W.M.; Chen, J.M.; Wang, X.Q.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years. Environ. Res. Lett. 2015, 10, 114021. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.A.; Stinson, G.; Rampley, G.J.; Dymond, C.C.; Neilson, E.T. Risk of natural disturbances makes future contributions of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. USA 2008, 105, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Loudermilk, E.L.; Scheller, R.M.; Weisberg, P.J.; Yang, J.A.; Dilts, T.E.; Karam, S.L.; Skinner, C. Carbon dynamics in the future forest: The importance of long-term successional legacy and climate-fire interactions. Glob. Chang. Biol. 2013, 19, 3502–3515. [Google Scholar] [CrossRef] [PubMed]
- Dai, E.F.; Wu, Z.; Ge, Q.S.; Xi, W.M.; Wang, X.F. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China. Glob. Chang. Biol. 2016, 22, 3642–3661. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.C.; He, H.S.; Thompson, F.R., III; Wang, W.J.; Fraser, J.S.; Shifley, S.R.; Hanberry, B.B.; Dijak, W.D. Future forest aboveground carbon dynamics in the central United States: The importance of forest demographic processes. Sci. Rep. 2017, 7, 41821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Wang, X.; Liu, Y.; Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 2017, 4, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Tharammal, T.; Bala, G.; Narayanappa, D.; Nemani, R. Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- Xu, B.; Guo, Z.D.; Piao, S.L.; Fang, J.Y. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci. China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, J.Y.; Shao, Q.Q.; Xu, X.L. Carbon sequestration by forestation across China: Past, present, and future. Renew. Sustain. Energy Rev. 2012, 16, 1291–1299. [Google Scholar] [CrossRef]
- Hu, H.; Wang, S.; Guo, Z.; Xu, B.; Fang, J.Y. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Sci. Rep. 2015, 5, 11203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, N.P.; Wen, D.; Zhu, J.X.; Tang, X.L.; Xu, L.; Zhang, L.; Hu, H.F.; Huang, M.; Yu, G.R. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Glob. Chang. Biol. 2017, 23, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.T.; Piao, S.L.; Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 2018, 63, 1108–1117. [Google Scholar] [CrossRef]
- Keenan, T.F.; Davidson, E.; Moffat, A.M.; Munger, W.; Richardson, A.D. Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob. Chang. Biol. 2012, 18, 2555–2569. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Ju, W.M.; Chen, J.M.; Li, D.; Wang, X.; Fan, W.; Li, M.; Zan, M. Mapping forest stand age in China using remotely sensed forest height and observation data. J. Geophys. Res. Biogeosci. 2014, 119, 1163–1179. [Google Scholar] [CrossRef] [Green Version]
- Curtis, P.S.; Gough, C.M. Forest aging, disturbance and the carbon cycle. New Phytol. 2018, 219, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Zhou, L.; Chen, J.M.; Ju, W.M.; Feng, X.F.; Wu, W.X. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. J. Environ. Manag. 2011, 92, 1651–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2010: Main Report; FAO Forestry Paper 163; FAO: Rome, Italy, 2010. [Google Scholar]
- Peng, S.S.; Piao, S.L.; Zeng, Z.Z.; Ciais, P.; Zhou, L.M.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.L.; Fang, J.Y.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Guo, Z.D.; Hu, H.F.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinese Ministry of Forestry. Forest Resource Statistics of China (2009–2013); Department of Forest Resource and Management, Chinese Ministry of Forestry: Beijing, China, 2014. [Google Scholar]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W.; et al. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Dong, J.; Yi, Y.; Lu, G.; Oyler, J.; Smith, W.K.; Zhao, M.; Liu, J.; Running, S. Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. J. Geophys. Res. Biogeosci. 2017, 122, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liu, S.G.; Kim, D.G.; Peng, C.H.; Sweeney, S.; Shangguan, Z.P. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 2017, 47, 13–20. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pregitzer, K.S.; Euskirchen, E.S. Carbon cycling and storage in world forests: Biome patterns related to forest age. Glob. Chang. Biol. 2004, 10, 2052–2077. [Google Scholar] [CrossRef]
- Zhang, C.H.; Ju, W.M.; Chen, J.M.; Zan, M.; Li, D.Q.; Zhou, Y.L.; Wang, X.Q. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim. Chang. 2013, 118, 933–948. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, M.Z.; Fan, W.Y.; Yu, Y.; Chen, J.M. Relationship between net primary productivity and forest stand age under different site condictions and its implications for regional carbon cycle study. Forests 2018, 9, 5. [Google Scholar] [CrossRef]
- Pienaar, L.V.; Turnbull, K.J. The Chapman-Richards generalization of Von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. For. Sci. 1973, 19, 2–22. [Google Scholar]
- Ricker, W.E. Growth rates and models. In Fish Physiology, III, Bioenergetics and Growth; Academic Press: New York, NY, USA, 1979; Volume 8, pp. 677–743. [Google Scholar]
- Von Gadow, K.; Hui, G. Modeling Forest Development; Faculty of Forest and Woodland Ecology, University of Göttingen: Göttingen, Germany, 1998. [Google Scholar]
- Charles, P.W. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar]
- Zeide, B. Accuracy of equations describing diameter growth. Can. J. For. Res. 1989, 19, 1283–1286. [Google Scholar] [CrossRef]
- Wang, Y.F.; Liu, L.; Shangguan, Z.P. Carbon storage and carbon sequestration potential under the Grain for Green Program in Henan Province, China. Ecol. Eng. 2017, 100, 147–156. [Google Scholar] [CrossRef]
- Nie, H.; Wang, S.Q.; Zhou, L.; Wang, J.Y.; Zhang, Y.; Deng, Z.W.; Yang, F.T. Carbon sequestration potential of forest vegetation in Jiangxi and Zhejiang provinces based on national forest inventory. Chin. J. Appl. Ecol. 2011, 22, 2581–2588. (In Chinese) [Google Scholar]
- China Forestry Sustainable Development Strategy Research Group. General View of China Forestry Sustainable Development Strategy Research; China Forestry Publishing House: Beijing, China, 2002. [Google Scholar]
- Sun, X.Y.; Wang, G.X.; Huang, M.; Chang, R.Y.; Ran, F. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050. Sci. Rep. 2016, 6, 34687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, K.; Zhang, J.; Niu, S.L.; Chu, C.J.; Luo, Y.Q. Limits to growth of forest biomass carbon sink under climate change. Nat. Commun. 2018, 9, 2709. [Google Scholar] [CrossRef] [PubMed]
- Keith, H.; Mackey, B.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef] [PubMed]
- Hudiburg, T.; Law, B.; Turner, D.P.; Campbell, J.; Donato, D.; Duane, M. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 2009, 19, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, J.M.; Yang, X.; Fan, W.; Li, M.; He, L. Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE 2017, 12, e0177084. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Heath, L.S.; Jenkens, J.C. Forest Tree Volume to Biomass Models and Estimates for Live and Standing Dead Trees of U.S. Forest; General Technical Report NE-298; U.S. Department of Agriculture, Forest Service: Newtown Square, PA, USA, 2002; p. 57. [Google Scholar]
- Johnson, E.A.; Miyanishi, K. Testing the assumptions of chronosequences in succession. Ecol. Lett. 2008, 11, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Bongers, F.; Aide, T.M.; Zambrano, A.M.A.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xiao, X.M.; Bu, R.C.; Doughty, R.; Hu, Y.M.; Chen, B.Q.; Li, X.P.; Zhao, B. Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model. Environ. Model. Softw. 2017, 94, 127–139. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, S.Q.; Zhou, T.; Chi, Y.G.; Dai, M. Carbon dynamics of China’s forests during 1901–2010: The importance of forest age. Sci. Bull. 2016, 6, 2064–2073. [Google Scholar]
- Luyssaert, S.; Schulze, E.D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef] [PubMed]
Model a | Formula | Parameter Range | Inflect Point | Source |
---|---|---|---|---|
R | B = a(1 − exp( − bA))1/(1 − c) | a, b, c > 0 | A = ln(1/(1 − c))/b, B = ac1/(1 − c) | [44] |
M | B = a(1 − bexp( − cA)) | a > 0, 0 < b ≤ 1, c > 0 | - | [45] |
L | B = a/(1 + exp(b − cA)) | a, b > 0 | A = b/c, B = 2/a | [46] |
G | B = aexp( − exp(b − cA)) | a, c > 0 | A = b/c, B = a/e | [47] |
K | B = aexp( − b/Ac) | a, b, c > 0 | A = ((c + 1)/bc)1/c, B = aexp( − (c + 1)/c) | [48] |
Forest Type | Region | Model | Parameters | R2 | N | RMSE | ||
---|---|---|---|---|---|---|---|---|
a | b | c | ||||||
Abies, Picea | E, S, SW | G | 537.5314 | 0.7270 | 0.0068 | 0.74 | 109 | 36.85 |
N, NE | R | 441.2245 | 0.0060 | 0.1694 | 0.86 | 28 | 25.70 | |
NW | G | 533.1656 | 1.0424 | 0.0108 | 0.87 | 41 | 36.00 | |
Acacia | C | L | 192.1184 | 3.1253 | 0.8502 | 0.73 | 22 | 35.77 |
Betula | E, NW, S, SW | L | 96.7427 | 3.7254 | 0.1448 | 0.74 | 43 | 18.91 |
N, NE | K | 100.5090 | 33.7955 | 1.1725 | 0.74 | 91 | 9.09 | |
Casuarina | C | L | 494.5846 | 2.3640 | 0.0962 | 0.85 | 35 | 29.29 |
Cinnamomum, Phoebe | C | L | 175.6370 | 2.4932 | 0.1324 | 0.79 | 18 | 24.18 |
Cryptomeria fortunei, Keteleeria, Tsuga chinensis | C | K | 221.5420 | 6.8536 | 0.8436 | 0.85 | 12 | 11.64 |
Cunninghamia lanceolata | E, N, NE | L | 249.6367 | 2.4470 | 0.1270 | 0.80 | 202 | 30.32 |
NW, S, SW | R | 256.6336 | 0.0322 | 0.0338 | 0.75 | 105 | 21.62 | |
Cypress | C | L | 263.6022 | 1.9646 | 0.0269 | 0.73 | 45 | 33.79 |
Eucalyptus | C | G | 272.3120 | 1.1458 | 0.1257 | 0.65 | 83 | 17.97 |
Fraxinus, Juglans, Phellodendron | C | R | 127.4185 | 0.0554 | 0.2067 | 0.74 | 11 | 15.73 |
Hardwoods, Softwoods | E, N, NE, NW | L | 532.8806 | 2.0570 | 0.0462 | 0.76 | 42 | 68.66 |
S | L | 428.7409 | 1.1758 | 0.0254 | 0.78 | 66 | 36.75 | |
SW | M | 459.6966 | 0.8536 | 0.0059 | 0.66 | 98 | 28.66 | |
Larix | E, NW, S, SW | L | 216.3401 | 1.8860 | 0.0429 | 0.76 | 26 | 40.28 |
N | K | 150.9784 | 89.8929 | 1.6011 | 0.75 | 231 | 25.10 | |
NE | G | 228.1324 | 1.3351 | 0.0755 | 0.80 | 157 | 24.83 | |
Metasequoia glyptostroboides | C | L | 301.2842 | 7.2300 | 0.4352 | 0.71 | 24 | 56.17 |
Mixed broadleaf forest | C | L | 296.7574 | 1.5324 | 0.0434 | 0.81 | 72 | 35.96 |
Mixed conifer–broadleaf forest | E | K | 431.5871 | 7.1935 | 0.6634 | 0.89 | 114 | 23.25 |
N, NE, NW | L | 326.4180 | 3.3010 | 0.1181 | 0.79 | 18 | 29.03 | |
S, SW | L | 540.7629 | 1.5528 | 0.0093 | 0.80 | 20 | 60.84 | |
Mixed coniferous forest | C | K | 360.2259 | 19.1780 | 1.0790 | 0.84 | 28 | 24.67 |
Pinus armandi, Pinus densata | C | R | 151.7461 | 0.0615 | 0.6018 | 0.82 | 40 | 18.76 |
Pinus densifolia, Pinus sylvestris | C | L | 131.9763 | 3.9119 | 0.1912 | 0.84 | 90 | 16.86 |
Pinus kisiya, Pinus yunnanensis | C | K | 190.6896 | 45.3259 | 1.3404 | 0.77 | 45 | 27.13 |
Pinus koraiensis | C | L | 233.8190 | 3.9661 | 0.1484 | 0.92 | 53 | 22.86 |
Pinus massoniana | E, N, NE | K | 545.2479 | 6.7624 | 0.4681 | 0.74 | 116 | 29.60 |
NW, SW | G | 326.5093 | 0.9980 | 0.0352 | 0.74 | 30 | 19.70 | |
S | L | 309.0634 | 2.4008 | 0.0839 | 0.74 | 140 | 36.39 | |
Pinus tabulaeformis | E, S, SW | L | 193.3128 | 6.4921 | 0.2370 | 0.78 | 31 | 29.60 |
N | L | 82.2801 | 4.1954 | 0.2586 | 0.75 | 162 | 8.35 | |
NE | L | 312.9978 | 4.5699 | 0.1224 | 0.78 | 171 | 32.20 | |
NW | L | 367.6710 | 2.2105 | 0.0332 | 0.77 | 114 | 35.71 | |
Pinus taeda | C | K | 143.5200 | 13.1459 | 1.2634 | 0.86 | 15 | 10.93 |
Populus | E, S, SW | L | 131.5002 | 3.0444 | 0.4285 | 0.74 | 98 | 22.27 |
N, NE, NW | L | 86.0127 | 3.6210 | 0.2344 | 0.89 | 57 | 10.31 | |
Quercus | E, S, SW | L | 331.0695 | 1.2135 | 0.0210 | 0.84 | 12 | 29.88 |
N, NW | G | 199.1942 | 1.0188 | 0.0181 | 0.69 | 96 | 14.55 | |
NE | L | 195.4747 | 3.8354 | 0.0857 | 0.84 | 12 | 21.63 | |
Sassafras | C | L | 306.4829 | 2.0360 | 0.0663 | 0.86 | 16 | 25.37 |
Year | Area (106 ha) | Carbon Stock (Pg C) | Carbon Density (Mg C ha−1) | BCS (Tg C year−1) |
---|---|---|---|---|
2010 a | 164.60 | 6.90 | 41.90 | 130.90 |
2020 | 180.40 | 9.11 | 50.51 | 221.57 |
2030 | 196.21 | 11.41 | 58.17 | 230.15 |
2040 | 207.12 | 13.20 | 63.73 | 178.65 |
2050 | 218.02 | 14.79 | 67.84 | 159.94 |
2010–2050 | 184.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Ju, W.; Chen, J.; Fang, M.; Wu, M.; Chang, X.; Wang, T.; Wang, X. Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. Forests 2018, 9, 689. https://doi.org/10.3390/f9110689
Zhang C, Ju W, Chen J, Fang M, Wu M, Chang X, Wang T, Wang X. Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. Forests. 2018; 9(11):689. https://doi.org/10.3390/f9110689
Chicago/Turabian StyleZhang, Chunhua, Weimin Ju, Jingming Chen, Meihong Fang, Mengquan Wu, Xueli Chang, Tao Wang, and Xiqun Wang. 2018. "Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050" Forests 9, no. 11: 689. https://doi.org/10.3390/f9110689
APA StyleZhang, C., Ju, W., Chen, J., Fang, M., Wu, M., Chang, X., Wang, T., & Wang, X. (2018). Sustained Biomass Carbon Sequestration by China’s Forests from 2010 to 2050. Forests, 9(11), 689. https://doi.org/10.3390/f9110689