The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems
Abstract
:1. Introduction
2. Forest Management and Monitoring
3. Impact of Forest Management Decisions on the Genetic Composition of Stands
4. Monitoring Systems
4.1. Long-Term Monitoring of the State/Condition of Forests
4.1.1. National Forest Inventories (NFI)
4.1.2. ICP Forests
4.1.3. Long-Term Growth and Yield Observation and Experimental Plots (Forest Growth Plots under Different Management Systems in Pure and Mixed Forest Stands)
4.2. Monitoring the State of the Genetic System of Forests (FGM) and Its Development
4.3. Environmental Monitoring Complementarity with FGM
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ledig, F.T. Human impacts on genetic diversity in forest ecosystems. Oikos 1992, 63, 87–108. [Google Scholar] [CrossRef]
- Lefèvre, F. Human impacts on forest genetic resources in the temperate zone: An updated review. For. Ecol. Manag. 2004, 197, 257–271. [Google Scholar] [CrossRef]
- Finkeldey, R.; Ziehe, M. Genetic implications of silvicultural regimes. For. Ecol. Manag. 2004, 197, 231–244. [Google Scholar] [CrossRef]
- Ratnam, W.; Rajora, P.O.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.M.; Vaillancourt, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspectives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef]
- Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef]
- Konnert, M.; Hussendörfer, E. Genetic variation of silver fir (Abies alba) in unevenaged forests (“Plenter” forest) in comparison with evenaged forests (Altersklassenwald). In Genetic Response of Forest Systems to Changing Environmental Conditions; Müller-Starck, G., Schubert, R., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 307–320. ISBN 978-94-015-9839-2. [Google Scholar] [CrossRef]
- Buiteveld, J.; Vendramin, G.G.; Leonardi, S.; Kamer, K.; Geburek, T. Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For. Ecol. Manag. 2007, 247, 98–106. [Google Scholar] [CrossRef]
- Konnert, M.; Hosius, B. Contribution of forest genetics for a sustainable forest management, Beitrag der Forstgenetik für ein nachhaltiges Waldmanagement. Forstarchiv 2010, 5, 170–174. [Google Scholar] [CrossRef]
- Wernsdörfer, H.; Caron, H.; Gerber, S.; Cornu, G.; Rossi, V.; Mortier, F.; Gourlet-Fleury, S. Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes. Conserv. Genet. 2009, 12, 15–29. [Google Scholar] [CrossRef]
- Piotti, A.; Leonardi, S.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G. Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes. Heredity 2012, 108, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Paffetti, D.; Travaglini, D.; Buonamici, A.; Nocentini, S.; Vendramin, G.G.; Giannini, R.; Vettori, C. The influence of forest management on beech (Fagus sylvatica L.) stand structure and genetic diversity. For. Ecol. Manag. 2012, 284, 34–44. [Google Scholar] [CrossRef]
- Piotti, A.; Leonardi, S.; Heuertz, M.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G. Within-population genetic structure in beech (Fagus sylvatica L.) stands characterized by different disturbance histories: Does forest management simplify population substructure? PLoS ONE 2013, 8, e73391. [Google Scholar] [CrossRef] [PubMed]
- Fageria, M.S.; Rajora, O.P. Effects of silvicultural practices on genetic diversity and population structure of white spruce in Saskatchewan. Tree Genet. Genomes 2014, 10, 287–296. [Google Scholar] [CrossRef]
- Westergren, M.; Bozic, G.; Ferreira, A.; Kraigher, H. Insignificant effect of management using irregular shelterwood system on the genetic diversity of European beech (Fagus sylvatica L.): A case study of managed stand and old growth forest in Slovenia. For. Ecol. Manag. 2015, 335, 51–59. [Google Scholar] [CrossRef]
- Danusevicius, D.; Kerpauskaite, V.; Kavaliauskas, D.; Fussi, B.; Konnert, M.; Baliuckas, V. The effect of tending and commercial thinning on the genetic diversity of Scots pine stands. Eur. J. For. Res. 2016, 135, 1159–1174. [Google Scholar] [CrossRef]
- Schaberg, P.G.; DeHayes, D.H.; Hawley, G.J.; Nijensohn, S.E. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience. For. Ecol. Manag. 2008, 256, 855–862. [Google Scholar] [CrossRef]
- Vos, P.; Meelis, E.; Ter Keurs, W.J. A framework for the design of ecological monitoring programs as a tool for environmental and nature management. Environ. Monit. Assess. 2000, 61, 317–344. [Google Scholar] [CrossRef]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Corona, P.; Chirici, G.; McRoberts, R.E.; Winter, S.; Barbati, A. Contribution of large-scale forest inventories to biodiversity assessment and monitoring. For. Ecol. Manag. 2011, 262, 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- ICP Forests. The International Co-Operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests. Available online: http://icp-forests.net/ (accessed on 7 March 2016).
- Leban, J.M.; Bontemps, J.D. Editorial:“Forest Inventories at the European level”. Ann. For. Sci. 2016, 73, 789–792. [Google Scholar] [CrossRef]
- Namkoong, G.; Boyle, T.; Gregorius, H.R.; Joly, H.; Savolainen, O.; Ratman, W.; Young, A. Testing Criteria and Indicators for Assessing the Sustainability of Forest Management: Genetic Criteria and Indicators; Working Paper No. 10; Centre for International Forestry Research (CIFOR): Bogor, Indonesia, 1996. [Google Scholar] [CrossRef]
- Namkoong, G.; Boyle, T.; El-Kassaby, Y.A.; Palmberg-Lerche, C.; Eriksson, G.; Gregorius, H.R.; Joly, H.; Kremer, A.; Savolainen, O.; Wickneswari, R.; et al. Criteria and Indicators for Sustainable Forest Management: Assessment and Monitoring of Genetic Variation; Forest Genetic Resources Working Paper: Rome, Italy, 2002. [Google Scholar]
- Aravanopoulos, F.A. Genetic monitoring in natural perennial plant populations. Botany 2011, 89, 75–81. [Google Scholar] [CrossRef]
- Koskela, J.; Lefèvre, F.; Schueler, S.; Kraigher, H.; Olrik, D.C.; Hubert, J.; Longauer, R.; Bozzano, M.; Yrjana, L.; Alizoti, P.; et al. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol. Conserv. 2013, 157, 39–49. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Tollefsrud, M.M.; Graudal, L.; Koskela, J.; Kätzel, R.; Soto, A.; Nagy, L.; Pilipovic, A.; Zhelev, P.; Bozic, G.; et al. Development of Genetic Monitoring Methods for Genetic Conservation Units of Forest Trees in Europe. European Forest Genetic Resources Programme (EUFORGEN); Bioversity International: Rome, Italy, 2015; Available online: http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Thematic_publications/EUFORGEN-Genetic-monitoring-methods.pdf (accessed on 10 March 2016).
- BLAG—Expert Group “Genetic Monitoring”. Concept on the Genetic Monitoring for Forest Tree Species in the Federal Republic of Germany. 2004. Available online: http://www.genres.de//fileadmin/SITE_Beirat-FGR/content/Bilder/Concept_on_the_Genetic_Monitoring_for_Forest_Tree_Species_in_the_Federal_Republic_of_Germany.pdf (accessed on 15 February 2016).
- Konnert, M.; Maurer, W.; Degen, B.; Kätzel, R. Genetic monitoring in forests—Early warning and controlling system for ecosystematic changes. iForest 2011, 4, 77–81. [Google Scholar] [CrossRef]
- FORGER: Towards the Sustainable Management of Forest Genetic Resources in Europe. Available online: http://www.fp7-forger.eu/about-forger/objectives (accessed on 15 November 2016).
- GenTree—Optimising the Management and Sustainable Use of Forest Genetic Resources in Europe. Available online: http://www.GenTree-h2020.eu/about/overview/ (accessed on 15 February 2017).
- LIFEGENMON—Life for Forest Genetic Monitoring System. Available online: http://www.lifegenmon.si/about/ (accessed on 15 February 2017).
- GenMon—Genetisches Monitoring für Rotbuche und Fichte in Deutschland. Available online: https://www.gen-mon.de/ (accessed on 15 February 2017).
- Westergren, M.; Božič, G.; Kraigher, H. Silviculture in the light of genetics (M. Wraber 1950)—Principles, development and realisation untill 2005. Razprave 2006, 47, 231–245. [Google Scholar]
- Westergren, M.; Božič, G.; Kraigher, H. Razvoj smernic za dinamično varstvo gozdnih genskih virov v spreminjajočih se razmerah v okolju. In Podnebne Spremembe: Vpliv na Gozd in Gozdarstvo, (Studia Forestalia SLOVENICA, no. 130); Jurc, M., Ed.; Biotehniška fakulteta, Oddelek za Gozdarstvo in Obnovljive Gozdne Vire: Ljubljana, Slovenia, 2007; pp. 487–488. [Google Scholar]
- Kraigher, H. Ohranjanje in raba genskih virov v luči klimatskih sprememb: Tehnične smernice za ohranjanje in rabo genskih virov: Slovenija. Gozdarski Vestnik 2010, 68, 9. [Google Scholar]
- Westergren, M.; Kraigher, H. Monitoring of forest genetic diversity. Gozdarski Vestnik 2011, 69, 322–326. [Google Scholar]
- Westergren, M.; Kraigher, H. Genetski monitoring—Izhodišče gnetskega varstva gozdov: Tehnične smernice za ohranjanje in rabo genskih virov: Slovenija. Gozdarski Vestnik 2011, 69, 409–410. [Google Scholar]
- Hansen, M.M.; Olivieri, I.; Waller, D.M.; Nielsen, E.E. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 2012, 21, 1311–1329. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, R.I.; Fady, B.; Vendramin, G.G.; Dawson, I.K.; Fleming, R.A.; Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Murdock, T.; Vinceti, B.; Navarro, C.M.; et al. The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For. Ecol. Manag. 2014, 333, 76–87. [Google Scholar] [CrossRef]
- Lefèvre, F.; Boivin, T.; Bontemps, A.; Courbet, F.; Davi, H.; Durand-Gillmann, M.; Fady, B.; Gauzere, J.; Gidoin, C.; Karam, M.J.; et al. Considering evolutionary processes in adaptive forestry. Ann. For. Sci. 2014, 71, 723–739. [Google Scholar] [CrossRef]
- Geburek, T.; Müller, F. How can silvicultural management contribute to genetic conservation? In Conservation and Management of Forest Genetic Resources in Europe; Geburek, T., Turok, J., Eds.; Arbora Publishers: Zvolen, Slovakia, 2005; pp. 1–693. ISBN 8096708813. [Google Scholar]
- Europe, F.; Unece, F.A.O. State of Europe’s Forests 2015, Status and Trends in Sustainable Forest Management in Europe; Ministerial Conference on the Protection of Forests in Europe, FOREST EUROPE Liaison Unit Madrid: Madrid, Spain, 2015; p. 314. ISBN 978-82-92980-05-7. [Google Scholar]
- Duncker, P.S.; Barreiro, S.M.; Hengeveld, G.M.; Lind, T.; Mason, W.L.; Ambrozy, S.; Spiecker, H. Classification of forest management approaches: A new conceptual framework and its applicability to European forestry. Ecol. Soc. 2012, 17, 51. [Google Scholar] [CrossRef]
- Ciancio, O.; Corona, P.; Lamonaca, A.; Portoghesi, L.; Travaglini, D. Conversion of clearcut beech coppices into high forests with continuous cover: A case study in central Italy. For. Ecol. Manag. 2006, 224, 235–240. [Google Scholar] [CrossRef]
- Mattioli, W.; Ferrari, B.; Giuliarelli, D.; Mancini, L.D.; Portoghesi, L.; Corona, P. Conversion of mountain beech coppices into high forest: An example for ecological intensification. Environ. Manag. 2015, 56, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, K.D.; Burton, P.J. A gap-based approach for development of silvicultural systems to address ecosystem management objectives. For. Ecol. Manag. 1997, 99, 337–354. [Google Scholar] [CrossRef]
- Gamborg, C.; Larsen, J.B. ‘Back to nature’—A sustainable future for forestry? For. Ecol. Manag. 2003, 179, 559–571. [Google Scholar] [CrossRef]
- Arano, K.G.; Munn, I.A. Evaluating forest management intensity: A comparison among major forest landowner types. For. Policy Econ. 2006, 9, 237–248. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A. Conservation and monitoring of tree genetic resources in temperate forests. Curr. For. Rep. 2016, 2, 119–129. [Google Scholar] [CrossRef]
- Pro Silva Principles. Pro Silva—Association of European Foresters Practicing Management Which Follows Natural Processes. 2012. Available online: http://www.prosilva.org/wp-content/uploads/2016/12/PS-principles-2012.pdf (accessed on 8 November 2017).
- Schütz, J.-P. Development of close to nature forestry and the role of ProSilva Europe. Zb. Gozd. Lesar. 2011, 94, 39–42. [Google Scholar]
- O’Hara, K. What is close-to-nature silviculture in a changing world? Forestry 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Geburek, T. Genetic diversity in forest trees—Its importance and potential human impact. In Conservation and Management of Forest Genetic Resources in Europe; Geburek, T., Turok, J., Eds.; Arbora Publishers: Zvolen, Slovakia, 2005; pp. 1–693. ISBN 8096708813. [Google Scholar]
- Savolainen, O.; Kärkkäinen, K. Effect of forest management on gene pools. New For. 1992, 6, 329–345. [Google Scholar] [CrossRef]
- Lande, R.; Barrowclough, G.F. Effective population size, genetic variation, and their use in population management. Viable Popul. Conserv. 1987, 87, 124. [Google Scholar]
- Hosius, B.; Leinemann, L.; Konnert, M.; Bergmann, F. Genetic aspects of forestry in the Central Europe. Eur. J. For. Res. 2006, 125, 407–417. [Google Scholar] [CrossRef]
- Diaci, J.; Rozenbergar, D.; Fidej, G.; Nagel, T. Challenges for Uneven-Aged Silviculture in Restoration of Post-Disturbance Forests in Central Europe: A Synthesis. Forests 2017, 8, 378. [Google Scholar] [CrossRef]
- Westergren, M.; Bajc, M.; Finžgar, D.; Božič, G.; Kraigher, H. Identification of forest reproductive material origin of European beech using molecular methods. Gozdarski Vestnik 2017, 7, 328–343. [Google Scholar]
- Schierup, M.H.; Christiansen, F.B. Inbreeding depression and outbreeding depression in plants. Heredity 1996, 77. [Google Scholar] [CrossRef]
- Broadhurst, L.; Boshier, D. Seed provenance for restoration and management: Conserving evolutionary potential and utility. Genetic considerations in ecosystem restoration using native tree species. In A Thematic Study for the State of the World’s Forest Genetic Resources; United Nations Food and Agriculture Organization: Rome, Italy, 2014; pp. 27–37. [Google Scholar]
- EU Marketing Requirements. Forest Reproductive Material. Available online: https://ec.europa.eu/food/plant/plant_propagation_material/legislation/eu_marketing_requirements_en (accessed on 28 February 2018).
- Konert, M.; Fady, B.; Gömöry, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; Maaten, T.; Kowalczyk, J. Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change; European Forest Genetic Resources Programme (EUFORGEN); Bioversity International: Rome, Italy, 2015; Volume xvi, 75p. [Google Scholar]
- Paquette, A.; Bouchard, A.; Cogliastro, A. Survival and growth of under-planted trees: A meta-analysis across four biomes. Ecol. Appl. 2006, 16, 1575–1589. [Google Scholar] [CrossRef]
- Thomas, E.; Jalonen, R.; Loo, J.; Bozzano, M. Avoiding failure in forest restoration: The importance of genetically diverse and site-matched germplasm. Unasylva 2015, 66, 29–36. [Google Scholar]
- Mátyás, C. Guidelines for the Choice of Forest Reproductive Material in the Face of Climate Change. Available online: http://www.fp7-forger.eu/uploads/ForestReproductiveMaterial_climatechange_web.pdf (accessed on 28 February 2018).
- Adams, W.T.; Zuo, J.; Shimizu, J.Y.; Tappeiner, J.C. Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. For. Sci. 1998, 44, 390–396. [Google Scholar]
- Rajora, O.P.; Pluhar, S.A. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theor. Appl. Genet. 2003, 106, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Kerr, G.; Haufe, J. Thinning practice. A Sylvicultural Guide; Foresty Commission: Bristol, UK, 2011; p. 54.
- Degen, B.; Gregorius, H.R.; Scholz, F. ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genet. 1996, 45, 323–328. [Google Scholar]
- Hussendörfer, E.; Konnert, M. Untersuchungen zur Bewirtschaftung von Weisstannen-und Buchenbeständen unter dem Aspekt der Erhaltung genetischer Variation. For. Snow Landsc. Res. 2000, 75, 187–204. [Google Scholar]
- Dounavi, K.D.; Steiner, W.; Maurer, W.D. Effects of different silvicultural treatments on the genetic structure of European beech populations (Fagus sylvatica L.). In Continuous Cover Forestry; Von Gadow, K., Nagel, J., Saborowski, J., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 81–90. [Google Scholar]
- Ng, K.K.S.; Lee, S.L.; Ueno, S. Impact of selective logging on genetic diversity of two tropical tree species with contrasting breeding systems using direct comparison and simulation methods. For. Ecol. Manag. 2009, 257, 107–116. [Google Scholar] [CrossRef]
- Manetti, M.C.; Becagli, C.; Sansone, D.; Pelleri, F. Tree-oriented silviculture: A new approach for coppice stands. iForest 2016, 9, 791. [Google Scholar] [CrossRef]
- Bittencourt, J.V.M.; Sebbenn, A.M. Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 2007, 99, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y. Variation in demographic and fine-scale genetic structure with population-history stage of Hemerocallis taeanensis (Liliaceae) across the landscape. Ecol. Res. 2008, 23, 83–90. [Google Scholar] [CrossRef]
- Epperson, B.K. Spatial structure of genetic variation within populations of forest trees. New For. 1992, 6, 257–278. [Google Scholar] [CrossRef]
- Roženbergar, D.; Ficko, A.; Diaci, J. Contemporary Silviculture of Beech Forests. Zb. Gozd. Lesar. 2008, 87, 77–87. [Google Scholar]
- Sagnard, F.; Oddou-Muratorio, S.; Pichot, C.; Vendramin, G.G.; Fady, B. Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet. Genomes 2011, 7, 37–48. [Google Scholar] [CrossRef]
- Müller-Starck, G.; Ziehe, M. Genetic Variation in European Populations of Forest Trees; JD Sauerländer’s Verlag: Frankfurt am Main, Germany, 1991. [Google Scholar]
- Raymond, P.; Bédard, S.; Roy, V.; Larouche, C.; Tremblay, S. The irregular shelterwood system: Review, classification, and potential applicaiton to forests affected by partial disturbances. J. For. 2009, 107, 405–413. [Google Scholar]
- Neale, D.B. Genetic implications of shelterwood regeneration of Douglas fir in Southeast Oregon. For. Sci. 1985, 31, 995–1005. [Google Scholar]
- Hart, C. Alternative Silvicultural Systems to Clear Cutting in Britain: A Review; Bulletin 115, HMSO; Forestry Commision: London, UK, 1995; p. 93. ISBN 9780117103344.
- Aune, P.S.; Redding, C.A. SEED-TREE METHOD. In Proceedings of the Genetics/Silviculture Workshop, Wenatchee, WA, USA, 27–31 August 1990; p. 224. [Google Scholar]
- Keenan, R.J.; Kimmins, J.P. The ecological effects of clear-cutting. Environ. Rev. 1993, 1, 121–144. [Google Scholar] [CrossRef]
- Amorini, E.; Manetti, M.C.; Turchetti, T.; Sansotta, A.; Villani, F. Impact of silvicultural system on Cryphonectria parasitica incidence and on genetic variability in a chestnut coppice in Central Italy. For. Ecol. Manag. 2001, 142, 19–31. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Drouzas, A.D.; Alizoti, P.G. Electrophoretic and quantitative variation in chestnut (Castanea sativa Mill.) in Hellenic populations in old-growth natural and coppice stands. For. Snow Landsc. Res. 2001, 76, 429–434. [Google Scholar]
- Chatziphilippidis, G.; Spyroglou, G. Sustainable Management of Coppice Forests in Greece. In Towards the Sustainable Use of Europe’s Forests—Forest Ecosystem and Landscape Research: Scientific Challenges and Opportunities-EFI Proceedings No 49; Anderson, F., Birot, Y., Päivinen, R., Eds.; European Forestry Institute: Joensuu, Finland, 2004; pp. 51–60. [Google Scholar]
- Mattioni, C.; Cherubini, M.; Micheli, E.; Villani, F.; Bucci, G. Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet. Genomes 2008, 4, 563–574. [Google Scholar] [CrossRef]
- Valbuena-Carabaña, M.; González-Martínez, S.C.; Gil, L. Coppice forests and genetic diversity: A case study in Quercus pyrenaica Willd. from Central Spain. For. Ecol. Manag. 2008, 254, 225–232. [Google Scholar] [CrossRef]
- Ortego, J.; Bonal, R.; Muñoz, A. Genetic consequences of habitat fragmentation in long-lived tree species: The case of the Mediterranean holm oak (Quercus ilex, L.). J. Heredity 2010, 101, 717–726. [Google Scholar] [CrossRef] [PubMed]
- El-Kassaby, Y.A.; Benowicz, A. Effects of commercial thinning on genetic, plant species and structural diversity in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands. For. Genet. 2000, 7, 193–203. [Google Scholar]
- Sjölund, M.J.; Jump, A.S. Coppice management of forests impacts spatial genetic structure but not genetic diversity in European beech (Fagus sylvatica L.). For. Ecol. Manag. 2015, 336, 65–71. [Google Scholar] [CrossRef]
- Rajora, O.P.; Rahman, M.H.; Buchert, G.P.; Dancik, B.P. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol. Ecol. 2000, 9, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Epperson, B.K.; Chung, M.G. Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am. J. Bot. 2001, 88, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, S.E.; Thomas, B.R.; Cherniawsky, D.M.; Purdy, B.G. Managing genetic resources of lodgepole pine in west-central Alberta: Patterns of isozyme variation in natural populations and effects of forest management. For. Ecol. Manag. 2001, 152, 45–58. [Google Scholar] [CrossRef]
- Sork, V.L.; Davis, F.W.; Smouse, P.E.; Apsit, V.J.; Dyer, R.J.; Fernandez-M, J.F.; Kuhn, B. Pollen movement in declining populations of California Valley oak, Quercus lobata: Where have all the fathers gone? Mol. Ecol. 2002, 11, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Wickneswari, R.; Mahani, M.C.; Zakri, A.H. Effect of selective logging on the genetic diversity of Scaphium macropodum. Biol. Conserv. 2002, 104, 107–118. [Google Scholar] [CrossRef]
- Lee, C.T.; Wickneswari, R.; Clyde, M.M.; Zakri, A.H. Maintenance of genetic diversity in Parkia speciosa in logged-over forests. J. Trop. For. Sci. 2002, 14, 163–178. [Google Scholar]
- Obayashi, K.; Tsumura, Y.; Ihara-Ujino, T.; Niiyama, K.; Tanouchi, H.; Suyama, Y.; Washitani, I.; Lee, CT.; Lee, SL.; Muhammad, N. Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microsatellite DNA analysis. Int. J. Plant Sci. 2002, 163, 151–158. [Google Scholar] [CrossRef]
- Glaubitz, J.C.; Murrell, J.C.; Moran, G.F. Effects of native forest regeneration practices on genetic diversity in Eucalyptus consideniana. Theor. Appl. Genet. 2003, 107, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Glaubitz, J.C.; Wu, H.X.; Moran, G.F. Impacts of silviculture on genetic diversity in the native forest species Eucalyptus sieberi. Conserv. Genet. 2003, 4, 275–287. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A.; Dunsworth, B.G.; Krakowski, J. Genetic evaluation of alternative silvicultural systems in coastal montane forests: Western hemlock and amabilis fir. Theor. Appl. Genet. 2003, 107, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Robledo-Arnuncio, J.J.; Alia, R.; Gil, L. Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol. Ecol. 2004, 13, 2567–2577. [Google Scholar] [CrossRef] [PubMed]
- Robledo-Arnuncio, J.J.; Smouse, P.E.; Gil, L.; Alıa, R. Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For. Ecol. Manag. 2004, 197, 245–255. [Google Scholar] [CrossRef]
- Lowe, A.J.; Boshier, D.; Ward, M.; Bacles, C.F.E.; Navarro, C. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 2005, 95, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Hawley, G.J.; Schaberg, P.G.; DeHayes, D.H.; Brissette, J.C. Silviculture alters the genetic structure of an eastern hemlock forest in Maine, USA. Can. J. For. Res. 2005, 35, 143–150. [Google Scholar] [CrossRef]
- Nijensohn, S.E.; Schaberg, P.G.; Hawley, G.J.; DeHayes, D.H. Genetic subpopulation structuring and its implications in a mature eastern white pine stand. Can. J. For. Res. 2005, 35, 1041–1052. [Google Scholar] [CrossRef]
- Maghuly, F.; Pinsker, W.; Praznik, W.; Fluch, S. Genetic diversity in managed subpopulations of Norway spruce [Picea abies (L.) Karst.]. For. Ecol. Manag. 2006, 222, 266–271. [Google Scholar] [CrossRef]
- Degen, B.; Blanc, L.; Caron, H.; Maggia, L.; Kremer, A.; Gourlet-Fleury, S. Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol. Conserv. 2006, 131, 386–401. [Google Scholar] [CrossRef]
- Lourmas, M.; Kjellberg, F.; Dessard, H.; Joly, H.I.; Chevallier, M.H. Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 2007, 99, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, V.C.; Kanashiro, M.; Ciampi, A.Y.; Grattapaglia, D. Genetic structure and mating system of Manilkara huberi (Ducke) A. Chev.; a heavily logged Amazonian timber species. J. Heredity 2007, 98, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, P.E.; Echt, C.S.; Epperson, B.K.; Pubanz, D.M. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 2007, 37, 2652–2662. [Google Scholar] [CrossRef]
- Lise, Y.; Kaya, Z.; Isik, F.; Sabuncu, R.; Kandemir, I.; Onde, S. The impact of over-exploitation on the genetic structure of Turkish red pine (Pinus brutia Ten.) populations determined by RAPD markers. Silva Fenn. 2007, 41, 211. [Google Scholar] [CrossRef]
- Lee, K.S.; Wickneswari, R.; Choong, C.Y. Stand Structure and the Genetic Diversity of Koompassia malaccensis and Dryobalanops aromatica in Unlogged and Logged-over Stands. Sains Malaysiana 2007, 36, 233–242. [Google Scholar]
- Cloutier, D.; Kanashiro, M.; Ciampi, A.Y.; Schoen, D.J. Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Mol. Ecol. 2007, 16, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.B.; Kanashiro, M.; Ciampi, A.Y.; Thompson, I.; Sebbenn, A.M. Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. For. Ecol. Manag. 2008, 255, 1548–1558. [Google Scholar] [CrossRef]
- de Lacerda, A.E.B.; Kanashiro, M.; Sebbenn, A.M. Effects of Reduced Impact Logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For. Ecol. Manag. 2008, 255, 1034–1043. [Google Scholar] [CrossRef]
- Sebbenn, A.M.; Degen, B.; Azevedo, V.C.; Silva, M.B.; de Lacerda, A.E.; Ciampi, A.Y.; Kanashiro, M.; da Carneiro, F.S.; Thompson, I.; Loveless, M.D. Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For. Ecol. Manag. 2008, 254, 335–349. [Google Scholar] [CrossRef]
- André, T.; Lemes, M.R.; Grogan, J.; Gribel, R. Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King, Meliaceae) population in Brazilian Amazonia. For. Ecol. Manag. 2008, 255, 340–345. [Google Scholar] [CrossRef]
- Dubreuil, M.; Riba, M.; Gonzalez-Martinez, S.C.; Vendramin, G.G.; Sebastiani, F.; Mayol, M. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 2010, 97, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, R.L.; Glaubitz, J.C.; Rhodes, O.E.; Woeste, K. Genetic consequences of harvest in a mature second-growth stand of black walnut (Juglans nigra L.). Ann. For. Sci. 2010, 67, 702. [Google Scholar] [CrossRef]
- Carneiro, F.S.; Lacerda, A.E.B.; Lemes, M.R.; Gribel, R.; Kanashiro, M.; Wadt, L.H.O.; Sebbenn, A.M. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L.(Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis. For. Ecol. Manag. 2011, 262, 1758–1765. [Google Scholar] [CrossRef]
- Fageria, M.S.; Rajora, O.P. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol. Appl. 2013, 6, 778–794. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, K.C.; Seifert, S.; Prinz, K.; Gailing, O.; Finkeldey, R. Subtle human impacts on neutral genetic diversity and spatial patterns of genetic variation in European beech (Fagus sylvatica L.). For. Ecol. Manag. 2014, 319, 138–149. [Google Scholar] [CrossRef]
- Sola, G.; El Mujtar, V.; Tsuda, Y.; Vendramin, G.G.; Gallo, L. The effect of silvicultural management on the genetic diversity of a mixed Nothofagus forest in Lanín Natural Reserve, Argentina. For. Ecol. Manag. 2016, 363, 11–20. [Google Scholar] [CrossRef]
- Hausler, A.; Scherer-Lorenzen, M. Sustainable Forest Management in Germany: The Ecosystem Approach of the Biodiversity Convention Reconsidered; Federal Ministry of Environment: Bonn, Germany, 2001; p. 65.
- ZGS. Data on Forest Managing Practices and Development Stages in Slovenia; Slovenia Forest Service: Ljubljana, Slovenia, 2016. [Google Scholar]
- Arabatzis, G. European Union, Common Agricultural Policy (CAP) and the afforestation of agricultural land in Greece. New Medit 2015, 4, 48–54. [Google Scholar]
- Ministry of Environment and Energy. Report of Forest Service Activities. Available online: http://www.ypeka.gr/LinkClick.aspx?fileticket=fjsA7Em8z0A%3d&tabid=588&language=el-GR (accessed on 28 February 2018).
- Hoban, S.; Arntzen, J.A.; Bruford, M.W.; Godoy, J.A.; Rus Hoelzel, A.; Segelbacher, G.; Carles, V.; Bertorelle, G. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol. Appl. 2014, 7, 984–998. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J. Monitoring Gene Level Biodiversity—Aspects and Considerations in the Context of Conservation. Ph.D. Thesis, Department of Zoology, Stockholm University, Stockholm, Sweden, 2011. Printed in Sweden by US-AB. [Google Scholar]
- Vilhar, U.; Žlindra, D.; Marenče, M.; Sinjur, I.; Skudnik, M. 30 Let Spremljanja Stanja Gozdov v Sloveniji; The Silva Slovenica Publishing Centre: Ljubljana, Slovenia, 2017; p. 63. [Google Scholar] [CrossRef]
- Nieuwenhuis, M. Terminology of Forest Management Planning (Forsteinrichtung). Terms and Definitions in English; IUFRO World Series Vol. 9-en; IUFRO 4.04.07 SilvaPlan and SilvaVoc: Vienna, Austria, 2000; p. 166. [Google Scholar]
- Michel, A.; Seidling, W. Forest Condition in Europe: 2016 Technical Report of ICP Forests; Report under the UNECE Convention on Long‐Range Transboundary Air Pollution (CLRTAP); BFWDokumentation 23/2016; BFW Austrian Research Centre for Forests: Vienna, Austria, 2016; p. 206. [Google Scholar]
- Mátyás, C. Forecasts needed for retreating forests. Nature 2010, 464, 1271. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H. Forest Dynamics, Growth, and Yield; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–39. ISBN 978-3-540-88307-4. [Google Scholar]
- Larocque, G.R. Ecological Forest Management Handbook; CRC Press: Boca Raton, FL, USA, 2016; p. 604. ISBN 9781482247855. [Google Scholar]
- Graudal, L.; Aravanopoulos, F.; Bennadji, Z.; Changtragoon, S.; Fady, B.; Kjær, E.D.; Loo, J.; Ramamonjisoa, L.; Vendramin, G.G. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For. Ecol. Manag. 2014, 333, 35–51. [Google Scholar] [CrossRef]
- Fussi, B.; Westergren, M.; Aravanopoulos, F.; Baier, R.; Kavaliauskas, D.; Finzgar, D.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert, M.; et al. Forest genetic monitoring: An overview of concepts and definitions. Environ. Monit. Assess. 2016, 188, 493. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.K.; Luikart, G.; Waples, R.S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 2007, 22, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity. UN Conference on Environment and Development, Rio de Janeiro, 1992. Available online: https://www.cbd.int/history/ (accessed on 30 July 2015).
- Report of the Fourth Steering Committee Meeting, EUFORGEN. Zidlochovice, Czech Republic. Available online: http://www.euforgen.org/publications/publication/euforgen-steering-committee-report-of-the-fourth-meeting/ (accessed on 13 November 2017).
- Summary of the First Meeting of Scattered Broadleaves Network, EUFORGEN. Copenhagen, Denmark, 2005. Available online: http://www.euforgen.org/publications/publication/scattered-broadleaves-network-summary-of-the-first-meeting/ (accessed on 13 November 2017).
- Report of the Sixth Steering Committee Meeting, EUFORGEN. Thessaloniki, Greece Summary of the Meeting Technical and Financial Reports (Phase III) EUFORGEN Phase IV (2010–2014). Available online: http://www.euforgen.org/publications/publication/euforgen-steering-committee-report-on-the-sixth-meeting/ (accessed on 13 November 2017).
- Report of the Seventh Steering Committee Meeting, EUFORGEN. Vienna, Austria. Available online: http://www.euforgen.org/publications/publication/euforgen-steering-committee-report-of-the-seventh-meeting/ (accessed on 13 November 2017).
- Summary of the First Meeting of Working Group on Genetic Monitoring, EUFORGEN. Rome, Italy. Available online: http://www.euforgen.org/publications/publication/working-group-on-genetic-monitoring-summary-of-the-first-meeting/ (accessed on 13 November 2017).
- CBD. COP 10 Decision X/2. Strategic Plan for Biodiversity 2011–2020. Available online: http://www.cbd.int/decision/cop/?id=12268 (accessed on 10 November 2017).
- CBD. Aichi Biodiversity Targets. Available online: http://www.cbd.int/sp/targets/ (accessed on 10 November 2017).
- The EU Biodiversity Strategy 2020. Available online: http://ec.europa.eu/environment/nature/biodiversity/comm2006/2020.htm (accessed on 4 December 2017).
- European Information System on Forest Genetic Resources (EUFGIS). Available online: http://portal.eufgis.org/genetic-conservation-units/ (accessed on 14 November 2016).
- European Forest Genetic Resources Programme (EUFORGEN). Available online: http://www.euforgen.org/ (accessed on 14 November 2016).
- Conservation of Forest Genetic Resources in Canada (CONFORGEN). Available online: http://www.conforgen.ca/ (accessed on 28 February 2018).
- Asia Pacific Forest Genetic Resources Programme (APFORGEN). Available online: http://www.apforgen.org/ (accessed on 28 February 2018).
- Summary of the Third Meeting of Scattered Broadleaves Network, EUFORGEN. Drøbak, Norway. Available online: http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Documents/Meeting_Summaries/SB03_meeting_summary.pdf (accessed on 13 November 2017).
- The Forests in Germany—Selected Results of the Third National Forest Inventory. Item No: BMEL15037. Available online: http://www.bmel.de/SharedDocs/Downloads/EN/Publications/ForestsInGermany-BWI.pdf?__blob=publicationFile (accessed on 10 April 2017).
- FECS. Forest and Forest Ecosystem Condition Survey Dataset; Slovenian Forestry Institute: Ljubljana, Slovenia, 2012. [Google Scholar]
- ManFor CBD 2010–2015 Life Environment Project LIFE09 ENV/IT/000078. Managing Forests for Multiple Purposes: Carbon, Biodiversity and Socio-Economic Wellbeing. Available online: http://www.manfor.eu/new/?page_id=102 (accessed on 12 October 2016).
- EVOLETREE—Evolution of TREEs as Drivers of Terrestrial Biodiversity. Available online: http://www.evoltree.eu/index.php/network/mission (accessed on 15 November 2016).
- Fady, B.; Cottrell, J.; Ackzell, L.; Alía, R.; Muys, B.; Prada, A.; González-Martínez, S.C. Forests and global change: What can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg. Environ. Chang. 2016, 16, 927–939. [Google Scholar] [CrossRef]
- Laikre, L.; Larsson, L.C.; Palmé, A.; Charlier, J.; Josefsson, M.; Ryman, N. Potentials for monitoring gene level biodiversity: Using Sweden as an example. Biodivers. Conserv. 2008, 17, 893–910. [Google Scholar] [CrossRef]
Forest Management Approach (FMA) | Forest Management Intensity | Natural Processes/Silvicultural Operations within the FMA | FGM Necessity (Yes/No/Limited) |
---|---|---|---|
(I) unmanaged nature reserves | No management intervention | - natural regeneration - natural selection | Yes |
(II) close to nature forestry | Management based on the natural processes | - natural regeneration is preferred, but it can be combined with planting (enrichment planting) - thinning (combined and crown) - selective logging can be applied (e.g., single stem/tree selection, group selection, irregular shelterwood cuttings) | Yes |
(III) combined objective forestry | Various management activities in different zones | - natural regeneration and artificial regeneration (planting and sowing) - thinning - strip shelterwood, group shelterwood, seed tree cutting, uniform shelterwood, target diameter felling etc. | Yes |
(IV) intensive even-aged forestry | Intensive management with aim to produce timber | - natural regeneration and artificial regeneration (planting and sowing) - thinning - clear-cuts with long rotation and all other types of logging can be applied | No/Limited * |
(V) short rotation forestry | Intensive management with aim to produce biomass | - only planting or sowing - clear-cuts | No * |
Forest Management Practices | Key Features and Type of Cuttings/Silvicultural Operations Applied | Tree Species on which Each Forest Management Practices can be Applied | FM Practices Applied among “LIFEGENMON” Countries | References (since 2000) |
---|---|---|---|---|
Coppicing | - trees felled in a short rotation (15–30 years); | Species with sprouting capacity and mainly: oaks (Quercus spp.—Quercus pubescens Willd.; Quercus cerris L.), ash (Fraxinus spp.—Fraxinus ornus L.);), chestnut (Castanea sativa Mill.), common alder (Alnus glutinosa L.), hornbeam (Carpinus betulus L.); sweet chestnut (Castanea sativa Miller); beech (Fagus sylvatica L.); black locust (Robinia pseudoacacia L); European hop-hornbeam (Ostrya carpinifolia Scop.) | * Germany <1% | [85,86,87,88,89,90,91,92] |
- shoots let to grow from the base (stump); | ** Slovenia 5% | |||
- clear-cutting; | *** Greece 48% | |||
- selective forest cutting; | ||||
Coppice with standards | - two-story woodland; | Species with sprouting capacity and mainly: oaks (Quercus spp.), sycamore (Acer spp.), birch (Betula spp.), elm (Ulmus spp.), common hazel (Corylus avellana L.), cherry (Prunus spp.) | * Germany <1% | [87] |
- overstory to produce the timber; | ** Slovenia <0.5% | |||
- understory to produce firewood within short rotations (15–30 years); | *** Greece 17% (mixed stands with coniferous high forests and broadleaved coppice forests) | |||
Transition from coppicing to a high forest | - gradual thinning of sprouts; | Applied on tree species with sprouting capacity: from coppice with inclusion of other native tree species for transition to high forests. | ** Slovenia <2% | [89] |
- selective forest cutting; | ||||
High forests | - stands originated from seeds or seedlings; | Applied on all tree species (sprouting and non-sprouting ones). | * Germany 98% | [6,7,10,11,12,13,14,15,67,70,71,72,87,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125] |
- thinning; | ** Slovenia 93% | |||
- selective forest cutting; | *** Greece 35% | |||
- regular/irregular shelterwood; | ||||
- clear-cutting with artificial regeneration; | ||||
- seed-tree-silviculture method; | ||||
- etc. |
Genetic Effects Caused by Forest Management | Type of Markers Used (Dominant/Co-Dominant) | References (since 2000) |
---|---|---|
No significant changes in genetic structure and diversity | Dominant | [11,97,98] |
Co-dominant | [7,9,11,12,13,14,67,70,71,85,88,89,91,92,101,102,104,107,109,114,115,116,121,123,124,125] | |
Changes in spatial genetic structure | Dominant | - |
Co-dominant | [12,71,92,94,111,112,117,124] | |
Changes in mating system | Dominant | [113] |
Co-dominant | [10,90,96,99,103,120,122] | |
Changes in averaging genetic diversity parameters | Dominant | [97] |
Co-dominant | [6,15,72,90,93,95,100,102,106,108,114,117,118,119,122] |
Long-Term Monitoring Programmes | Key Features of Monitoring, Number of Existing Study Sites or Area Covered | Activities/Aims Related to Genetic Monitoring Yes/No | References |
---|---|---|---|
ICP Level I | Monitoring of stand health (crown condition, defoliation, survival/mortality, etc.), foliar chemistry, soil condition. Over 7500 study sites (around 1500 ha covered). | No | [20] |
ICP Level II | Monitoring of stand health (crown condition, defoliation, pests, diseases, survival/mortality etc.), foliar chemistry, soil condition, soil solution chemistry, tree growth, (increment etc.), phenology observations, air pollution/quality (ozone-induced injury etc.), litterfall, species diversity (ground vegetation diversity, etc.), soil water, deposition, climate/meteorology observations. 618 study sites (around 155 ha covered). | No | |
NFI | Monitoring of tree species composition, growing stock, increment, forest health conditions, state of timber and non-timber forest resources, etc. Number of study sites differs from country to country. | No | [19,133] |
Long-term growth and yield observation and experimental plots | Monitoring of growth (mortality) and yield (DBH, height, increment) of individual trees, stands and provenances under different types and intensity of management in pure and mixed forest stands. | No (partly yes) | [136,137] |
Projects | |||
FORGER | Growth (DBH), phenology, health, survival, genetic variation, climate/meteorology observations. 16 study sites within project countries. | Yes | [29] |
ManFor C.BD | Climate/meteorology observations; testing and verifying effectiveness of forest management options in meeting multiple objectives (production, protection, biodiversity, etc.). Stand health, tree growth, species diversity. Ten study sites within project countries. | No | [157] |
EvolTree ISS | Tree growth (DBH, height, increment), soil water, stand health (mortality), phenology, species diversity (trees, other plants, vertebrates, insects, and microorganisms), climate/meteorology observations, genetic variation etc. Seven study sites within project countries. | Yes | [158] |
EUFGIS | Collection of information on unit level e.g., monthly temperature (°C), total annual mean precipitation (mm), heat sum and/or length of the growing season (in days), accumulated moisture deficit, remarks on specific soil characteristics, etc.; on species level e.g., status of the target tree population, total number of reproducing trees per unit, sex ratio (if appropriate), estimated share of the total area within the unit in which the species is occurring (%). At the moment the EUFGIS database contains information on 3130 gene conservation units and 103 tree species in 34 countries. | Yes/Under development | [150,151] |
GenTree | Stand health (crown condition, crown size, defoliation, pests, diseases etc.), soil condition, tree growth (DBH, height, increment etc.), species diversity (ground vegetation diversity), climate/meteorology observations, genetic variation. 219 study sites within project countries with focus on 12 tree species. | Yes | [30] |
LIFEGENMON | Tree growth (DBH), phenology observations, climate/meteorology observations, genetic variation. Six study sites within project countries for two species. | Yes | [31] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavaliauskas, D.; Fussi, B.; Westergren, M.; Aravanopoulos, F.; Finzgar, D.; Baier, R.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert, M.; et al. The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems. Forests 2018, 9, 133. https://doi.org/10.3390/f9030133
Kavaliauskas D, Fussi B, Westergren M, Aravanopoulos F, Finzgar D, Baier R, Alizoti P, Bozic G, Avramidou E, Konnert M, et al. The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems. Forests. 2018; 9(3):133. https://doi.org/10.3390/f9030133
Chicago/Turabian StyleKavaliauskas, Darius, Barbara Fussi, Marjana Westergren, Filippos Aravanopoulos, Domen Finzgar, Roland Baier, Paraskevi Alizoti, Gregor Bozic, Evangelia Avramidou, Monika Konnert, and et al. 2018. "The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems" Forests 9, no. 3: 133. https://doi.org/10.3390/f9030133
APA StyleKavaliauskas, D., Fussi, B., Westergren, M., Aravanopoulos, F., Finzgar, D., Baier, R., Alizoti, P., Bozic, G., Avramidou, E., Konnert, M., & Kraigher, H. (2018). The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems. Forests, 9(3), 133. https://doi.org/10.3390/f9030133