Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Kühn, I.; Wild, J.; Arianoutsou, M.; Bacher, S.; Chiron, F.; Didžiulis, V.; Essl, F. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 2010, 107, 12157–12162. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Phillips, J.; Shouse, M. Biogeomorphic impacts of invasive species. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 69–87. [Google Scholar] [CrossRef]
- Doherty, T.S.; Glen, A.S.; Nimmo, D.G.; Ritchie, E.G.; Dickman, C.R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. USA 2016, 113, 11261–11265. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Palmer, M.E.; Yan, N.D. Should biological invasions be managed as natural disasters? BioScience 2011, 61, 312–317. [Google Scholar] [CrossRef]
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; De Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services; Springer: Berlin/Heidelberg, Germany, 2017; Volume 12, ISBN 3-319-45121-9. [Google Scholar]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [PubMed]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Turbelin, A.J.; Malamud, B.D.; Francis, R.A. Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 2017, 26, 78–92. [Google Scholar] [CrossRef]
- Ricciardi, A.; Blackburn, T.M.; Carlton, J.T.; Dick, J.T.; Hulme, P.E.; Iacarella, J.C.; Jeschke, J.M.; Liebhold, A.M.; Lockwood, J.L.; MacIsaac, H.J. Invasion science: A horizon scan of emerging challenges and opportunities. Trends Ecol. Evol. 2017, 32, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Cassey, P.; Blackburn, T.M.; Russell, G.J.; Jones, K.E.; Lockwood, J.L. Influences on the transport and establishment of exotic bird species: An analysis of the parrots (Psittaciformes) of the world. Glob. Chang. Biol. 2004, 10, 417–426. [Google Scholar] [CrossRef]
- Cacho, O.J.; Hester, S.M. Deriving efficient frontiers for effort allocation in the management of invasive species. Aust. J. Agric. Resour. Econ. 2011, 55, 72–89. [Google Scholar] [CrossRef]
- Hester, S.M.; Cacho, O.J. The contribution of passive surveillance to invasive species management. Biol. Invasions 2017, 19, 737–748. [Google Scholar] [CrossRef]
- Duncan, R.P.; Blackburn, T.M.; Sol, D. The ecology of bird introductions. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 71–98. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2008; pp. 97–125. [Google Scholar]
- Gassó, N.; Sol, D.; Pino, J.; Dana, E.D.; Lloret, F.; Sanz-Elorza, M.; Sobrino, E.; Vilà, M. Exploring species attributes and site characteristics to assess plant invasions in Spain. Divers. Distrib. 2009, 15, 50–58. [Google Scholar] [CrossRef]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, I. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 2011, 23, 23. [Google Scholar] [CrossRef]
- Richardson, D.M.; Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 2006, 30, 409–431. [Google Scholar] [CrossRef]
- Dalmazzone, S.; Giaccaria, S. Economic drivers of biological invasions: A worldwide, bio-geographic analysis. Ecol. Econ. 2014, 105, 154–165. [Google Scholar] [CrossRef]
- Pino, J.; Font, X.; Carbo, J.; Jové, M.; Pallares, L. Large-scale correlates of alien plant invasion in Catalonia (NE of Spain). Biol. Conserv. 2005, 122, 339–350. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire management impacts on invasive plants in the western United States. Conserv. Biol. 2006, 20, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.; Pino, J.; Font, X. Regional assessment of plant invasions across different habitat types. J. Veg. Sci. 2007, 18, 35–42. [Google Scholar] [CrossRef]
- González-Moreno, P.; Pino, J.; Gassó, N.; Vila, M. Landscape context modulates alien plant invasion in Mediterranean forest edges. Biol. Invasions 2013, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- González-Moreno, P.; Diez, J.M.; Ibáñez, I.; Font, X.; Vilà, M. Plant invasions are context-dependent: Multiscale effects of climate, human activity and habitat. Divers. Distrib. 2014, 20, 720–731. [Google Scholar] [CrossRef]
- Pyšek, P.; Bacher, S.; Chytrý, M.; Jarošík, V.; Wild, J.; Celesti-Grapow, L.; Gassó, N.; Kenis, M.; Lambdon, P.W.; Nentwig, W. Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob. Ecol. Biogeogr. 2010, 19, 317–331. [Google Scholar] [CrossRef]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Alston, K.P.; Richardson, D.M. The roles of habitat features, disturbance, and distance from putative source populations in structuring alien plant invasions at the urban/wildland interface on the Cape Peninsula, South Africa. Biol. Conserv. 2006, 132, 183–198. [Google Scholar] [CrossRef]
- Brothers, T.S.; Spingarn, A. Forest fragmentation and alien plant invasion of central Indiana old-growth forests. Conserv. Biol. 1992, 6, 91–100. [Google Scholar] [CrossRef]
- McAfee, B.J.; Nealis, V.; Malouin, C. Invasive alien species at the urban-forest interface. Environments 2006, 34, 85. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Bouillon, C.; Morge, D.; Ferrier, J.-P. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the south of France. J. Environ. Manag. 2010, 91, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero-Corral, G.; Jappiot, M.; Bouillon, C.; Long-Fournel, M. Application of a geographical assessment method for the characterization of wildland–urban interfaces in the context of wildfire prevention: A case study in western Madrid. Appl. Geogr. 2012, 35, 60–70. [Google Scholar] [CrossRef]
- Chas-Amil, M.; Prestemon, J.; McClean, C.; Touza, J. Human-ignited wildfire patterns and responses to policy shifts. Appl. Geogr. 2015, 56, 164–176. [Google Scholar] [CrossRef]
- Hernández, L.; Martínez-Fernández, J.; Cañellas, I.; de la Cueva, A.V. Assessing spatio-temporal rates, patterns and determinants of biological invasions in forest ecosystems. The case of Acacia species in NW Spain. For. Ecol. Manag. 2014, 329, 206–213. [Google Scholar] [CrossRef]
- Richardson, D.M. Forestry trees as invasive aliens. Conserv. Biol. 1998, 12, 18–26. [Google Scholar] [CrossRef]
- Essl, F.; Moser, D.; Dullinger, S.; Mang, T.; Hulme, P.E. Selection for commercial forestry determines global patterns of alien conifer invasions. Divers. Distrib. 2010, 16, 911–921. [Google Scholar] [CrossRef]
- Dodet, M.; Collet, C. When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biol. Invasions 2012, 14, 1765–1778. [Google Scholar] [CrossRef]
- McGregor, K.F.; Watt, M.S.; Hulme, P.E.; Duncan, R.P. What determines pine naturalization: Species traits, climate suitability or forestry use? Divers. Distrib. 2012, 18, 1013–1023. [Google Scholar] [CrossRef]
- Alía, R.; Garcia del Barrio, J.M.; Iglesias, S.; Mancha, J.A.; de Miguel, J.; Nicolás, J.L.; Pérez, F.; Sánchez de Ron, D. Regiones de Procedencia de Especies Forestales en España; Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2009; ISBN 978-84-8014-759-0.
- Moore, J.; Mouquet, N.; Lawton, J.; Loreau, M. Coexistence, saturation and invasion resistance in simulated plant assemblages. Oikos 2001, 94, 303–314. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Strayer, D.L. Invasion success of vertebrates in Europe and North America. Proc. Natl. Acad. Sci. USA 2005, 102, 7198–7202. [Google Scholar] [CrossRef] [PubMed]
- Lambdon, P.W.; Pyšek, P.; Basnou, C.; Hejda, M.; Arianoutsou, M.; Essl, F.; Jarošík, V.; Pergl, J.; Winter, M.; Anastasiu, P. Alien flora of Europe: Species diversity, temporal trends, geographical patterns and research needs. Preslia 2008, 80, 101–149. [Google Scholar]
- Sanz-Elorza, M.; Sánchez, E.D.D.; Vesperinas, E.S. Atlas de las Plantas Alóctonas Invasoras en España; Dirección General para la Biodiversidad, Ministerio de Medio Ambiente: Madrid, Spain, 2004; ISBN 84-8014-575-7.
- Vallejo, R. El Mapa Forestal de España Escala 1:50,000 (MFE50) Como Base del Tercer Inventario Forestal Nacional. Available online: http://www.mapama.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/mapa-forestal-espana/mfe_50.aspx (accessed on 1 June 2017).
- MAPAMA-Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Mapa Forestal de España a Escala 1:50,000. 1997. Available online: http://www.mapama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50.aspx (accessed on 1 June 2017).
- Muñoz, A.; Real, R. Assessing the potential range expansion of the exotic monk parakeet in Spain. Divers. Distrib. 2006, 12, 656–665. [Google Scholar] [CrossRef]
- Martínez-Jauregui, M.; Díaz, M.; de Ron, D.S.; Soliño, M. Plantation or natural recovery? Relative contribution of planted and natural pine forests to the maintenance of regional bird diversity along ecological gradients in Southern Europe. For. Ecol. Manag. 2016, 376, 183–192. [Google Scholar] [CrossRef]
- Dullinger, I.; Wessely, J.; Bossdorf, O.; Dawson, W.; Essl, F.; Gattringer, A.; Klonner, G.; Kreft, H.; Kuttner, M.; Moser, D. Climate change will increase the naturalization risk from garden plants in Europe. Glob. Ecol. Biogeogr. 2017, 26, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, J. Diagnosis Fitoclimática de la España Peninsular. Actualización y Análisis Geoestadístico Aplicado; Universidad Politécnica de Madrid: Madrid, Spain, 2008. [Google Scholar]
- Martí, R.; Del Moral, J.C.; de Ornitología, S.E. Atlas de la aves Reproductoras de España; Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología: Madrid, Spain, 2003; ISBN 84-8014-474-2. [Google Scholar]
- Martínez-Jauregui, M.; Solino, M.; Díaz, M. Geographical variation in the contribution of planted and natural pine forests to the conservation of bird diversity. Divers. Distrib. 2016, 22, 1255–1265. [Google Scholar] [CrossRef]
- Alberdi, I.; Condés, S.; Martínez-Millán, J. Review of monitoring and assessing ground vegetation biodiversity in national forest inventories. Environ. Monit. Assess. 2010, 164, 649–676. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.L.; Pueyo, A.; Jover, J.M. Potenciales Demográficos, en Atlas Nacional de España, Sección IV, Grupo 14b; MOPT-IGN: Madrid, Spain, 1992. [Google Scholar]
- Zeileis, A.; Kleiber, C.; Jackman, S. Regression models for count data in R. J. Stat. Softw. 2008, 27, 1–25. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org/ (accessed on 15 March 2018).
- Carpio, A.J.; Guerrero-Casado, J.; Barasona, J.A.; Tortosa, F.S.; Vicente, J.; Hillström, L.; Delibes-Mateos, M. Hunting as a source of alien species: A European review. Biol. Invasions 2017, 19, 1197–1211. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Zavala, M.A.; Bonet, F.J.; Zamora, R. Are pine plantations valid tools for restoring Mediterranean forests? An assessment along abiotic and biotic gradients. Ecol. Appl. 2009, 19, 2124–2141. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Benito, P.; Gómez-Aparicio, L.; Zavala, M.A. Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers. Distrib. 2012, 18, 1092–1106. [Google Scholar] [CrossRef] [Green Version]
- Calladine, J.; Díaz, M.; Reino, L.; Jardine, D.; Wilson, M. Plantations of non-native tree species. In Ecology and Conservation of Forest Birds; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bonari, G.; Acosta, A.T.; Angiolini, C. Mediterranean coastal pine forest stands: Understorey distinctiveness or not? For. Ecol. Manag. 2017, 391, 19–28. [Google Scholar] [CrossRef]
Summary | >50% of Cell Is Pine Cover | Pine Cover Is Present in the Cell | All the Cells in the Spanish Iberian Peninsula |
---|---|---|---|
Plant species | |||
Acacia dealbata Link | 63 | 222 | 235 |
Agavea americana L. | 39 | 227 | 317 |
Ailanthus altissima (Miller) Swingle. | 39 | 201 | 250 |
Araujia sericifera Brot. | 19 | 98 | 118 |
Buddleja davidii Franchet. | 28 | 103 | 107 |
Carpobrotus edulis (L.) N. E. Br. | 27 | 121 | 155 |
Cortaderia selloana Asch. & Graebn. | 11 | 75 | 81 |
Cylindropuntia imbricata Haw. | 1 | 3 | 6 |
Elodea canadensis Michx. | 2 | 11 | 14 |
Fallopia baldschuanica (Regel) Holub | 17 | 73 | 87 |
Nicotiana glauca Graham | 15 | 116 | 165 |
Opuntia dillenii (Ker-Gawler) Haw. | 4 | 17 | 24 |
Opuntia ficus-indica L. (Mill) | 59 | 320 | 509 |
Oxalis pes-caprae L. | 18 | 195 | 295 |
Pennisetum setaceum (Forssk.) Chiov. | 1 | 4 | 5 |
Senecio inaequidens DC. | 2 | 15 | 15 |
Spartina patens (Ait.) Muhl | 10 | 37 | 49 |
Tradescantia fluminensis Velloso | 2 | 19 | 23 |
Bird species | |||
Amandava amandava L. | 1 | 32 | 73 |
Estrilda astrild L. | 13 | 78 | 124 |
Euplectes orix L. | 1 | 2 | 4 |
Myiopsitta monachus Boddaert. | 12 | 124 | 171 |
Psittacula krameri Scopoli | 3 | 55 | 82 |
Streptopelia risoria L. | 1 | 16 | 26 |
Mammal species | |||
Ammotragus lervia Pallas | 28 | 94 | 103 |
Neovison vison Schreber | 112 | 563 | 621 |
Myocastor coipus Molina | 1 | 19 | 21 |
Number of cells | 653 | 3950 | 5335 |
Number of different Plants | 18 | 27 | 27 |
Number of different Birds | 6 | 15 | 16 |
Number of different Mammals | 3 | 4 | 4 |
Definition of the Variables Used in the Analysis | Mean (Stand. Dev.) | Source | |
---|---|---|---|
DEPENDENT VARIABLES | |||
N_IP | No. of invasive plant species | 0.470 (1.070); max = 10 | 1 |
N_IB | No. of invasive bird species | 0.077 (0.364); max = 5 | 2 |
N_M | No. of invasive mammal species | 0.171 (0.379); max = 2 | 2 |
EXPLANATORY VARIABLES | |||
Geographic coordinates | |||
LONG | Longitude (UTM) | 466,516.7 (225,584.1) | 3 |
LAT | Latitude (UTM) | 4,499,647 (216,419) | 3 |
Topography | |||
ALTI | Height above sea level (m): Average cell altitude | 730.400 (396.783) | 3 |
SLOP | Slope (m): Average cell slope | 10.323 (6.116) | 3 |
WATER_LINE | Line density of river channels, canals, reservoir coasts, lagoons, etc. and of the sea (m/km2) | 472.516 (213.730) | 4 |
SEA_DIST | Mean distance to the sea as from a raster of distances of 1 × 1 km | 122,047.5 (87,699.32) | 4 |
Climate | |||
PREC | Mean annual precipitation (mm) | 750.762 (358.772) | 5 |
TEMP | Mean annual temperature (°C) | 12.760 (2.666) | 5 |
Landscape and land cover | |||
PINE COVER | Pine cover in the cell (ha) | 2171.677 (2271.087) | 6 |
OCONIF COVER | Cover of other conifers in the cell (ha) | 2450.856 (2355.639) | 6 |
EUC COVER | Eucalyptus spp. cover in the cell (ha) | 256.544 (897.677) | 6 |
OBROADL COVER | Other broadleaf cover (different from Eucalyptus spp.) in the cell (ha) | 3018.010 (2304.771) | 6 |
SHRUB COVER | Shrub land cover in the cell (ha) | 944.394 (1259.084) | 6 |
G P COVER | Ground and pasture land use cover in the cell (ha) | 371.562 (860.673) | 6 |
AGR COVER | Agriculture land use cover in the cell (ha) | 3318.305 (2719.106) | 6 |
URBAN COVER | Urban land use cover in the cell (ha) | 166.011 (437.988) | 6 |
WATER COVER | Water land use cover in the cell (ha) | 86.825 (268.477) | 6 |
OTHER COVER | Other land use cover in the cell (ha) | 286.549 (541.687) | 6 |
FRAG | Landscape Fragmentation index based on CLC12 (EEA, 2016). For the calculation thereof, the 44 initial classes were reclassified into 5 classes: Artificial, Homogeneous agrarian, Heterogeneous agrarian, Forestry, and Natural Remainder | 0.014 (0.006) | 6 |
I_UF | Density of the Wildland-Urban Interface (m/km2) | 100.511 (181.549) | 6 |
I_AN | Density of the Anthropogenic Interface (m/km2) | 2257.520 (1582.053) | 6 |
Forest diversity of native species | |||
BD | Bird diversity: total number of pine dwelling forest birds in the cell. | 21.300 (7.200) | 7 |
TD | Tree diversity: mean number of different trees from forest inventory stands available in the cell | 13.509 (9.796) | 8 |
SD | Shrub diversity: mean number of different shrubs from forest inventory stands available in the cell | 4.431 (2.091) | 8 |
Human settlement and other human-induced landscape modification indicators | |||
POP | Weighted sum of the 1998 Population Potential, 5 × 5-km2 grid [54] | 13,758.730 (57,480.380) | |
TRANSPORT | Density of roads and railroads by grid surface area (m/km2) | 387.426 (223.657) | 4 |
N_FIRE | Density of the number of fires between 1974 and 2008 (No./km2) in a 10 × 10 grid | 0.803 (1.906) | 9 |
S_FIRE | Density of burned surface area between 1974 and 2008 (Ha/km2) based on a 10 × 10 grid | 13.223 (28.899) | 9 |
PLANT | Pine forest type: % of area pine planted with respect to the total pine forest area | 0.666 (0.408) | 10 |
PLANTS | BIRDS | MAMMALS | ||||
---|---|---|---|---|---|---|
Zero Hurdle Model Coefficients | Count Model Coefficients | Zero Hurdle Model Coefficients | Count Model Coefficients | Zero Hurdle Model Coefficients | Count Model Coefficients | |
INTERCEPT | −1.56 * | −1.30 * | −4.40 * | −2.16 * | −2.22 * | −13.17 * |
LONG | 0.20 * | 0.19 * | 0.49 * | 0.30 | 0.28 * | 0.55 |
LAT | 0.24 * | 0.27 * | 0.17 | 2.22 | ||
WATER_LINE | 0.24 * | 0.07 * | ||||
SEA_DIST | −0.97 * | −1.21 * | 0.37 * | 0.21 | 0.85 * | −1.02 |
PREC | 0.32 * | −0.07 | 0.44 * | 0.06 | ||
TEMP | 0.77 * | 0.31 * | 1.57 * | 0.62 | 0.39 * | 4.12 |
PINE COVER | 0.20 * | −0.46 | ||||
EUC COVER | 0.19 * | −0.08 | 0.21 * | 0.03 | 0.13 * | −2.43 |
OBROADL COVER | −0.45 * | −0.51 * | ||||
SHRUB COVER | 0.19 * | 1.74 | ||||
G P COVER | 0.24 * | 0.00 | −0.45 * | −0.47 | 0.25 * | −2.66 |
AGR COVER | 0.12 | −0.71 * | 0.47 * | −2.94 | ||
URBAN COVER | 0.57 * | 0.05 * | 0.39 * | 0.02 | 0.11 * | −1.16 |
FRAG | 0.22 * | 0.04 | 0.16 | 0.42 * | ||
I_UF | 0.03 | 0.06 | 0.34 * | 0.05 | 0.32 * | 0.22 |
I_AN | −0.19 * | −0.25 * | −0.42 * | −0.50 | ||
BD | 0.18 * | 0.02 | 0.58 * | −0.01 | 0.54 * | 1.66 |
TD | −0.34 * | −0.01 | 0.38 * | 0.30 | ||
SD | 0.22 * | 0.08 * | −0.23 * | −0.84 | ||
TRANSPORT | 0.18 * | 0.91 | ||||
N_FIRE | 0.37 * | 0.06 | 0.44 * | 0.22 | ||
S_FIRE | −0.13 | −0.29 | ||||
PLANT | −0.33 * | −0.21 * | 0.18 | 0.17 | −0.14 | 0.28 |
LONG:PLANT | −0.01 | 0.17 * | −0.45 * | −0.21 | −0.32 * | −0.52 |
LAT:PLANT | −0.27 * | −0.16 * | 0.45 * | −0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Jauregui, M.; Soliño, M.; Martínez-Fernández, J.; Touza, J. Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests. Forests 2018, 9, 170. https://doi.org/10.3390/f9040170
Martínez-Jauregui M, Soliño M, Martínez-Fernández J, Touza J. Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests. Forests. 2018; 9(4):170. https://doi.org/10.3390/f9040170
Chicago/Turabian StyleMartínez-Jauregui, María, Mario Soliño, Jesús Martínez-Fernández, and Julia Touza. 2018. "Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests" Forests 9, no. 4: 170. https://doi.org/10.3390/f9040170
APA StyleMartínez-Jauregui, M., Soliño, M., Martínez-Fernández, J., & Touza, J. (2018). Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests. Forests, 9(4), 170. https://doi.org/10.3390/f9040170