Changes in Topsoil Properties after Centennial Scots Pine Afforestation in a European Beech Forest (NE Spain)
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Sampling and Laboratory Analysis
2.3. Data Analysis
3. Results and Discussion
3.1. Organic Layers Morphology and Classification
3.2. Litter and Topsoil C and N Stocks
3.3. Soil Chemical Properties
3.4. Soil Physical Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruiz-Navarro, A.; Barberá, J.; Navarro-Cano, J.A.; Albadalejo, J.; Castillo, V.M. Soil dynamics in Pinus halepensis reforestation: Effect of microenvironments and previous land use. Geoderma 2009, 153, 353–361. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J. Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For. Ecol. Manag. 2004, 198, 303–317. [Google Scholar] [CrossRef]
- Robledo-Arnuncio, J.J.; Collada, C.; Alía, R.; Gil, L. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J. Biogeogr. 2005, 32, 595–605. [Google Scholar] [CrossRef]
- Ministerio de Agricultura Pesca y Alimentación. Anuario de Estadística Agroalimentaria 2002; Spanish Ministry of Agriculture: Madrid, Spain.
- Costa, M.; Morla, C.; Sainz, H. Los bosques ibéricos. In Una Interpretación Geobotánica; Planeta: Barcelona, Spain, 1998; ISBN 9788408058205. [Google Scholar]
- García-Manrique, E. Las Comarcas de Borja y Tarazona y el Somontano del Moncayo; Departamento de Geografía Aplicada del Instituto J.S. Elcano (CSIC) y la Institución “Fernando el Católico”: Madrid, Spain, 1960. [Google Scholar]
- Arrechea-Veramendi, E. La ordenación del MUP n° 251 “Dehesa del Moncayo”. Un caso singular de masa artificial en un espacio natural protegido. Cuadernos de la Sociedad Española de Ciencias Forestales 2001, 11, 185–189. [Google Scholar]
- Hobbie, S.E.; Ogdahl, M.; Chorover, J.; Chadwick, O.A.; Oleksyn, J.; Zytkowiak, R.; Reich, P.B. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 2007, 10, 999–1018. [Google Scholar] [CrossRef]
- Leuschner, C.; Wulf, M.; Bäuchler, P.; Hertel, D. Soil C and nutrient stores under Scots pine afforestations compared to ancient beech forests in the German Pleistocene: The role of tree species and forest history. For. Ecol. Manag. 2013, 310, 405–415. [Google Scholar] [CrossRef]
- Badía, D.; Ruiz, A.; Girona, A.; Martí, C.; Casanova, J.; Ibarra, P.; Zufiaurre, R. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 2016, 13, 2155–2169. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; de Wall, R.W. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For. Ecol. Manag. 2018, 256, 482–490. [Google Scholar] [CrossRef]
- Carceller, F.; Vallejo, V.R. Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 1996, 20, 1127–1130. [Google Scholar]
- Berthrong, S.T.; Jobbágy, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon and nitrogen with afforestation. Ecol. Appl. 2009, 19, 2228–2241. [Google Scholar] [CrossRef] [PubMed]
- Prietzel, J.; Stetter, U.; Klemmt, H.J.; Rehfuess, K.E. Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Plant Soil 2006, 289, 153–170. [Google Scholar] [CrossRef]
- Carceller, F. Dinámica Forestal y Ciclo de Nutrientes en los Bosques de la Vertiente Norte del Moncayo. Ph.D. Thesis, Departament de Biologia Vegetal, Universitat de Barcelona, Barcelona, Spain, 1995; p. 360. [Google Scholar]
- Martínez del Castillo, E.; Serrano-Notivoli, R.; Novak, K.; Longares Aladrén, L.A.; Arrechea, E.; de Luis Arrillaga, M.; Saz Sánchez, M.A. Cuantificación de los gradientes climáticos altitudinales en la vertiente norte del Macizo del Moncayo a partir de una nueva red de estaciones automáticas en altura. In Cambio Climático. Extremos e Impactos; Rodríguez Puebla, C., Ceballos Barbancho, A., González-Reviriego, N., Moran Tejeda, E., Hernández Encinas, A., Eds.; AEC: Canberra, Australia, 2012; Volume 8, pp. 519–528. [Google Scholar]
- Ibarra, P.; Echeverría, M.T. Relaciones clima, suelo y vegetación en la vertiente noreste del Moncayo. In Geografía física de Aragón; Aspectos Generales y Temáticos; Peña Monné, J.L., Longares Aladrén, L.A., Sánchez Fabre, M., Eds.; Institución Fernando el Católico y Universidad de Zaragoza: Zaragoza, Spain, 2004; pp. 199–212. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2014; Volume 106. [Google Scholar]
- Zanella, A.; Ponge, J.F.; Jabiol, B.; Sartori, G.; Kolb, E.; Le Bayon, R.C.; Gobat, J.-M.; Aubert, M.; De Waal, R.; Van Delft, B.; et al. Humusica 1, article 5: Terrestrial humus systems and forms—Keys of classification of humus systems and forms. Appl. Soil Ecol. 2017, 122, 75–86. [Google Scholar] [CrossRef]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Rhoades, J.D. Cation Exchange Capacity. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar]
- Kemper, W.D.; Koch, E.J. Aggregate Stability of Soils from Western Portions of the United States and Canada; US Department of Agriculture: Washington, DC, USA, 1966; No. 1355.
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Spatial variability of soil water repellency in fire-prone eucalyptus and pine forests, Portugal. Soil Sci. 1998, 163, 313–324. [Google Scholar] [CrossRef]
- Badía-Villas, D.; Girona-García, A. Soil humus changes with elevation in Scots pine stands of the Moncayo Massif (NE Spain). Appl. Soil Ecol. 2017. [Google Scholar] [CrossRef]
- Labaz, B.; Galka, B.; Bogacz, A.; Waroszewski, J.; Kabala, C. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of Southwestern Poland. Geoderma 2014, 230–231, 265–273. [Google Scholar] [CrossRef]
- Marty, C.; Houle, D.; Gagnon, C. Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. For. Ecol. Manag. 2015, 345, 29–38. [Google Scholar] [CrossRef]
- Zanella, A.; Ponge, J.F.; de Waal, R.; Ferronato, C.; de Nobili, M.; Juilleret, J. Humusica 1, article 3: Essential bases—Quick look at the classification. Appl. Soil Ecol. 2017, 122, 42–55. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 2005, 126, 317–336. [Google Scholar] [CrossRef]
- Butzen, V.; Seeger, M.; Marruedo, A.; De Jonge, L.; Wengel, R.; Ries, J.B.; Casper, M.C. Water repellency under coniferous and deciduous forest-experimental assessment and impact on overland flow. Catena 2015, 133, 255–265. [Google Scholar] [CrossRef]
- Jiménez-Morillo, N.T.; González-Pérez, J.A.; Jordán, A.; Zavala, L.M.; de la Rosa, J.M.; Jiménez-González, M.A.; González-Vila, F.J. Organic matter fractions controlling soil water repellency in sandy soils from the Doñana National Park (Southwestern Spain). Land Degrad. Dev. 2016, 27, 1413–1423. [Google Scholar] [CrossRef]
- Girona-García, A.; Badía-Villas, D.; González-Pérez, J.A.; Jiménez-Morillo, N.T.; Martí-Dalmau, C. Effect of a long-term afforestation of pine in a beech domain in NE-Spain revealed by Py-GC/MS. In EGU General Assembly Conference Abstracts, Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015; EGU: Munich, Germany, 2015; Volume 17, EGU2015-12736. [Google Scholar]
Soil Properties | Beechwood | Pinewood | p |
---|---|---|---|
pH-H2O | 4.6 ± 0.5 | 4.1 ± 0.4 | 0.1670 |
pH-KCl | 3.6 ± 0.6 | 3.1 ± 0.3 | 0.1316 |
Ca2+ (cmol+ kg−1) | 5.99 ± 3.34 | 4.35 ± 2.49 | 0.4025 |
Mg2+ (cmol+ kg−1) | 1.29 ± 0.84 | 1.03 ± 0.68 | 0.6079 |
Na+ (cmol+ kg−1) | 0.18 ± 0.07 | 0.19 ± 0.09 | 0.8452 |
K+ (cmol+ kg−1) | 0.39 ± 0.11 | 0.16 ± 0.05 | 0.0355 * |
Σb (cmol+ kg−1) | 7.75 ± 4.23 | 5.72 ± 3.02 | 0.4082 |
Al3+-KCl (cmol+ kg−1) | 0.37 ± 0.38 | 0.90 ± 0.46 | 0.0817 |
Fe3+-KCl (cmol+ kg−1) | 0.01 ± 0.01 | 0.04 ± 0.04 | 0.1496 |
Σa (cmol+ kg−1) | 0.38 ± 0.39 | 0.93 ± 0.48 | 0.0799 |
CEC (cmol+ kg−1) | 16.4 ± 3.68 | 17.0 ± 5.30 | 0.8436 |
Vb (%) | 46.9 ± 22.5 | 33.0 ± 9.75 | 0.2428 |
Va (%) | 2.57 ± 2.65 | 6.06 ± 3.15 | 0.0950 |
Soil Properties | Beechwood | Pinewood | p |
---|---|---|---|
Stoniness (%) | 71.5 ± 11.4 | 73.9 ± 6.3 | 0.6913 |
SAS (%) | 93.6 ± 1.2 | 93.7 ± 2.9 | 0.9187 |
WDPT (s) | 28.7 ± 33.5 | 1244 ± 1584 | 0.1004 |
EPT (% ethanol) | 4.00 ± 2.24 | 12.7 ± 7.2 | 0.0319 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girona-García, A.; Badía-Villas, D.; Martí, C. Changes in Topsoil Properties after Centennial Scots Pine Afforestation in a European Beech Forest (NE Spain). Forests 2018, 9, 343. https://doi.org/10.3390/f9060343
Girona-García A, Badía-Villas D, Martí C. Changes in Topsoil Properties after Centennial Scots Pine Afforestation in a European Beech Forest (NE Spain). Forests. 2018; 9(6):343. https://doi.org/10.3390/f9060343
Chicago/Turabian StyleGirona-García, Antonio, David Badía-Villas, and Clara Martí. 2018. "Changes in Topsoil Properties after Centennial Scots Pine Afforestation in a European Beech Forest (NE Spain)" Forests 9, no. 6: 343. https://doi.org/10.3390/f9060343
APA StyleGirona-García, A., Badía-Villas, D., & Martí, C. (2018). Changes in Topsoil Properties after Centennial Scots Pine Afforestation in a European Beech Forest (NE Spain). Forests, 9(6), 343. https://doi.org/10.3390/f9060343