Modest Effects of Host on the Cold Hardiness of Emerald Ash Borer †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Supercooling Points of A. planipennis from Artificially-Infested Ash
2.2. Cold Tolerance of A. planipennis Larvae from Naturally-Infested Ash
3. Results
3.1. Supercooling Points of A. planipennis Larvae from Artificially-Infested Ash
3.2. Cold Tolerance of A. planipennis Larvae from Naturally-Infested Ash
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wallander, E. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 2008, 273, 25–49. [Google Scholar] [CrossRef]
- Anulewicz, A.C.; McCullough, D.G.; Cappaert, D.L.; Poland, T.M. Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera : Buprestidae) in North America: Results of multiple-choice field experiments. Environ. Entomol. 2008, 37, 230–241. [Google Scholar] [CrossRef]
- Anulewicz, A.C.; McCullough, D.G.; Miller, D.L. Oviposition and development of emerald ash borer (Agrilus planipennis) (Coleoptera: Buprestidae) on hosts and potential hosts in no-choice bioassays. Great Lakes Entomol. 2006, 39, 99–112. [Google Scholar]
- McCullough, D.G.; Poland, T.M.; Anulewicz, A.C.; Cappaert, D. Emerald ash borer (Coleoptera: Buprestidae) attraction to stressed or baited ash trees. Environ. Entomol. 2009, 38, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.M.; Smith, E.L.; Mech, R.; Storer, A.J. Estimates of Agrilus planipennis infestation rates and potential survival of ash. Am. Midl. Nat. 2013, 169, 179–193. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.J.K.; Herms, D.A. Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol. Invasions 2010, 12, 389–405. [Google Scholar] [CrossRef]
- Slesak, R.A.; Lenhart, C.F.; Brooks, K.N.; D’Amato, A.W.; Palik, B.J. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA. Can. J. For. Res. 2014, 44, 961–968. [Google Scholar] [CrossRef]
- Nisbet, D.; Kreutzweiser, D.; Sibley, P.; Scarr, T. Ecological risks posed by emerald ash borer to riparian forest habitats: A review and problem formulation with management implications. For. Ecol. Manag. 2015, 358, 165–173. [Google Scholar] [CrossRef]
- Kovacs, K.F.; Haight, R.G.; McCullough, D.G.; Mercader, R.J.; Siegert, N.W.; Liebhold, A.M. Cost of potential emerald ash borer damage in US communities, 2009–2019. Ecol. Econ. 2010, 69, 569–578. [Google Scholar] [CrossRef]
- Lovett, G.M.; Weiss, M.; Liebhold, A.M.; Holmes, T.P.; Leung, B.; Lambert, K.F.; Orwig, D.A.; Campbell, F.T.; Rosenthal, J.; McCullough, D.G.; et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 2016, 26, 1437–1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, G.H.; Butry, D.T.; Michael, Y.L.; Prestemon, J.P.; Liebhold, A.M.; Gatziolis, D.; Mao, M.Y. The relationship between trees and human health evidence from the spread of the emerald ash borer. Am. J. Prev. Med. 2013, 44, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Costanza, K.K.L.; Livingston, W.H.; Kashian, D.M.; Slesak, R.A.; Tardif, J.C.; Dech, J.P.; Diamond, A.K.; Daigle, J.J.; Ranco, D.J.; Neptune, J.S.; et al. The Precarious State of a Cultural Keystone Species: Tribal and Biological Assessments of the Role and Future of Black Ash. J. For. 2017, 115, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Selikhovkin, A.V.; Popovichev, B.G.; Mandelshtam, M.Y.; Vasaitis, R.; Musolin, D.L. The frontline of invasion: The current northern limit of the invasive range of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in European Russia. Balt. For. 2017, 23, 309–315. [Google Scholar]
- Valenta, V.; Moser, D.; Kuttner, M.; Peterseil, J.; Essl, F. A high-resolution map of emerald ash borer invasion risk for southern Central Europe. Forests 2015, 6, 3075–3086. [Google Scholar] [CrossRef]
- Venette, R.C. The challenge of modelling and mapping the future distribution and impact of invasive alien species. In Pest Risk Modelling and Mapping for Invasive Alien Species; Venette, R.C., Ed.; CAB International: Wallingford, UK, 2015; pp. 1–17. [Google Scholar]
- Sobek-Swant, S.; Kluza, D.A.; Cuddington, K.; Lyons, D.B. Potential distribution of emerald ash borer: What can we learn from ecological niche models using Maxent and GARP? For. Ecol. Manag. 2012, 281, 23–31. [Google Scholar] [CrossRef]
- Turnock, W.J.; Fields, P.G. Winter climates and cold hardiness in terrestrial insects. Eur. J. Entomol. 2005, 102, 561–576. [Google Scholar] [CrossRef]
- Leather, S.R.; Walters, K.F.A.; Bale, J.S. The Ecology of Insect Overwintering; Cambridge University Press: New York, NY, USA, 1993; p. 255. [Google Scholar]
- Baust, J.G.; Rojas, R.R. Insect cold hardiness: Facts and fancy. J. Insect Physiol. 1985, 31, 755–759. [Google Scholar] [CrossRef]
- Renault, D.; Salin, C.; Vannier, G.; Vernon, P. Survival at low temperatures in insects: What is the ecological significance of the supercooling point? Cryo Lett. 2002, 23, 217–228. [Google Scholar]
- Bale, J.S. Insect cold hardiness—Freezing and supercooling—An ecophysiological perspective. J. Insect Physiol. 1987, 33, 899–908. [Google Scholar] [CrossRef]
- Sømme, L. Supcooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. A Physiol. 1982, 73, 519–543. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.-L.; Yang, Z.-Q.; Wang, X.-Y.; Wang, H.-Y.; Bai, L. Cold hardiness of Agrilus planipennis and its two parasitoids, Spathius agrili and Tetrastichus planipennisi. Chin. J. Biol. Control 2007, 23, 119–122. [Google Scholar]
- Venette, R.C.; Abrahamson, M. Cold Hardiness of Emerald Ash Borer, Agrilus planipennis: A New Perspective; Black Ash Symposium: Bemidji, MN, USA; U.S. Department of Agriculture, Forest Service, Chippewa National Forest: Bemidji, MN, USA, 2010.
- Crosthwaite, J.C.; Sobek, S.; Lyons, D.B.; Bernards, M.A.; Sinclair, B.J. The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). J. Insect Physiol. 2011, 57, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Sobek-Swant, S.; Crosthwaite, J.C.; Lyons, D.B.; Sinclair, B.J. Could phenotypic plasticity limit an invasive species? Incomplete reversibility of mid-winter deacclimation in emerald ash borer. Biol. Invasions 2012, 14, 115–125. [Google Scholar] [CrossRef]
- Yuill, J.S. Cold hardiness of two species of bark beetles in California forests. J. Econ. Entomol. 1941, 34, 702–709. [Google Scholar] [CrossRef]
- Liu, Z.D.; Gong, P.Y.; Heckel, D.G.; Wei, W.; Sun, J.H.; Li, D.M. Effects of larval host plants on over-wintering physiological dynamics and survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Insect Physiol. 2009, 55, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Gong, P.Y.; Wu, K.J.; Wei, W.; Sun, J.H.; Li, D.M. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J. Insect Physiol. 2007, 53, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Hiiesaar, K.; Williams, I.; Luik, A.; Metspalu, L.; Muljar, R.; Jogar, K.; Karise, R.; Mand, M.; Svilponis, E.; Ploomi, A. Factors affecting cold hardiness in the small striped flea beetle, Phyllotreta undulata. Entomol. Exp. Appl. 2009, 131, 278–285. [Google Scholar] [CrossRef]
- Trudeau, M.; Mauffette, Y.; Rochefort, S.; Han, E.; Bauce, E. Impact of host tree on forest tent caterpillar performance and offspring overwintering mortality. Environ. Entomol. 2010, 39, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, D.W.; Aukema, B.H.; Venette, R.C. Cold tolerance of mountain pine beetle among novel eastern pines: A potential for trade-offs in an invaded range? For. Ecol. Manag. 2017, 400, 28–37. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Poland, T.M. Host selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp.). Environ. Entomol. 2009, 38, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.G.; Ulyshen, M.D.; Poland, T.M. Differential utilization of ash phloem by emerald ash borer larvae: Ash species and larval stage effects. Agric. For. Entomol. 2012, 14, 324–330. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Matthews, S.; Peters, M. A Climate Change Atlas for 134 Forest Tree Species of the Eastern United States. Available online: https://www.nrs.fs.fed.us/atlas/tree (accessed on 30 March 2018).
- Keena, M.A.; Gould, J.R.; Bauer, L.S. Developing an Effective and Efficient Rearing Method for the Emerald Ash Borer, Emerald Ash Borer Reseach and Technology Development Meeting, Pittsburgh, PA, USA, 21 October 2009; Lance, D., Buck, J., Binion, D., Reardon, R., Mastro, V., Eds.; USDA Forest Service, Forest Health Technology Enterprise Team: Pittsburgh, PA, USA, 2010; pp. 34–35.
- Chamorro, M.L.; Volkovitsh, M.G.; Poland, T.M.; Haack, R.A.; Lingafelter, S.W. Preimaginal stages of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): An invasive pest on ash trees (Fraxinus). PLoS ONE 2012, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, M.A.; Kaliyan, N.; Cannon, C.A.; Morey, R.V.; Wilcke, W.F. A simple method to adjust cooling rates for supercooling point determination. Cryo Lett. 2004, 25, 155–160. [Google Scholar]
- Hanson, A.A.; Venette, R.C. Thermocouple design for measuring temperatures of small insects. Cryo Lett. 2013, 34, 261–266. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 2 May 2017).
- SAS Institute. SAS Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Stephens, A.R.; Asplen, M.K.; Hutchison, W.D.; Venette, R.C. Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ. Entomol. 2015, 44, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Hefty, A.R.; Seybold, S.J.; Aukema, B.H.; Venette, R.C. Cold tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) from northern California. Environ. Entomol. 2017, 46, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T.M. A Package for Survival Analysis in S. R Package Version 2.37-7. Available online: http://cran.R-project.org/package=survival (accessed on 14 February 2014).
- Sinclair, B.J. Insect cold tolerance: How many kinds of frozen? Eur. J. Entomol. 1999, 96, 157–164. [Google Scholar]
- Cira, T.M.; Venette, R.C.; Aigner, J.; Kuhar, T.; Mullins, D.E.; Gabbert, S.E.; Hutchison, W.D. Cold tolerance of Halyomorpha halys (Hemiptera: Pentatomidae) across geographic and temporal scales. Environ. Entomol. 2016, 45, 484–491. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, R.D.; Moser, W.K.; Gormanson, D.D.; Bartlett, M.G.; Vermunt, B. Effects of climate on emerald ash borer mortality and the potential for ash survival in North America. Agric. For. Meteorol. 2013, 178, 120–128. [Google Scholar] [CrossRef]
- Vermunt, B.; Cuddington, K.; Sobek-Swant, S.; Crosthwaite, J. Cold temperature and emerald ash borer: Modelling the minimum under-bark temperature of ash trees in Canada. Ecol. Model. 2012, 235, 19–25. [Google Scholar] [CrossRef]
- Christianson, L.D.E. Host Influence on the Cold Hardiness of Agrilus Planipennis. Master’s Thesis, University of Minnesota, Saint Paul, MN, USA, 2014. [Google Scholar]
- Salt, R.W. Time as a factor in the freezing of under-cooled insects. Can. J. Res. 1950, 28, 285–291. [Google Scholar] [CrossRef]
- Salt, R.W. Effect of cooling rate on freezing temperatures of supercooled insects. Can. J. Zool. 1966, 44, 655–659. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Milonas, P.G.; Savopoulou-Soultani, M. Cold hardiness of diapausing and non-diapausing pupae of the European grapevine moth, Lobesia botrana. Entomol. Exp. Appl. 2005, 117, 113–118. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Hoffmann, A.A.; Mitchell, K.A.; Rako, L.; le Roux, P.C.; Chown, S.L. Ecologically relevant measures of tolerance to potentially lethal temperatures. J. Exp. Biol. 2011, 214, 3713–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadzadeh, M.; Izadi, H. Cooling rate and starvation affect supercooling point and cold tolerance of the Khapra beetle, Trogoderma granarium Everts fourth instar larvae (Coleoptera: Dermestidae). J. Therm. Biol. 2018, 71, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Hawes, T.C.; Wharton, D.A. Tolerance of freezing in caterpillars of the New Zealand Magpie moth (Nyctemera annulata). Physiol. Entomol. 2010, 35, 296–300. [Google Scholar] [CrossRef]
- Morey, A.C.; Venette, R.C.; Santacruz, E.C.N.; Mosca, L.A.; Hutchison, W.D. Host-mediated shift in the cold tolerance of an invasive insect. Ecol. Evol. 2016, 6, 8267–8275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ault, T.R.; Henebry, G.M.; de Beurs, K.M.; Schwartz, M.D.; Betancourt, J.L.; Moore, D. The false spring of 2012, earliest in North American record. Eos 2013, 94, 181–188. [Google Scholar] [CrossRef]
- Bray, A.M.; Bauer, L.S.; Poland, T.M.; Haack, R.A.; Cognato, A.I.; Smith, J.J. Genetic analysis of emerald ash borer (Agrilus planipennis Fairmaire) populations in Asia and North America. Biol. Invasions 2011, 13, 2869–2887. [Google Scholar] [CrossRef]
- Ungerer, M.J.; Ayres, M.P.; Lombardero, M.J. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera : Scolytidae). J. Biogeogr. 1999, 26, 1133–1145. [Google Scholar] [CrossRef]
- Crozier, L. Winter warming facilitates range expansion: Cold tolerance of the butterfly Atalopedes campestris. Oecologia 2003, 135, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, G.G.; Crow, T.R.; Peterson, R.M., Jr.; Wilson, C.D. Managing Black Ash in the Lake States, General Technical Report NC-115; USDA Forest Service, North Central Forest Experiment Station: Saint Paul, MN, USA, 1987.
- Miles, P.D.; Heinzen, D.; Mielke, M.E.; Woodall, C.W.; Butler, B.J.; Piva, R.J.; Meneguzzo, D.M.; Perry, C.H.; Gormanson, D.D.; Barnett, C.J. Minnesota’s Forest 2008: Statistics, Methods and Quality Assurance; Bull. NRS-50; U.S. Department of Agriculture Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011.
- VanderSchaaf, C.L. Minnesota’s Forest Resources 2011. Available online: http://files.dnr.state.mn.us/forestry/um/forestresourcesreport_11.pdf (accessed on 30 March 2018).
- Palik, B.J.; Ostry, M.E.; Venette, R.C.; Abdela, E. Tree regeneration in black ash (Fraxinus nigra) stands exhibiting crown dieback in Minnesota. For. Ecol. Manag. 2012, 269, 26–30. [Google Scholar] [CrossRef]
- Telander, A.C.; Slesak, R.A.; D’Amato, A.W.; Palik, B.J.; Brooks, K.N.; Lenhart, C.F. Sap flow of black ash in wetland forests of northern Minnesota, USA: Hydrologic implications of tree mortality due to emerald ash borer. Agric. For. Meteorol. 2015, 206, 4–11. [Google Scholar] [CrossRef]
- MN-DNR. Emerald Ash Borer (EAB). Available online: https://www.dnr.state.mn.us/invasives/terrestrialanimals/eab/index.html (accessed on 30 March 2018).
n | Median (°C) | Mean ± SE (°C) | Shapiro-Wilk (W, p) | |
---|---|---|---|---|
Lab 2011–2012 | ||||
Black ash | 5 | −25.5 | −24.8 ± 0.97 | 0.91, 0.48 |
Green ash | 4 | −24.0 | −22.1 ± 3.32 | 0.81, 0.13 |
Lab 2012–2013 | ||||
Black ash | 4 | −29.2 * | −30.4 ± 1.42 | 0.74, 0.03 |
Green ash | 4 | −34.2 * | −33.8 ± 1.59 | 0.93, 0.61 |
Field 2012–2013 | ||||
Black ash | 41 | −32.6 | −31.2 ± 0.71 | 0.87, < 0.001 |
Green ash | 30 | −32.9 | −29.8 ± 5.43 | 0.84, < 0.001 |
Field 2013–2014 | ||||
Black ash | 25 | −30.6 | −31.3 ± 0.63 | 0.95, 0.3 |
Green ash | 36 | −32.1 | −31.4 ± 0.61 | 0.95, 0.1 |
Chilled a | Frozen | Chilled | Frozen | |||||
---|---|---|---|---|---|---|---|---|
Temp. (°C) | nb | Mortality % | n | Mortality % | n | Mortality % | n | Mortality % |
2012–2013 | Black ash | Green ash | ||||||
−35 | 2 | 0.0 | 20 | 65.0 | 8 | 0.0 | 14 | 71.4 * |
−30 | 22 | 13.6 | 3 | 66.7 | 19 | 5.3 | 5 | 100 * |
−25 | 17 | 5.9 | 5 | 100 * | 22 | 9.1 | 3 | 33.3 |
−20 | 16 | 6.3 | 0 | - | 18 | 27.8 | 0 | - |
25 | 20 | 5.0 | 0 | - | 24 | 20.1 | 0 | - |
Combined c | 57 | 8.8 | 28 | 71.4 *,† | 67 | 11.9 | 22 | 72.3 *,† |
2013–2014 | ||||||||
−40 | 0 | - | 6 | 83.3 | 0 | - | 7 | 85.7 |
−35 | 1 | 0.0 | 12 | 91.7 | 1 | 0.0 | 9 | 88.9 |
−30 | 9 | 55.6 | 0 | - | 7 | 57.1 | 5 | 80.0 |
−25 | 8 | 37.5 | 0 | - | 6 | 33.3 | 0 | - |
25 | 11 | 36.4 | 0 | - | 12 | 33.3 | 0 | - |
Combined c | 18 | 44.4 | 18 | 88.9 *,† | 14 | 42.9 | 21 | 85.7 *,† |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christianson, L.D.E.; Venette, R.C. Modest Effects of Host on the Cold Hardiness of Emerald Ash Borer †. Forests 2018, 9, 346. https://doi.org/10.3390/f9060346
Christianson LDE, Venette RC. Modest Effects of Host on the Cold Hardiness of Emerald Ash Borer †. Forests. 2018; 9(6):346. https://doi.org/10.3390/f9060346
Chicago/Turabian StyleChristianson, Lindsey D. E., and Robert C. Venette. 2018. "Modest Effects of Host on the Cold Hardiness of Emerald Ash Borer †" Forests 9, no. 6: 346. https://doi.org/10.3390/f9060346
APA StyleChristianson, L. D. E., & Venette, R. C. (2018). Modest Effects of Host on the Cold Hardiness of Emerald Ash Borer †. Forests, 9(6), 346. https://doi.org/10.3390/f9060346