Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus globulus Labill. Plantations across an Environmental Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Experimental Design and Treatments
2.3. Competing Vegetation Biomass Measurements
2.4. Volume Yield
2.5. Data Analysis
2.5.1. Modelling Approach
2.5.2. Estimating the Parameter b
2.5.3. Model Validation
3. Results
3.1. Modelling the Effects of Weed Competition on Volume Yield
3.2. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2010; FAO Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Booth, T.H. Eucalypt plantations and climate change. For. Ecol. Manag. 2013, 301, 28–34. [Google Scholar] [CrossRef]
- INFOR. Anuario Forestal 2017 Boletín Estadístico Nº 159; Instituto Forestal: Santiago, Chile, 2017. [Google Scholar]
- Albaugh, T.; Allen, L.; Dougherty, P.; Johnsen, K. Long term growth responses of loblolly pine to optimal nutrient and water resource availability. For. Ecol. Manag. 2004, 192, 3–19. [Google Scholar] [CrossRef]
- Powers, R.; Reynolds, P. Ten-year responses of ponderosa pine plantations to repeated vegetation and nutrient control along an environmental gradient. Can. J. For. Res. 1999, 29, 1027–1038. [Google Scholar] [CrossRef]
- Nambiar, E.K.S.; Sands, R. Competition for water and nutrients in forests. Can. J. For. Res. 1993, 23, 1955–1968. [Google Scholar] [CrossRef]
- Balandier, P.; Collet, C.; Miller, J.; Reynolds, P.; Zedaker, S. Designing forest vegetation management strategies based on the mechanisms and dynamics of plantation tree competition by neighboring vegetation. Forestry 2006, 79, 3–27. [Google Scholar] [CrossRef]
- Eyles, A.; Worledge, D.; Sands, P.; Ottenschlaeger, M.L.; Paterson, S.C.; Mendham, D.; O’Grady, A.P. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control. Tree Physiol. 2012, 32, 1008–1020. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.; Beadle, C.; Mendham, N.; Smethurst, P. The impact of timing and duration of grass control on the growth of a young Eucalyptus globulus Labill plantation. New For. 2003, 26, 147–165. [Google Scholar] [CrossRef]
- Rose, R.; Rosner, L.; Scott, J. Twelfth-year response of Douglas-fir to area of weed control and herbaceous versus woody weed control treatments. Can. J. For. Res. 2006, 36, 2464–2473. [Google Scholar] [CrossRef]
- Wagner, R.; Little, K.; Richardson, B.; McNabb, K. The role of vegetation management for enhancing productivity of the world’s forests. Forestry 2006, 79, 57–79. [Google Scholar] [CrossRef]
- Little, K.; Rolando, C.; Morris, C. An integrated analysis of 33 Eucalyptus trials linking the onset of competition-induced tree growth suppression with management, physiographic and climatic factors. Ann. For. Sci. 2007, 64, 585–591. [Google Scholar] [CrossRef]
- Dougherty, P.; Lowery, R. Spot-size of herbaceous control impacts loblolly pine seedling survival and growth. South. J. Appl. For. 1991, 15, 193–199. [Google Scholar]
- Richardson, B.; Davenhill, N.; Coker, G.; Ray, J.; Vanner, A.; Kimberly, M. Optimizing spot weed control: First approximation of the most cost-effective spot size. N. Z. J. For. Sci. 1996, 26, 265–275. [Google Scholar]
- Kogan, M.; Figueroa, R.; Gilabert, H. Weed control intensity effects on young radiata pine growth. Plant. Protection 2002, 21, 253–257. [Google Scholar] [CrossRef]
- Little, K.; Rolando, C. Regional vegetation management standards for commercial Eucalyptus plantations in South Africa. South. For. 2008, 70, 87–97. [Google Scholar] [CrossRef]
- Garau, A.; Ghersa, C.; Lemcoff, J.; Barañao, J. Weeds in Eucalyptus globulus subsp. maidenii (F. Muell) establishment: Effects of competition on sapling growth and survivorship. New For. 2009, 37, 251–264. [Google Scholar]
- Vargas, F.; Rubilar, R.; Gonzalez-Benecke, C.; Sanchez-Olate, M.; Aracena, P. Long-term response to area of competition control in Eucalyptus globulus plantations. New For. 2018, 49, 383–398. [Google Scholar] [CrossRef]
- Henkel-Johnson, D.; Macdonald, S.; Bork, E.; Thomas, B. Influence of weed composition, abundance, and spatial proximity on growth in young hybrid poplar plantations. For. Ecol. Manag. 2016, 362, 55–68. [Google Scholar] [CrossRef]
- Renton, M.; Chauhan, B.S. Modelling plantation-weed competition: Why, what, how and what lies ahead? Plant. Prot. 2017, 95, 101–108. [Google Scholar]
- Mason, E.G.; Whyte, A.G.D. Modelling initial survival and growth of Pinus radiata in New Zealand. Acta For. Fenn. 1997, 255, 1–38. [Google Scholar]
- Zhao, W. Growth and yield modelling of Pinus radiata in Canterbury, New Zealand. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 1999. [Google Scholar]
- Mason, E.G. A model of the juvenile growth and survival of Pinus radiata D. Don adding the effects of initial seedling diameter and plant handling. New For. 2001, 22, 133–158. [Google Scholar] [CrossRef]
- Westfall, J.; Burkhart, H.; Allen, H. Young stand growth modeling for intensively-managed loblolly pine plantations in Southeastern U.S. For. Sci. 2004, 50, 823–835. [Google Scholar]
- Knowe, S.A.; Radosevich, S.R.; Shula, R.G. Basal area and diameter distribution prediction for young Douglas-fir plantations with hardwood competition: Coast Ranges. West. J. Appl. For. 2005, 20, 73–93. [Google Scholar]
- Wagner, R.; Petersen, T.; Ross, D.; Radosevich, S. Competition thresholds for the survival and growth of ponderosa pine seedlings associated with woody and herbaceous vegetation. New For. 1989, 3, 151–170. [Google Scholar] [CrossRef]
- Real, P. Reajuste de Funciones Implementadas en Simulador EUCASIM Documento de Trabajo N° 12; Proyecto modelo nacional de simulación: Concepción, Chile, 2010. [Google Scholar]
- Cousens, R. An empirical model relating plantation yield to weed and plantation density and a statistical comparison with other models. J. Agric. Sci. 1985, 105, 513–521. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-Plus, 3rd ed.; Springer: New York, NY, USA, 2000; p. 528. ISBN 0387989579. [Google Scholar]
- Ratkowsky, D. Handbook of Nonlinear Regression Models, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 1990; p. 241. ISBN 0824781899. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models, 4th ed.; McGraw-Hill/Irwin: New York, NY, USA, 1996; p. 770. ISBN 0256086010. [Google Scholar]
- Hawkins, D.; Basak, S.; Mills, D. Assessing Model Fit by Cross-Validation. J. Chem. Inf. Comput. Sci. 2003, 43, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Little, K.; Schumann, A. A new systematic trial design for the optimization of interspecific weed control. In Proceedings of the 11th Australian weeds conference, Melbourne, Australia, 30 September–3 October 1996; Weed Science Society of Victoria Frankston. pp. 440–444. [Google Scholar]
- Mason, E.G.; Kirongo, B.B. Responses of radiata pine clones to varying levels of pasture competition in a semiarid environment. Can. I. For. Res. 1999, 29, 934–939. [Google Scholar] [CrossRef]
- Wagner, R.G. Competition and critical period thresholds for vegetation management decisions in young conifer stands. For. Chron. 2000, 76, 961–968. [Google Scholar] [CrossRef]
- George, B.; Brennan, P. Herbicides are more cost-effective than alternative weed control methods for increasing early growth of Eucalyptus dunnii and Eucalyptus saligna. New For. 2002, 24, 147–163. [Google Scholar] [CrossRef]
- Nambiar, S.; Zed, P. Influence of weeds on the water potential, nutrient content and growth of young radiata pine. Aust. For. Res. 1980, 10, 279–288. [Google Scholar]
- Little, K.; Van Staden, J. Interspecific competition affects early growth of a Eucalyptus grandis × E. camaldulensis hybrid clone in Zululand. S. Afr. J. Bot. 2003, 69, 505–513. [Google Scholar] [CrossRef]
- Garau, A.; Lemcoff, J.; Ghersa, C.; Beadle, C. Water stress tolerance in Eucalyptus globulus Labill subsp. maidenii (F. Muell.) saplings induced by water restrictions imposed by weeds. For. Ecol. Manag. 2008, 255, 2811–2819. [Google Scholar] [CrossRef]
- Watt, M. Modelling the influence of weed competition on growth of juvenile Pinus radiata at a dryland site. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2003. [Google Scholar]
- Smethurst, P.; Nambiar, S. Role of weeds in the management of nitrogen in a young Pinus radiata plantation. New For. 1989, 3, 203–224. [Google Scholar] [CrossRef]
- Coll, L.; Balandier, P.; Picon-Cochard, C. Morphological and physiological responses of beech (Fagus sylvatica) seedlings to grass-induced belowground competition. Tree Physiol. 2004, 24, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Harper, G.; Comeau, P.; Biring, B. A comparison of herbicide and mulch mat treatments for reducing grass, herb, and shrub competition in the BC Interior Douglas-Fir zone—Ten years results. West. J. Appl. For. 2005, 20, 167–176. [Google Scholar]
- Richardson, B. Vegetation management practices in plantation forests of Australia and New Zealand. Can. J. For. Res. 1993, 23, 1989–2005. [Google Scholar] [CrossRef]
Sites Characteristics | Sites | |||
---|---|---|---|---|
LR2.9 | MR6.5 | HR2.2 | HR12.9 | |
Latitude/Longitude | 72°3′/36°42′ | 73°29′/37°40′ | 72°52′/39°13′ | 72°56′/39°28′ |
Altitude (m) | 82 | 112 | 335 | 73 |
Rain (mm y−1) | 1198 | 1454 | 2055 | 2103 |
Tmax (°C) | 19.8 | 17.4 | 16.7 | 17.1 |
Tmin (°C) | 6.3 | 7.5 | 6.0 | 6.7 |
Clay (%) | 43.0 | 40.1 | 18.3 | 33.2 |
OM (%) | 5.0 | 9.2 | 16.5 | 13.0 |
Soil order | Ultisol | Alfisol | Ultisol | Andisol |
Treatment | LR2.9 | MR6.5 | HR2.2 | HR12.9 |
---|---|---|---|---|
I0 | 9.5 | 159.0 | 164.9 | 26.8 |
I5 | 25.4 | 222.0 | 184.6 | 101.5 |
I20 | 61.9 | 276.6 | 195.3 | 155.4 |
I44 | 71.3 | 324.5 | 222.9 | 233.6 |
I100 | 127.2 | 343.4 | 251.9 | 288.9 |
Models | References |
---|---|
(1) Yij = a + (b − a) Exp[−Exp(c)Xj] + εij | Pinheiro and Bates 2000 [29] |
(2) Yijk = a × Exp[−Exp(b)Xj] + c × Exp[−Exp(d)Zk] + εijk | Pinheiro and Bates 2000 [29] |
(3) Yij = Exp(−a × Xj) + εij | Ratkowsky 1990 [30] |
(4) Yij = a/((b × Xj) + Exp(c × Xj)) + εij | Ratkowsky 1990 [30] |
Models | AIC | R2 | RMSE |
---|---|---|---|
(1) Yij = a + (b − a) Exp[−Exp(c)Xj] + εij | 781 | 0.59 | 19.66 |
(2) Yijk = a × Exp[−Exp(b)Xj] + c × Exp[−Exp(d)Zk] + εijk | 861 | 0.51 | 26.35 |
(3) Yij = Exp(−a × Xj) + εij | 994 | 0.43 | 44.72 |
(4) Yij = a/((b × Xj) + Exp(c × Xj)) + εij | 847 | 0.56 | 21.99 |
Parameter | Asymptotic Estimate | Standard Error | p |
---|---|---|---|
a | −2.4479 | 4.4838 | 0.586 |
b1 | 194.3529 | 19.6128 | <0.001 |
b2 | −19.0421 | 3.7018 | <0.001 |
b3 | −0.0820 | 0.0106 | <0.001 |
b4 | 0.0113 | 0.0018 | <0.001 |
c | −3.5971 | 0.1821 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, F.; Gonzalez-Benecke, C.A.; Rubilar, R.; Sanchez-Olate, M. Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus globulus Labill. Plantations across an Environmental Gradient. Forests 2018, 9, 480. https://doi.org/10.3390/f9080480
Vargas F, Gonzalez-Benecke CA, Rubilar R, Sanchez-Olate M. Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus globulus Labill. Plantations across an Environmental Gradient. Forests. 2018; 9(8):480. https://doi.org/10.3390/f9080480
Chicago/Turabian StyleVargas, Felipe, Carlos A. Gonzalez-Benecke, Rafael Rubilar, and Manuel Sanchez-Olate. 2018. "Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus globulus Labill. Plantations across an Environmental Gradient" Forests 9, no. 8: 480. https://doi.org/10.3390/f9080480
APA StyleVargas, F., Gonzalez-Benecke, C. A., Rubilar, R., & Sanchez-Olate, M. (2018). Modelling the Effect of Weed Competition on Long-Term Volume Yield of Eucalyptus globulus Labill. Plantations across an Environmental Gradient. Forests, 9(8), 480. https://doi.org/10.3390/f9080480