Impacts of Alternative Harvesting and Natural Disturbance Scenarios on Forest Biomass in the Superior National Forest, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Data
2.3. Simulation Model Initialization
2.4. Simulating Timber Harvest and Natural Disturbance Scenarios
3. Results
3.1. Timber Harvest and Natural Disturbance Effects on Forest Biomass Stocks
3.2. Biomass Availability through Timber Harvest
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joyce, L.A.; Running, S.W.; Breshears, D.D.; Dale, V.H.; Malmsheimer, R.W.; Sampson, R.N.; Sohngen, B.; Woodall, C.W. Ch. 7: Forests. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.M., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 175–194. [Google Scholar]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukrety, S.; Wilson, D.C.; D’Amato, A.W.; Becker, D.R. Assessing sustainable forest biomass potential and bioenergy implications for the northern Lake States region, USA. Biomass Bioenergy 2015, 81, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Domke, G.M.; Becker, D.R.; D’Amato, A.W.; Ek, A.R.; Woodall, C.W. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA. Biomass Bioenergy 2012, 36, 141–150. [Google Scholar] [CrossRef]
- Russell, M.B.; Kilgore, M.A.; Blinn, C.R. Characterizing timber salvage operations on public forests in Minnesota and Wisconsin, USA. Int. J. For. Eng. 2017, 28, 66–72. [Google Scholar] [CrossRef]
- Kurz, W.A.; Stinson, G.; Rampley, G.J.; Dymond, C.C.; Neilson, E.T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. USA 2008, 105, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arseneault, J.E.; Saunders, M.R. Potential yields and economic returns of natural disturbance-based silviculture: A case study from the Acadian forest ecosystem research program. J. For. 2013, 111, 175–185. [Google Scholar]
- Woods, A.; Coates, K.D. Are biotic disturbance agents challenging basic tenets of growth and yield and sustainable forest management? Forestry 2013, 86, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Bradford, J.B.; Jensen, N.R.; Domke, G.M.; D’Amato, A.W. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. For. Ecol. Manag. 2013, 308, 178–187. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest Resources of the United States, 2012: A Technical Document Supporting the Forest Service 2015 Update of the RPA Assessment; General Technical Report WO-91; USDA Forest Service: Washington, DC, USA, 2014; p. 218.
- Minnesota Department of Natural Resources. Minnesota’s Forest Resources, 2014; Minnesota Department of Natural Resources, Division of Forestry, Resource Assessment: Grand Rapids, MN, USA, 2015; p. 74. [Google Scholar]
- Heinselman, M.L. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 1973, 3, 329–382. [Google Scholar] [CrossRef]
- Bradford, J.B.; Fraver, S.; Milo, A.M.; D’Amato, A.W.; Palik, B.; Shinneman, D.J. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. For. Ecol. Manag. 2012, 267, 209–214. [Google Scholar] [CrossRef]
- Russell, M.B.; D’Amato, A.W.; Albers, M.A.; Woodall, C.W.; Puettmann, K.J.; Saunders, M.R.; VanderSchaaf, C.L. Performance of the Forest Vegetation Simulator in managed white spruce plantations influenced by eastern spruce budworm in northern Minnesota. For. Sci. 2015, 61, 723–730. [Google Scholar] [CrossRef]
- Rowe, J.S. Forest Regions of Canada; Publ. 1300; Department of the Environment Canadian Forest Services: Ottawa, QC, Canada, 1972; p. 172.
- Schulte, L.A.; Mladenoff, D.J.; Crow, T.R.; Merrick, L.C.; Cleland, D.T. Homogenization of northern U.S. Great Lakes forests due to land use. Landsc. Ecol. 2007, 22, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Miles, P.D. Forest Inventory EVALIDator Web-Application Version 1.6.0.03; Department of Agriculture, Forest Service, Northern Research Station: Saint Paul, MN, USA, 2017; Available online: http://apps.fs.fed.us/evalidator/evalidator.jsp (accessed on 9 October 2017).
- USDA Forest Service. Forest Inventory and Analysis National Program-Data and Tools-FIA Datamart, version 1.7.2.00. Department of Agriculture, Forest Service, Northern Research Station, 2017. Available online: https://apps.fs.usda.gov/fia/datamart/datamart.html (accessed on 9 October 2017).
- Bechtold, W.A.; Patterson, P.L. Forest Inventory and Analysis National Sample Design and Estimation Procedures; General Technical Report SRS-GTR-80; USDA Forest Service: Washington, DC, USA, 2005.
- Wilson, D.C.; Domke, G.M.; Ek, A.R. Forest Age Class Change Simulator (FACCS): A Spreadsheet-Based Model for Estimation of Forest Change and Biomass Availability; The University of Minnesota Digital Conservancy: Saint Paul, MN, USA, 2014; Available online: http://hdl.handle.net/11299/170674 (accessed on 9 October 2017).
- Minnesota Department of Natural Resources. Forest Development Manual; Department of Natural Resources, Division of Forestry: Saint Paul, MN, USA, 1997; Available online: http://www.dnr.state.mn.us/forestry/ecs_silv/silvics.html (accessed on 9 October 2017).
- Becker, D.R.; Klapperich, J.J.; Domke, G.M.; Kilgore, M.A.; D’Amato, A.W.; Current, D.A.; Ek, A.R. 2010 Outlook for Forest Biomass Availability in Minnesota: Physical, Environmental, Economic, and Social Availability; Paper Series No. 211; University of Minnesota Department of Forest Resources Staff: Saint Paul, MN, USA, 2010; p. 83. [Google Scholar]
- Morin, R.S.; Liebhold, A.M.; Pugh, S.A.; Crocker, S.J. Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the eastern United States. Biol. Invasions 2017, 19, 703–711. [Google Scholar] [CrossRef]
- Peters, E.B.; Wythers, K.R.; Bradford, J.B.; Reich, P.B. Influence of disturbance on temperate forest productivity. Ecosystems 2013, 16, 95–110. [Google Scholar] [CrossRef]
- Frelich, L.E. Forest Dynamics and Disturbance Regimes; Cambridge University Press: Cambridge, UK, 2002; p. 280. [Google Scholar]
Forest Type | Timberland Area (ha) 1 | Total Biomass (Tg) | Biomass Density (Mg ha−1) | |||
---|---|---|---|---|---|---|
SNF | JPA | SNF | JPA | SNF | JPA | |
Aspen/birch | 219,254 | 13,400 | 7.98 (8.24) | 0.48 | 36.4 (37.6) | 35.8 |
White/red/jack pine | 63,529 | 14,680 | 3.00 (3.83) | 0.60 | 47.2 (60.3) | 40.9 |
Spruce/fir | 161,307 | 5316 | 3.38 (5.67) | 0.12 | 21.0 (35.2) | 22.6 |
Elm/ash/cottonwood | 19,607 | - | 0.88 (0.61) | - | 44.9 (31.1) | - |
Total | 463,697 | 33,396 | 15.25 (18.35) | 1.20 | 32.9 (39.6) | 35.9 |
Forest Type | Natural Disturbance Rate 1 | Harvest Rate 2 | |||||||
---|---|---|---|---|---|---|---|---|---|
50% | Current | 200% | FACCS | 50% | Current | 200% | FACCS | ||
%Δ | |||||||||
SNF | JPA | ||||||||
Aspen/birch | 50% | −3.31 | −2.21 | −21.24 | −41.44 | 4.47 | 8.88 | −30.25 | −35.12 |
Current | −3.74 | −2.36 | −25.57 | −44.12 | 4.04 | 3.91 | −30.93 | −41.07 | |
200% | −5.31 | −4.96 | −32.69 | −43.19 | 0.79 | −5.69 | −36.92 | −37.76 | |
White/red/jack pine | 50% | −14.09 | −13.31 | −30.19 | −16.53 | −2.04 | 1.27 | 11.30 | −10.75 |
Current | −13.02 | −11.78 | −29.97 | −11.97 | −1.34 | 1.57 | 9.67 | −8.29 | |
200% | −12.18 | −11.80 | −33.14 | −17.01 | −0.88 | 2.69 | 7.38 | −8.56 | |
Spruce/fir | 50% | −7.84 | −9.05 | −11.02 | −29.45 | −2.13 | −8.85 | −20.01 | −27.04 |
Current | −9.08 | −10.23 | −12.71 | −27.40 | −4.42 | −13.92 | −23.07 | −33.65 | |
200% | −12.01 | −13.21 | −14.80 | −30.72 | −10.24 | −16.54 | −29.61 | −39.63 | |
Elm/ash/cottonwood | 50% | −12.42 | −29.70 | −44.56 | −40.57 | - | - | - | - |
Current | −17.67 | −32.73 | −46.75 | −43.85 | - | - | - | - | |
200% | −30.46 | −43.83 | −50.65 | −46.37 | - | - | - | - | |
Total | 50% | −6.97 | −7.50 | −22.08 | −33.82 | 0.57 | 3.31 | −8.58 | −22.20 |
Current | −7.56 | −7.72 | −24.81 | −34.06 | 0.51 | 0.95 | −9.97 | −24.04 | |
200% | −9.60 | −10.38 | −29.85 | −35.45 | −1.16 | −2.62 | −14.18 | −23.45 |
Forest Type | Harvest Rate 1 | |||||||
---|---|---|---|---|---|---|---|---|
50% | Current | 200% | FACCS | 50% | Current | 200% | FACCS | |
SNF | JPA | |||||||
Aspen/birch | 35,992 | 71,444 | 142,520 | 195,194 | 2558 | 5085 | 10,151 | 11,223 |
White/red/jack pine | 17,662 | 35,710 | 49,682 | 43,858 | 1264 | 2527 | 5031 | 10,777 |
Spruce/fir | 3805 | 7575 | 15,118 | 46,292 | 270 | 539 | 941 | 1134 |
Elm/ash/cottonwood | 3615 | 7247 | 12,320 | 10,705 | - | - | - | - |
Total | 61,074 | 121,977 | 219,640 | 296,050 | 4091 | 8151 | 16,123 | 23,134 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russell, M.B.; Patton, S.R.; Wilson, D.C.; Domke, G.M.; Frerker, K.L. Impacts of Alternative Harvesting and Natural Disturbance Scenarios on Forest Biomass in the Superior National Forest, USA. Forests 2018, 9, 491. https://doi.org/10.3390/f9080491
Russell MB, Patton SR, Wilson DC, Domke GM, Frerker KL. Impacts of Alternative Harvesting and Natural Disturbance Scenarios on Forest Biomass in the Superior National Forest, USA. Forests. 2018; 9(8):491. https://doi.org/10.3390/f9080491
Chicago/Turabian StyleRussell, Matthew B., Stephanie R. Patton, David C. Wilson, Grant M. Domke, and Katie L. Frerker. 2018. "Impacts of Alternative Harvesting and Natural Disturbance Scenarios on Forest Biomass in the Superior National Forest, USA" Forests 9, no. 8: 491. https://doi.org/10.3390/f9080491
APA StyleRussell, M. B., Patton, S. R., Wilson, D. C., Domke, G. M., & Frerker, K. L. (2018). Impacts of Alternative Harvesting and Natural Disturbance Scenarios on Forest Biomass in the Superior National Forest, USA. Forests, 9(8), 491. https://doi.org/10.3390/f9080491