Determinants of Above-Ground Biomass and Its Spatial Variability in a Temperate Forest Managed for Timber Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Permanent Sampling Plots
2.3. Field Measurement and AGB Estimates
2.4. LiDAR Data
2.5. Climatic and Topographic Data
2.6. Statistical Models and Analysis
2.7. Uncertainty Quantification
3. Results
3.1. AGB and Effects of Forest Structure
3.2. Climate and Topographic Variables
3.3. Spatial Prediction Models
3.4. Spatial Variability of AGB
3.5. Mapping AGB Uncertainty
4. Discussion
4.1. Spatial Variability of AGB
4.2. Estimation of AGB across the Landscape
4.3. Effects of Climate and Topography
4.4. Comparing Prediction Methods
4.5. Spatial Uncertainty
4.6. Improving AGB Estimates in Managed Forests
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Thurner, M.; Beer, C.; Santoro, M.; Carvalhais, N.; Wutzler, T.; Schepaschenko, D.; Shvidenko, A.; Kompter, E.; Ahrens, B.; Levick, S.R.; et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 2014, 23, 297–310. [Google Scholar] [CrossRef]
- Birdsey, R.; Pan, Y. Trends in management of the world’s forests and impacts on carbon stocks. For. Ecol. Manag. 2015, 355, 83–90. [Google Scholar] [CrossRef]
- Tyrrell, M.L.; Ross, J.; Kelty, M. Carbon Dynamics in the Temperate Forest. In Managing Forest Carbon in a Changing Climate; Ashton, M.S., Tyrrell, M.L., Spalding, D., Gentry, B., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 77–107. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 340. [Google Scholar]
- United Nations Framework Convention on Climate Change (UNFCCC). Eleventh Session of the Conference of the Parties (COP 11); UNFCCC: Montreal, QC, Canada, 30 March 2006. [Google Scholar]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data. Geophys. Res. Lett. 2004, 31, L10501. [Google Scholar] [CrossRef]
- Smith, L.A.; Eissenstat, D.M.; Kaye, M.W. Variability in aboveground carbon driven by slope aspect and curvature in an eastern deciduous forest, USA. Can. J. For. Res. 2016, 47, 149–158. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, Y.; Sun, Y.; Wang, T.; Zeng, Z.; Piao, S. MODIS based estimation of forest aboveground biomass in China. PLoS ONE 2015, 10, e0130143. [Google Scholar] [CrossRef] [PubMed]
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Estimating forest aboveground biomass by combining optical and SAR data: A case study in Genhe, Inner Mongolia, China. Sensors 2016, 16, 834. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Figorilli, S.; Proto, A.R.; Colle, G.; Sperandio, G.; Gallo, P.; Antonucci, F.; Pallottino, F.; Menesatti, P. Digital stereovision system for dendrometry, georeferencing and data management. Biosyst. Eng. 2018, 174, 126–133. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 44. [Google Scholar]
- Cademus, R.; Escobedo, F.; McLaughlin, D.; Abd-Elrahman, A. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in Pinus elliotii forests in Southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef]
- Ranatunga, K.; Keenan, R.J.; Wullschleger, S.D.; Post, W.M.; Tharp, M.L. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. For. Ecol. Manag. 2008, 255, 2407–2415. [Google Scholar] [CrossRef]
- Birdsey, R.; Pregitzer, K.; Lucier, A. Forest carbon management in the United States. J. Environ. Qual. 2006, 35, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Gillespie, A.R.; Gustavsson, L.; Langvall, O.; Olsson, M.; Sathre, R.; Stendahl, J. Integrated carbon analysis of forest management practices and wood substitution. Can. J. For. Res. 2007, 37, 671–681. [Google Scholar] [CrossRef]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 2007, 37, 140–148. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Su, Y.; Guo, Q.; Xue, B.; Hu, T.; Alvarez, O.; Tao, S.; Fang, J. Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sens. Environ. 2016, 173, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Birdsey, R.; Angeles-Perez, G.; Kurz, W.A.; Lister, A.; Olguin, M.; Pan, Y.; Wayson, C.; Wilson, B.; Johnson, K. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Manag. 2013, 4, 519–537. [Google Scholar] [CrossRef]
- Law, B.E.; Turner, D.; Campbell, J.; Sun, O.J.; Van Tuyl, S.; Ritts, W.D.; Cohen, W.B. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Glob. Chang. Biol. 2004, 10, 1429–1444. [Google Scholar] [CrossRef]
- Gough, C.M.; Vogel, C.S.; Harrold, K.H.; George, K.; Curtis, P.S. The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob. Chang. Biol. 2007, 13, 1935–1949. [Google Scholar] [CrossRef]
- Hudiburg, T.; Law, B.; Turner, D.P.; Campbell, J.; Donato, D.; Duane, M. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 2009, 19, 163–180. [Google Scholar] [CrossRef] [PubMed]
- Hanberry, B.B.; He, H.S. Effects of historical and current disturbance on forest biomass in Minnesota. Landsc. Ecol. 2015, 30, 1473–1482. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, F.; Liu, S.; Liu, Y.; Li, C. Variations of carbon stock with forest types in subalpine region of southwestern China. For. Ecol. Manag. 2013, 300, 88–95. [Google Scholar] [CrossRef]
- Dar, J.A.; Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ. Monit. Assess. 2015, 187, 55. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.L.; Gholz, H.L.; Castro, M.S. Carbon dynamics along a chronosequence of slash pine plantations in North Florida. Ecol. Appl. 2004, 14, 1154–1171. [Google Scholar] [CrossRef]
- Orihuela-Belmonte, D.E.; de Jong, B.H.J.; Mendoza-Vega, J.; van der Wal, J.; Paz-Pellat, F.; Soto-Pinto, L.; Flamenco-Sandoval, A. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 2013, 171, 72–84. [Google Scholar] [CrossRef]
- Yang, Y.; Watanabe, M.; Li, F.; Zhang, J.; Zhang, W.; Zhai, J. Factors affecting forest growth and possible effects of climate change in the Taihang Mountains, Northern China. Forestry 2006, 79, 135–147. [Google Scholar] [CrossRef]
- Ajaz Ahmed, M.A.; Abd-Elrahman, A.; Escobedo, F.J.; Cropper, W.P., Jr.; Martin, T.A.; Timilsina, N. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. J. Environ. Manag. 2017, 199, 158–171. [Google Scholar] [CrossRef] [PubMed]
- De Castilho, C.V.; Magnusson, W.E.; de Araújo, R.N.O.; Luizão, R.C.C.; Luizão, F.J.; Lima, A.P.; Higuchi, N. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 2006, 234, 85–96. [Google Scholar] [CrossRef]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.M.; Joly, C.A.; Martinelli, L.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Asner, G.P.; Flint Hughes, R.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Wong, W.V.C.; Tsuyuki, S. High Resolution of Three-Dimensional Dataset for Aboveground Biomass Estimation in Tropical Rainforests. In Redefining Diversity & Dynamics of Natural Resources Management in Asia, Volume 1; Elsevier: New York, NY, USA, 2017; pp. 115–130. [Google Scholar] [Green Version]
- Wood, S.N.; Augustin, N.H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 2002, 157, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Torres-Rojo, J.M.; Moreno-Sánchez, R.; Mendoza-Briseño, M.A. Sustainable forest management in Mexico. Curr. For. Rep. 2016, 2, 93–105. [Google Scholar] [CrossRef]
- De los Santos-Posadas, H.M.; Valdez-Lazalde, J.R.; Torres-Rojo, J.M. San Pedro El Alto Community Forest, Oaxaca, Mexico. In Forest Plans of North America; Bettinger, P., Merry, K., Grebner, D.L., Boston, K., Cieszewski, C., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 199–208. [Google Scholar]
- Mendoza-Ponce, A.; Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 2010, 83, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Cohen, W.B.; Leckie, D.; Wulder, M.A.; Vargas, R.; de Jong, B.; Healey, S.; Law, B.; Birdsey, R.; Houghton, R. Recent rates of forest harvest and conversion in North America. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- King, A.W.; Andres, R.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, D.N.; de Jong, B.; Kurz, W.; McGuire, A.D.; Vargas, R. North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences 2015, 12, 399–414. [Google Scholar] [CrossRef]
- Ángeles-Pérez, G.; Wayson, C.; Birdsey, R.; Valdez-Lazalde, J.R.; De los Santos-Posadas, H.M.; Plascencia-Escalante, F.O. Sitio intensivo de monitoreo de flujos de CO2 a largo plazo en bosques bajo manejo en el centro de México. In Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2011; Paz, F., Cuevas, R.M., Eds.; Programa Mexicano del Carbono, Universidad Autónoma del Estado de México e Instituto Nacional de Ecología: Toluca, Mexico, 2012; pp. 793–797. [Google Scholar]
- Ángeles-Pérez, G.; Méndez-López, B.; Valdez-Lazalde, J.R.; Plascencia-Escalante, F.O.; De los Santos-Posadas, H.M.; Chávez-Aguilar, G.; Ortiz Reyes, A.D.; Soriano-Luna, M.Á.; Zaragoza-Castañeda, Z.; Ventura-Palomeque, E.; et al. Estudio de Caso del Sitio de Monitoreo Intensivo del Carbono en Hidalgo; Colegio de Postgraduados: Montecillo, Mexico, 2015; p. 105. [Google Scholar]
- Vargas, R.; Yépez, E.A.; Andrade, J.L.; Ángeles, G.; Arredondo, T.; Castellanos, A.E.; Delgado-Balbuena, J.; Garatuza-Payán, J.; González Del Castillo, E.; Oechel, W.; et al. Progress and opportunities for monitoring greenhouse gases fluxes in Mexican ecosystems: The MexFlux network. Atmósfera 2013, 26, 325–336. [Google Scholar] [CrossRef]
- Aguirre-Salado, C.A.; Valdez-Lazalde, J.R.; Ángeles-Pérez, G.; De los Santos-Posadas, H.M.; Haapanen, R.; Aguirre-Salado, A.I. Mapping aboveground tree carbon in managed Patula pine forests in Hidalgo, México. Agrociencia 2009, 43, 209–220. [Google Scholar]
- Santiago-García, W.; de los Santos-Posadas, H.M.; Ángeles-Pérez, G.; Valdez-Lazalde, J.R.; Ramírez-Valverde, G. Sistema compatible de crecimiento y rendimiento para rodales coetáneos de Pinus patula. Rev. Fitotec. Mex. 2013, 36, 163–172. [Google Scholar]
- Hollinger, D.Y. Defining a landscape-scale monitoring tier for the North American Carbon Program. In Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach; Hoover, C.M., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 3–16. [Google Scholar]
- CONAFOR. Manual y Procedimientos para el Muestreo de Campo. Re-Muestreo 2012; Comisión Nacional Forestal: Jalisco, Mexico, 2012; p. 136.
- Hoover, C.M. Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach; Springer Science & Business Media: New York, NY, USA, 2008; p. 240. [Google Scholar]
- Ortiz-Reyes, A.D.; Valdez-Lazalde, J.R.; los Santos-Posadas, D.; Héctor, M.; Ángeles-Pérez, G.; Paz-Pellat, F.; Martínez-Trinidad, T. Inventario y cartografía de variables del bosque con datos derivados de LiDAR: Comparación de métodos. Madera y Bosques 2015, 21, 111–128. [Google Scholar] [CrossRef]
- Curtis, P.S. Estimating aboveground carbon in live and standing dead trees. In Field Measurements for Forest Carbon Monitoring; Springer: New York, NY, USA, 2008; pp. 39–44. [Google Scholar]
- Soriano-Luna, M.Á.; Ángeles-Pérez, G.; Martínez-Trinidad, T.; Plascencia-Escalante, F.O.; Razo-Zárate, R. Aboveground biomass estimation by structural component in Zacualtipan, Hidalgo, Mexico. Agrociencia 2015, 49, 423–438. [Google Scholar]
- Cruz-Martínez, Z. Sistema de Ecuaciones Para Estimación y Partición de Biomasa Aérea en Atopixco, Zacualtipán, Hidalgo, México. Master’s Thesis, Universidad Autónoma Chapingo, Texcoco, Mexico, 2007. [Google Scholar]
- Cook, B.; Corp, L.; Nelson, R.; Middleton, E.; Morton, D.; McCorkel, J.; Masek, J.; Ranson, K.; Ly, V.; Montesano, P. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager. Remote Sens. 2013, 5, 4045–4066. [Google Scholar] [CrossRef]
- Nelson, R.; Margolis, H.; Montesano, P.; Sun, G.; Cook, B.; Corp, L.; Andersen, H.-E.; Pellat, F.P.; Fickel, T.; Kauffman, J. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens. Environ. 2017, 188, 127–140. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization 3.60+; USDA Forest Service: Washington, DC, USA, 2016. [Google Scholar]
- Haber, J.; Zeilfelder, F.; Davydov, O.; Seidel, H.-P. Smooth approximation and rendering of large scattered data sets. In from Nano to Space; Springer: Berlin, Germany, 2008; pp. 127–143. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) version 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; version 3.3.3R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Böhner, J.; McCloy, K.R.; Strobl, J. SAGA—Analysis and Modelling Applications; Göttinger Geographische Abhandlungen: Hamburg, Germany, 2006; p. 130. [Google Scholar]
- Wilson, J.P. Digital terrain modeling. Geomorphology 2012, 137, 107–121. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability; Chapman & Hall/CRC: London, UK, 1990; p. 352. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T. An Introduction to Statistical Learning: With Applications in R; Springer Science+Business Media: New York, NY, USA, 2014; p. 426. [Google Scholar]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess0297.pub2 (accessed on 25 November 2017).
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Kuo, Y.M.; Yu, H.L.; Kuan, W.H.; Kuo, M.H.; Lin, H.J. Factors controlling changes in epilithic algal biomass in the mountain streams of subtropical Taiwan. PLoS ONE 2016, 11, e0166604. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y. Applying various algorithms for species distribution modelling. Integr. Zool. 2013, 8, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Im, J.; Quackenbush, L.J.; Liu, T. Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over Huntington Wildlife Forest in the Adirondack Park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3143–3156. [Google Scholar] [CrossRef]
- Wood, S.; Wood, M.S. R Package ‘mgcv’. Available online: https://cran.r-project.org/web/packages/mgcv/index.html (accessed on 30 November 2017).
- Maindonald, J.; Maindonald, M.J. R Package ‘gamclass’. Available online: https://cran.r-project.org/web/packages/gamclass/index.html (accessed on 5 November 2017).
- Lukacs, P.M.; Burnham, K.P.; Anderson, D.R. Model selection bias and Freedman’s paradox. Ann. Inst. Stat. Math. 2009, 62, 117. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.-C.; Lin, C.-C.; Meyer, M.D. R Package ‘e1071′. Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on 23 September 2017).
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for variable selection using Random Forests. R J. 2015, 7, 19–33. [Google Scholar]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 27 November 2017).
- Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Meinshausen, N. QuantregForest: Quantile Regression Forests. Available online: https://cran.r-project.org/web/packages/quantregForest/index.html (accessed on 5 January 2018).
- Viscarra Rossel, R.A.; Webster, R.; Bui, E.N.; Baldock, J.A. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob. Chang. Biol. 2014, 20, 2953–2970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peichl, M.; Arain, M.A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 2006, 140, 51–63. [Google Scholar] [CrossRef]
- Samuelson, L.J.; Stokes, T.A.; Butnor, J.R.; Johnsen, K.H.; Gonzalez-Benecke, C.A.; Martin, T.A.; Cropper, W.P., Jr.; Anderson, P.H.; Ramirez, M.R.; Lewis, J.C. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Ecol. Appl. 2017, 27, 244–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chávez-Aguilar, G.; Ángeles-Pérez, G.; Pérez-Suárez, M.; López-López, M.Á.; García-Moya, E.; Wayson, C. Distribución de biomasa aérea en un bosque de Pinus patula bajo gestión forestal en Zacualtipán, Hidalgo, México. Madera y Bosques 2016, 22, 23–36. [Google Scholar] [CrossRef]
- Torres-Vivar, J.E.; Valdez Lazalde, J.R.; Ángeles-Pérez, G.; de los Santos-Posadas, H.M.; Aguirre-Salado, C.A. Inventory and mapping of a pine forest under timber management using data obtained with a SPOT 6 sensor. Rev. Mex. Cienc. For. 2017, 8, 25–43. [Google Scholar]
- Martínez-Barrón, R.A.; Aguirre Calderón, O.A.; Vargas Larreta, B.; Jiménez Pérez, J.; Treviño Garza, E.J.; Yamallel, J.I. Modeling of biomass and aboveground arboreal carbon in forests of the state of Durango. Rev. Mex. Cienc. For. 2016, 7, 91–105. [Google Scholar]
- Woodall, C.W.; D’Amato, A.W.; Bradford, J.B.; Finley, A.O. Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. For. Sci. 2011, 57, 365–378. [Google Scholar]
- Huang, H.; Gong, P.; Cheng, X.; Clinton, N.; Li, Z. Improving measurement of forest structural parameters by co-registering of high resolution aerial imagery and low density LiDAR Data. Sensors 2009, 9, 1541–1558. [Google Scholar] [CrossRef] [PubMed]
- Kwak, D.A.; Lee, W.K.; Cho, H.K.; Lee, S.H.; Son, Y.; Kafatos, M.; Kim, S.R. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Res. 2010, 123, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.D.; Birdsey, R.; Finley, A.O.; Swantaran, A.; Dubayah, R.; Wayson, C.; Riemann, R. Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system. Carbon Balance Manag. 2014, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.; Naesset, E.; Ohlson, M.; Bolstad, P.V.; Kolka, R. Mapping above- and below-ground carbon pools in boreal Forests: The case for airborne Lidar. PLoS ONE 2015, 10, e0138450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swetnam, T.L.; Brooks, P.D.; Barnard, H.R.; Harpold, A.A.; Gallo, E.L. Topographically driven differences in energy and water constrain climatic control on forest carbon sequestration. Ecosphere 2017, 8. [Google Scholar] [CrossRef]
- Garcia, M.; Saatchi, S.; Ferraz, A.; Silva, C.A.; Ustin, S.; Koltunov, A.; Balzter, H. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Stefanoni, J.; Dupuy, J.; Johnson, K.; Birdsey, R.; Tun-Dzul, F.; Peduzzi, A.; Caamal-Sosa, J.; Sánchez-Santos, G.; López-Merlín, D. Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR. Remote Sens. 2014, 6, 4741–4763. [Google Scholar] [CrossRef]
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Henry, M.; Schmullius, C. Mapping biomass with remote sensing: A comparison of methods for the case study of Uganda. Carbon Balance Manag. 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Breidenbach, J.; Næsset, E.; Lien, V.; Gobakken, T.; Solberg, S. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens. Environ. 2010, 114, 911–924. [Google Scholar] [CrossRef]
- Chiaverano, L.M.; Holland, B.S.; Crow, G.L.; Blair, L.; Yanagihara, A.A. Long-term fluctuations in circalunar Beach aggregations of the box jellyfish Alatina moseri in Hawaii, with links to environmental variability. PLoS ONE 2013, 8, e77039. [Google Scholar] [CrossRef] [PubMed]
- Drexler, M.; Ainsworth, C.H. Generalized additive models used to predict species abundance in the Gulf of Mexico: An ecosystem modeling tool. PLoS ONE 2013, 8, e64458. [Google Scholar] [CrossRef] [PubMed]
- Skowronski, N.S.; Clark, K.L.; Gallagher, M.; Birdsey, R.A.; Hom, J.L. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest. Remote Sens. Environ. 2014, 151, 166–174. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.A. National, detailed map of forest aboveground carbon stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef]
- Fu, Y.; Lei, Y.; Zeng, W.; Hao, R.; Zhang, G.; Zhong, Q.; Xu, M. Uncertainty assessment in aboveground biomass estimation at the regional scale using a new method considering both sampling error and model error. Can. J. For. Res. 2017, 47, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 2014, 60, 733–756. [Google Scholar] [CrossRef]
- Vargas, R.; Alcaraz-Segura, D.; Birdsey, R.; Brunsell, N.A.; Cruz-Gaistardo, C.O.; de Jong, B.; Etchevers, J.; Guevara, M.; Hayes, D.J.; Johnson, K.; et al. Enhancing interoperability to facilitate implementation of REDD+: Case study of Mexico. Carbon Manag. 2017, 8, 57–65. [Google Scholar] [CrossRef]
Species | AGB Equation (kg) | Reference |
---|---|---|
Pinus patula, Pinus greggii, Cupressus sp. | Exp (−4.554805) × (DBH2 × H)1.047218 | [55] |
Broadleaves | Exp (−3.109407) × (DBH2 × H)0.952688 | [55] |
Pinus teocote | (0.000082 × DBH1.84952 × H0.915827) × 623.2698 | [56] |
Predictor Variables | Units | Spatial Resolution | |
---|---|---|---|
Management variables | Stand age | Years | Shape |
Basal area | m2 ha−1 | plot | |
Tree density | Trees ha−1 | plot | |
Site index | m | plot | |
LiDAR metrics | 50th percentile height | m | 5 m |
95th percentile height | m | 5 m | |
(All returns above 3 m/first returns) × 100 | % | 5 m | |
(# of first returns above the mean/total # of first returns) × 100 | % | 5 m | |
Climatic variables | Mean temperature | °C | 5 m |
Mean precipitation | mm | 5 m | |
LiDAR-derived DTM | |||
Topographic and soil variables | Soil depth | cm | 1 m |
Elevation | m | 1 m | |
SAGA-GIS-calculated | Analytical hillshading | Radians | 1 m |
Slope | Radians | 1 m | |
Aspect | Radians | 1 m | |
Cross-sectional curvature | Radians−1 | 1 m | |
Longitudinal curvature | Radians−1 | 1 m | |
Convergence index | - | 1 m | |
Closed depressions | - | 1 m | |
Flow accumulation | - | 1 m | |
Topographic wetness index | - | 1 m | |
LS factor | - | 1 m | |
Channel network base level | - | 1 m | |
Vertical distance to channel Network | - | 1 m | |
Valley depth | - | 1 m | |
Relative slope position | - | 1 m |
Model | Model Structure | Explained Variance (%) | AIC | RMSE |
---|---|---|---|---|
Lineal Model (LM) | AGB = −30.13 + 6.59 (eP95) + 0.12 (a1a3) + 0.54 (age) | 80.9 | 1782 | 25.7 |
Generalized Additive Model (GAM) | AGB = s (eP95), s (a1a3), s (age) | 89.8 | 1712 | 17.0 |
Random Forest Model (RF) | AGB = eP95, a1a3, age | 88.7 | 19.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano-Luna, M.D.l.Á.; Ángeles-Pérez, G.; Guevara, M.; Birdsey, R.; Pan, Y.; Vaquera-Huerta, H.; Valdez-Lazalde, J.R.; Johnson, K.D.; Vargas, R. Determinants of Above-Ground Biomass and Its Spatial Variability in a Temperate Forest Managed for Timber Production. Forests 2018, 9, 490. https://doi.org/10.3390/f9080490
Soriano-Luna MDlÁ, Ángeles-Pérez G, Guevara M, Birdsey R, Pan Y, Vaquera-Huerta H, Valdez-Lazalde JR, Johnson KD, Vargas R. Determinants of Above-Ground Biomass and Its Spatial Variability in a Temperate Forest Managed for Timber Production. Forests. 2018; 9(8):490. https://doi.org/10.3390/f9080490
Chicago/Turabian StyleSoriano-Luna, María De los Ángeles, Gregorio Ángeles-Pérez, Mario Guevara, Richard Birdsey, Yude Pan, Humberto Vaquera-Huerta, José René Valdez-Lazalde, Kristofer D. Johnson, and Rodrigo Vargas. 2018. "Determinants of Above-Ground Biomass and Its Spatial Variability in a Temperate Forest Managed for Timber Production" Forests 9, no. 8: 490. https://doi.org/10.3390/f9080490
APA StyleSoriano-Luna, M. D. l. Á., Ángeles-Pérez, G., Guevara, M., Birdsey, R., Pan, Y., Vaquera-Huerta, H., Valdez-Lazalde, J. R., Johnson, K. D., & Vargas, R. (2018). Determinants of Above-Ground Biomass and Its Spatial Variability in a Temperate Forest Managed for Timber Production. Forests, 9(8), 490. https://doi.org/10.3390/f9080490