CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Inventory Analysis
2.2.1. Rubber Tree Cultivation
2.2.2. Rubber Seed Oil Extraction
2.2.3. Rubber Seed Oil Transesterification
2.2.4. Transport
2.2.5. Usage
2.3. Sensitivity and Scenario Analysis
2.3.1. Sensitivity Analysis
2.3.2. Scenario Analysis
3. Results
3.1. Worst-Case, Baseline and Best-Case Scenario
3.2. Sensitivity Analysis
3.3. By-Product Scenario
4. Discussion
4.1. Implications of Scenario Settings and Methodological Choices
4.2. Rubber Seed-Based Biodiesel: An Opportunity for a Sustainable and Deforestation-Free Value Chain?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ingrao, C.; Bacenetti, J.; Bezama, A.; Blok, V.; Geldermann, J.; Goglio, P.; Koukios, E.G.; Lindner, M.; Nemecek, T.; Siracusa, V.; et al. Agricultural and forest biomass for food, materials and energy: Bio-economy as the cornerstone to cleaner production and more sustainable consumption patterns for accelerating the transition towards equitable, sustainable, post fossil-carbon societies. J. Clean. Prod. 2016, 117, 4–6. [Google Scholar] [CrossRef]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- Philp, J. Balancing the bioeconomy: Supporting biofuels and bio-based materials in public policy. Energy Environ. Sci. 2015, 8, 3063–3068. [Google Scholar] [CrossRef]
- Elbersen, H.W.; Bindraban, P.S.; Blaauw, R.; Jongman, R. Biodiesel from Brazil. Agrotechnology & Food Innovations, B.V. 2008. Available online: http://edepot.wur.nl/28496 (accessed on 5 September 2018).
- Schobert, H. Chemistry of Fossil Fuels and Biofuels; Cambridge University Press: London, UK, 2013. [Google Scholar]
- Zhu, L.; Hiltunen, E.; Shu, Q.; Zhou, W.; Li, Z.; Wang, Z. Biodiesel production from algae cultivated in winter with artificial wastewater through PH regulation by acetic acid. Appl. Energy 2014, 128, 103–110. [Google Scholar] [CrossRef]
- Rahman, M.; Rasul, M.; Hassan, N. Study on the tribological characteristics of Australian native first generation and second generation biodiesel fuel. Energies 2017, 10, 55. [Google Scholar] [CrossRef]
- Rahman, M.; Rasul, M.; Hassan, N.; Hyde, J. Prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engines. Energies 2016, 9, 403. [Google Scholar] [CrossRef]
- Riayatsyah, T.M.I.; Ong, H.C.; Chong, W.T.; Aditya, L.; Hermansyah, H.; Mahlia, T.M.I. Life cycle cost and sensitivity analysis of reutealis trisperma as non-edible feedstock for future biodiesel production. Energies 2017, 10, 877. [Google Scholar] [CrossRef]
- Lam, M.K.; Tan, K.T.; Lee, K.T.; Mohamed, A.R. Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renew. Sustain. Energy Rev. 2009, 13, 1456–1464. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Environmental sustainability assessment of palm biodiesel production in Thailand. Energy 2012, 43, 306–314. [Google Scholar] [CrossRef]
- Rist, L.; Feintrenie, L.; Levang, P. The livelihood impacts of oil palm: Smallholders in Indonesia. Biodivers. Conserv. 2010, 19, 1009–1024. [Google Scholar] [CrossRef]
- Zhou, A.; Thomson, E. The development of biofuels in Asia. Appl. Energy. 2009, 86, S11–S20. [Google Scholar] [CrossRef]
- Reinhardt, G.; Rettenmaier, N.; Gärtner, S.; Pastowski, A. Rain forest for biodiesel? Ecological effects of using palm oil as a source of energy. Available online: http://www.personal.ceu.hu/students/06/Lin_Jiaqiao/Research_Focus/papers/RE/wwf_palmoil_study_en.pdf (accessed on 4 September 2018).
- Siangjaeo, S.; Gheewala, S.H.; Unnanon, K.; Chidthaisong, A. Implications of land use change on the life cycle greenhouse gas emissions from palm biodiesel production in Thailand. Energy Sustain. Dev. 2011, 15, 1–7. [Google Scholar] [CrossRef]
- Wicke, B.; Sikkema, R.; Dornburg, V.; Faaji, A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 2011, 28, 193–206. [Google Scholar] [CrossRef]
- Warren-Thomas, E.; Dolman, P.M.; Edwards, D.P. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity: Rubber sustainability and biodiversity. Conserv. Lett. 2015, 8, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J.; Yusup, S.; Bokhari, A.; Kamil, R.N.M. Study of fuel properties of rubber seed oil based biodiesel. Energy Convers. Manag. 2014, 78, 266–275. [Google Scholar] [CrossRef]
- Fajimi, A.O.; Babatunde, G.M.; Ogunlana, F.F.; Oyejide, A. Comparative utilization of rubber seed oil and palm oil by broilers in a humid tropical environment. Anim. Feed Sci. Technol. 1993, 43, 177–188. [Google Scholar] [CrossRef]
- Geo, V.E.; Nagarajan, G.; Nagalingam, B. Investigations on the use of rubber seed oil in a diesel engine using waste exhaust heat energy. Int. Energy J. 2009, 10, 1–10. [Google Scholar]
- Morshed, M.; Ferdous, K.; Khan, M.R.; Mazumder, M.S.I.; Islam, M.A.; Uddin, M.T. Rubber seed oil as a potential source for biodiesel production in Bangladesh. Fuel 2011, 90, 2981–2986. [Google Scholar] [CrossRef]
- Ramadhas, A.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Blagodatsky, S.; Xu, J.; Cadisch, G. Carbon balance of rubber (Hevea Brasiliensis) plantations: A review of uncertainties at plot, landscape and production level. Agric. Ecosyst. Environ. 2016, 221, 8–19. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). FAOSTAT Database. Available online: http://www.fao.org/statistics/databases/en/ (accessed on 4 September 2018).
- European Commission. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009—On the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF (accessed on 6 May 2009).
- International Organization for Standardization (ISO). Environmental Management—Life Cycle Assessment—Principles and Framework. Available online: https://www.iso.org/standard/37456.html (accessed on 4 September 2018).
- International Organization for Standardization (ISO). Environmental Management—Life Cycle Assessment—Requirements and Guidelines. Available online: https://www.iso.org/standard/38498.html (accessed on 4 September 2018).
- Salzer, M. Environmental Impact Analysis of Palm Oil Based Products Using Life Cycle Assessment Tools. Master’s Thesis, University of Hohenheim, Stuttgart, Germany, February 2013. [Google Scholar]
- Leong, S.K.; Yoon, P.K.; P´Ng, T.C. Use of Young Budding for Improved Hevea Cultivation. Malays. Rubber Board 1985, 3, 59–67. [Google Scholar]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Characterization and effect of using rubber seed oil as fuel in the compression ignition engines. Renew. Energy 2005, 30, 795–803. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Ramasamy, G.; Ioras, F.; Kaner, J.; Wenming, L. Production potential of rubberwood in Malaysia: Its economic challenges. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 317–322. [Google Scholar] [CrossRef]
- Jawjit, W.; Kroeze, C.; Rattanapan, S. Greenhouse gas emissions from rubber industry in Thailand. J. Clean. Prod. 2010, 18, 403–411. [Google Scholar] [CrossRef]
- Tang, L.; Grötz, P.A.; Aenis, T.; Nagel, U.J. Farming System Changes in South-West China: Impacts of Rubber Cultivation; Report Papers; International Farming Systems Association (IFSA): Vienna, Austria, 2010. [Google Scholar]
- Ananda, R.; Musafer, N.; Kalugalagedera, T. Plantation, Production, and Use of Biofuels at the Community Level in Sri Lanka; Practical Action: Colombo, Sri Lanka, 2009. [Google Scholar]
- Atabani, A.E.; Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Cicero, S.M.; Marcos-Filho, J. Rubber Tree Seed Production. Consortium for International Seed Technology Training (CISTT) 2007. Available online: https://vdocuments.mx/rubber-tree-seed-production-ppt.html (accessed on 5 September 2018).
- Devi, V.M.; Prasad, P.N.; Syndia, L.A.M.; Rajakohila, M.; Ariharan, V.N. Physico-chemical characterization of rubber seed oil (Hevea Brasiliensis)—A promising feedstock for biodiesel production. Int. J. Chem. Anal. Sci. 2012, 3, 1402–1404. [Google Scholar]
- Ebewele, R.O.; Iyayi, A.F.; Hymore, F.K. Deacidification of high acidic rubber seed oil by reesterification with glycerol. Int. J. Phys. Sci. 2010, 5, 841–846. [Google Scholar]
- Eka, H.D.; Tayul Aris, Y.; Wan Nadiah, W.A. Potential use of malaysian rubber (Hevea Brasiliensis) seed as food, feed and biofuel. Int. Food Res. J. 2010, 17, 527–534. [Google Scholar]
- Ikwuagwu, O.E.; Ononogbu, I.C.; Njoku, O.U. Production of biodiesel using rubber (Hevea Brasiliensis (Kunth. Muell.)) seed oil. Ind. Crops Prod. 2000, 12, 57–62. [Google Scholar] [CrossRef]
- Nair, K.P.P. The Agronomy and Economy of Important Tree Crops of the Developing World; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Dararath, Y.; Top, N.; Lic, V. Rubber Plantation Development in Cambodia: At What Cost? The Economy and Environment Program for Southeast Asia (EEPSEA) 2011. Available online: http://eepseapartners.org/pdfs/pdf3/Rubber_Report-Cambodia-Yem_Dararath-et-al-Technical-Report.pdf (accessed on 5 September 2018).
- Ebewele, R.O.; Iyayi, A.F.; Hymore, F.K. Considerations of the extraction process and potential technical applications of Nigerian rubber seed oil. Int. J. Phys. Sci. 2010, 5, 826–831. [Google Scholar]
- Hallahan, D.L. Rubber Production. In Encyclopedia of Applied Plant Sciences; Murphy, D.J., Thomas, B., Murray, B.G., Eds.; Academic Press: Cambridge, UK, 2003; pp. 1181–1189. [Google Scholar]
- Van Beilen, J. Alternative Sources of Natural Rubber: Outputs from the EPOBIO Project November 2006; CPL Press: Newbury, UK, 2006. [Google Scholar]
- Zairossani, M.N. Approches towards Sustainability in Midstream and Downstream Rubber Industry: Life Cycle Assessment (LCA) and Environmental Labelling. Processing and Pollution Research Unit MALAYSIAN RUBBER BOARD 2009. Available online: http://www.lgm.gov.my/whatsnew/MiccosPdf/S1-2.pdf (accessed on 5 September 2018).
- Mead, D.J. Forest Plantations; Working Papers; Food and Agriculture Organization (FAO): Roma, Italy, 2012. [Google Scholar]
- Onoji, S.E.; Iyuke, S.E.; Igbafe, A.I.; Nkazi, D.B. Rubber seed oil: A potential renewable source of biodiesel for sustainable development in Sub-Saharan Africa. Energy Convers. Manag. 2016, 110, 125–134. [Google Scholar] [CrossRef]
- Maharjan, S.; Wang, W.-C.; Teah, H.Y. Life cycle assessment of palm-derived biodiesel in Taiwan. Clean Technol. Environ. Policy 2017, 19, 959–969. [Google Scholar] [CrossRef]
- Iyayi, A.F.; Akpaka, P.O.; Ukpeoyibo, U. Rubber seed processing for value added latex production in Nigeria. Afr. J. Agric. Res. 2008, 3, 505–509. [Google Scholar]
- Melvin Jose, D.F.; Edwin Raj, R.; Durga Prasad, B.; Robert Kennedy, Z.; Mohammed Ibrahim, A. A multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil. Appl. Energy 2011, 88, 2056–2063. [Google Scholar] [CrossRef]
- Kaewmai, R.; H-Kittikun, A.; Musikavong, C. Greenhouse gas emissions of palm oil mills in Thailand. Int. J. Greenh. Gas Control 2012, 11, 141–151. [Google Scholar] [CrossRef]
- Pleanjai, S.; Gheewala, S.H. Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl. Energy 2009, 86, S209–S214. [Google Scholar] [CrossRef]
- Yusoff, S.; Hansen, S. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia (9 pp). Int. J. Life Cycle Assess. 2007, 12, 50–58. [Google Scholar]
- Oghenejoboh, K.M.; Umukoro, P.O. Comparative analysis of fuel characteristics of bio-diesel produced from selected oil-bearing seeds in Nigeria. Eur. J. Sci. Res. 2011, 58, 238–246. [Google Scholar]
- Satyanarayana, M.; Muraleedharan, C. A comparative study of vegetable oil methyl esters (biodiesels). Energy 2011, 36, 2129–2137. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel; Springer: London, UK, 2008. [Google Scholar]
- Yusup, S.; Khan, M. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics. Biomass Bioenergy 2010, 34, 1523–1526. [Google Scholar] [CrossRef]
- Hassan, M.N.A.; Jaramillo, P.; Griffin, W.M. Life cycle GHG emissions from malaysian oil palm bioenergy development: The impact on transportation sector’s energy security. Energy Policy 2011, 39, 2615–2625. [Google Scholar] [CrossRef]
- Pleanjai, S.; Gheewala, S.H.; Garivait, S. Environmental evaluation of biodiesel production from palm oil in a life cycle perspective. Asian J. Energy Env. 2007, 1, 15–32. [Google Scholar]
- Bin Abu Ghazali, M.Y.A. Biobased Products from Rubber, Jatropha and Sunflower Oil. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, February 2015. [Google Scholar]
- Bartaire, J.-G.; Bauerschmidt, R.; Ohman, T.; Tihanyi, Z.; Zeinhofer, H.; Scowcroft, J.F.; De Janeiro, V. Efficiency in Electricity Generation. EURELECTRIC “Preservation of Resources” Working Group’s ‘Upstream’ Sub-Group in Collaboration with VGB. 2003. Available online: https://www.netl.doe.gov/File%20Library/Research/Coal/energy%20systems/gasification/gasifipedia/EEGJulyrevisedFINAL1-2003-030-0548-2.pdf (accessed on 5 September 2018).
- Haron, K.; Mohammed, A.T.; Halim, R.M.; Din, A.K. Palm-based bio-fertilizer from decanter cake and boiler ash of palm oil mill. MPOB Inf. Ser. 2008, 412, 437–441. [Google Scholar]
- Siregar, K.; Tambunan, A.H.; Irwanto, A.K.; Wirawan, S.S.; Araki, T. A comparison of life cycle assessment on oil palm (Elaeis Guineensis Jacq.) and physic nut (Jatropha Curcas Linn.) as feedstock for biodiesel production in Indonesia. Energy Procedia 2015, 65, 170–179. [Google Scholar] [CrossRef]
- Panichelli, L.; Dauriat, A.; Gnansounou, E. Life cycle assessment of soybean-based biodiesel in Argentina for export. Int. J. Life Cycle Assess. 2009, 14, 144–159. [Google Scholar] [CrossRef]
- Morais, S.; Martins, A.A.; Mata, T.M. Comparison of allocation approaches in soybean biodiesel life cycle assessment. J. Energy Inst. 2010, 83, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Raju, K.V. Instability in natural rubber prices in India: An empirical analysis. J. Econ. Financ. 2016, 7, 24–28. [Google Scholar]
- Sridhar, M.K.C.; AdeOluwa, O.O. Palm Oil Industry Residues. In Biotechnology for Agro-Industrial Residues Utilisation; Nigam, P.S.-N., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 341–355. [Google Scholar]
- Buchspies, B.; Kaltschmitt, M. Life cycle assessment of bioethanol from wheat and sugar beet discussing environmental impacts of multiple concepts of co-product processing in the context of the european renewable energy directive. Biofuels 2016, 7, 141–153. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, J.; Li, Q.; Mortimer, P.E. Investigation of rubber seed yield in Xishuangbanna and estimation of rubber seed oil based biodiesel potential in Southeast Asia. Energy 2014, 69, 837–842. [Google Scholar] [CrossRef]
- Guillaume, T.; Kotowska, M.M.; Hertel, D.; Knohl, A.; Krashevska, V.; Murtilaksono, K.; Scheu, S.; Kuzyakov, Y. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat. Commun. 2018, 9, 2388. [Google Scholar] [CrossRef] [PubMed]
- Thellmann, K.; Blagodatsky, S.; Häuser, I.; Liu, H.; Wang, J.; Asch, F.; Cadisch, G.; Cotter, M. Assessing ecosystem services in rubber dominated landscapes in South-East Asia—A Challenge for biophysical modeling and transdisciplinary valuation. Forests 2017, 8, 505. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and Statistical Data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef] [PubMed]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, F.; Hino, M. Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia. PLoS ONE 2013, 8, e70323. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Blagodatsky, S.; Lippe, M.; Liu, F.; Hammond, J.; Xu, J.; Cadisch, G. Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. For. Ecol. Manag. 2016, 372, 149–163. [Google Scholar] [CrossRef]
- Langenberger, G.; Cadisch, G.; Martin, K.; Min, S.; Waibel, H. Rubber intercropping: A viable concept for the 21st Century? Agrofor. Syst. 2017, 91, 577–596. [Google Scholar] [CrossRef]
- Carlson, K.M.; Heilmayr, R.; Gibbs, H.K.; Noojipady, P.; Burns, D.N.; Morton, D.C.; Walker, N.F.; Paoli, G.D.; Kremen, C. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl. Acad. Sci. USA 2018, 115, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.D.; Phelps, J.; Yuen, J.Q.; Webb, E.L.; Lawrence, D.; Fox, J.M.; Bruun, T.B.; Leisz, S.J.; Ryan, C.M.; Dressler, W.; et al. Carbon outcomes of major land-cover transitions in SE Asia: Great uncertainties and REDD+ policy implications. Glob. Chang. Biol. 2012, 18, 3087–3099. [Google Scholar] [CrossRef] [PubMed]
Input | Unit | Amount | Sources |
---|---|---|---|
Seedlings | kg ha−1 a−1 | 205.70 | [29,30,31] |
Fertilizer | |||
N | kg ha−1 a−1 | 83.00 | [28] |
P2O5 | kg ha−1 a−1 | 81.00 | [28] |
K2O | kg ha−1 a−1 | 108.00 | [28] |
MgO | kg ha−1 a−1 | 19.60 | [28] |
Pesticides | kg ha−1 a−1 | 37.50 | [28] |
Output | |||
Rubber seeds | kg ha−1 a−1 | 587.44 | [21,32,34,35,36,37,38,39,40,41] |
Latex | kg ha−1 a−1 | 2291 | [34,39,42,43,44,45,46] |
Wood | kg ha−1 a−1 | 3422 | [31,41,47] |
Input | Unit | Amount | Sources |
Rubber seeds | kg ha−1 a−1 | 587.44 | [21,32,34,35,36,37,38,39,40,41,51] |
Electricity | MJ ha−1 a−1 | 40.35 | [11,52,53,54] |
Diesel | l ha−1 a−1 | 1.06 | [11,53] |
Output | |||
CRSO | kg ha−1 a−1 | 267.02 | [21,22,34,35,36,37,38,39,40,41,50,51,54,55,56,57,58] |
Shells | kg ha−1 a−1 | 214.07 | [21,22,34,41,50,57] |
Press cake | kg ha−1 a−1 | 106.35 | [41] |
Route | Distance (km) |
---|---|
Rubber seeds → Rubber seed oil extraction | 28.75 [11,59] |
CRSO → Rubber seed oil transesterification | 311 [11,60] |
RSME → Usage | 98.21 [60] |
Total | 437.96 |
Input | Unit | Amount | Sources |
CRSO | kg ha−1 a−1 | 267.02 | [21,22,31,34,35,36,37,38,39,40,41,50,55,56,57,58] |
Electricity | MJ ha−1 a−1 | 75.10 | [11,53] |
Water | m3 ha−1 a−1 | 0.46 | [22] |
Methanol | kg ha−1 a−1 | 97.66 | [34] |
NaOH | kg ha−1 a−1 | 2.05 | [34] |
H2SO4 | kg ha−1 a−1 | 7.56 | [34] |
Output | |||
RSME | kg ha−1 a−1 | 247.61 | [21,22,34,35,36,37,38,39,40,41,50,51,55,56,57,58] |
Glycerol | kg ha−1 a−1 | 10.32 | [40] |
Wastewater | m3 ha−1 a−1 | 0.05 | [53] |
Sensitivity Level | Unith a−1 a−1 | Litmin | −30% | −20% | −10% | Baseline | +10% | +20% | +30% | Litmax |
---|---|---|---|---|---|---|---|---|---|---|
Seed yield | kg | 150 [37] | 411 | 470 | 529 | 587 | 646 | 705 | 764 | 1500 [41] |
Fertilizer | kg N | n.a. | 58 | 66 | 74 | 83 | 91 | 99 | 108 | n.a. |
kg P2O5 | 56 | 64 | 73 | 81 | 89 | 97 | 105 | |||
kg K2O | 76 | 86 | 97 | 108 | 119 | 130 | 140 | |||
Distance | km | 152 [41,60] | 302 | 350 | 394 | 438 | 482 | 526 | 569 | 17,705 a |
Sensitivity Analysis | Unit | Litmax | +30% | +20% | +10% | Baseline | −10% | −20% | −30% | Litmin |
---|---|---|---|---|---|---|---|---|---|---|
Rubber seed yield | g CO2 eq. MJ−1 | 14.92 | 16.08 | 16.18 | 16.29 | 16.40 | 16.50 | 16.62 | 16.73 | 17.26 |
Fertilizer applied | n.a. | 19.70 | 18.59 | 17.48 | 16.40 | 15.29 | 14.19 | 13.09 | n.a. | |
Transport distance | 18.88 | 16.64 | 16.56 | 16.48 | 16.40 | 16.31 | 16.23 | 16.14 | 15.83 | |
Rubber seed yield | in % | 91.02 | 98.07 | 98.70 | 99.34 | 100.00 | 100.66 | 101.35 | 102.04 | 105.30 |
Fertilizer applied | n.a. | 120.15 | 113.40 | 106.64 | 100.00 | 93.28 | 86.57 | 79.85 | n.a. | |
Transport distance | 115.16 | 101.52 | 101.01 | 100.51 | 100.00 | 99.49 | 98.99 | 98.43 | 96.57 | |
Rubber seed yield | GHG mitigation potential in g CO2 eq. MJ−1 | −68.38 | −67.22 | −67.12 | −67.01 | −66.90 | −66.80 | −66.68 | −66.57 | −66.04 |
Fertilizer applied | n.a. | −63.60 | −64.71 | −65.82 | −66.90 | −68.01 | −69.11 | −70.21 | n.a. | |
Transport distance | −64.42 | −66.66 | −66.74 | −66.82 | −66.90 | −66.99 | −67.07 | −67.16 | −67.47 |
CHP | Unit | Worst-Case | Baseline | Best-Case |
---|---|---|---|---|
Heat | Additional GHG mitigation potential in g CO2 eq. MJ−1 RSME | 1543.38 | 409.78 | 173.29 |
Power | 957.84 | 255.15 | 108.56 | |
Total | 2501.22 | 664.93 | 281.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Lippe, M.; Lewandowski, I.; Salzer, M.; Cadisch, G. CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source. Forests 2018, 9, 548. https://doi.org/10.3390/f9090548
Wagner M, Lippe M, Lewandowski I, Salzer M, Cadisch G. CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source. Forests. 2018; 9(9):548. https://doi.org/10.3390/f9090548
Chicago/Turabian StyleWagner, Moritz, Melvin Lippe, Iris Lewandowski, Mirko Salzer, and Georg Cadisch. 2018. "CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source" Forests 9, no. 9: 548. https://doi.org/10.3390/f9090548
APA StyleWagner, M., Lippe, M., Lewandowski, I., Salzer, M., & Cadisch, G. (2018). CO2 Footprint of the Seeds of Rubber (Hevea brasiliensis) as a Biodiesel Feedstock Source. Forests, 9(9), 548. https://doi.org/10.3390/f9090548