Assessment of Guava (Psidium Guajava L.) Wood Biomass for Briquettes’ Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Material, Preparation of Analysis Sample and Production of Briquettes
2.2. Bulk Density
2.3. Moisture Content
2.4. Ash Content
2.5. Calorific Value
2.6. Volatile Matter Content
2.7. Content of Carbon (C), Hydrogen (H) and Nitrogen (N)
2.8. Content of S, Cl, Ca, Fe, P, K, Si, Cr, Mo, Sb, Rh and Zr
2.9. Content of Cd, Co, Cu, As, Hg, Ni, Pb and Zn
2.10. Mechanical Durability
3. Results and Discussion
3.1. Classification by Origin and Source
3.2. Bulk Density
3.3. Moisture Content
3.4. Ash Content
3.5. Calorific Value
3.6. Volatile Matter Content
3.7. Nitrogen, Carbon, Hydrogen, Sulphur and Chloride
3.8. Other Chemical Compounds
3.9. Mechanical Durability
3.10. Evaluation of Guava Wood Briquettes According to the Standards’ Requirements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freibauer, A.; Mathijs, E.; Brunori, G.; Damianova, Z.; Faroult, E.; Gomis, J.G.; O’Brien, L.; Treyer, S. Sustainable Food Consumption and Production in a Resource-Constrained World; European Commission: Brussels, Belgium, 2011; 215 p., ISBN 978-92-79-19723-9. [Google Scholar]
- Yokoyama, S. Biomass resources. In The Asian Biomass Handbook. A Guide for Biomass Production and Utilization; Yokoyama, S., Matsumura, Y., Eds.; The Japan Institute of Energy: Tokyo, Japan, 2008; pp. 12–80. [Google Scholar]
- Ministry of Electricity and Renewable Energies of Ecuador. Available online: www.energia.gob.ec (accessed on 7 August 2017).
- International Energy Agency. Available online: www.iea.org/Sankey/#?c=Ecuador&=Balance (accessed on 21 September 2018).
- Mendoza Hernández, A.H. Assessment of Guava (Psidium guajava L.) Wood Biomass for Energy Purposes. Master’s Thesis, Czech University of Life Sciences Prague, Praha, Czech Republic, June 2016. [Google Scholar]
- Martínez-Pérez, R.; Pedraza-Bucio, F.E.; Apolinar-Cortes, J.; López-Miranda, J.; Rutiaga-Quiñones, J.G. Poder Calorífico Y Material Inorgánico En La Corteza De Seis Árboles Frutales (Calorific value and inorganic material in the bark of six fruit trees). Revista Chapingo Serie Ciencias Forestales y del Ambiente 2012, XVIII, 375–384. [Google Scholar] [CrossRef]
- UNEP. Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials; United Nations Environment Programme: Paris, France, 2010; 112 p., ISBN 978-92-807-3084-5. [Google Scholar]
- Ministry of Agriculture and Livestock of Ecuador. Available online: www.agricultura.gob.ec (accessed on 5 August 2017).
- Gutiérrez, P.M.; Mitchell, S.; Solis, R. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Health Effects of Psidium guajava L. Leaves: An Overview of the Last Decade. Int. J. Mol. Sci. 2017, 18, 897. [Google Scholar] [CrossRef] [PubMed]
- Lucas, E.; Olorunnisola, A.; Adewole, N. Preliminary Evaluation of Guava (Psidium guajava L.) Tree Branches for Truss Fabrication in Nigeria. Agr. Eng. Int.: CIGR J. 2006, VIII, 1–10. [Google Scholar]
- Oliveira, D.S.; Lobato, A.L.; Ribeiro, S.M.; Santana, A.M.; Chaves, J.B.; Pinheiro-Sant’Ana, H.M. Carotenoids and Vitamin C during Handling and Distribution of Guava (Psidium guajava L.), Mango (Mangifera indica L.), and Papaya (Carica papaya L.) at Commercial Restaurants. J. Agric. Food Chem. 2010, 58. [Google Scholar] [CrossRef] [PubMed]
- Rahim, N.; Gomes, D.J.; Watanabe, H.; Rahman, S.R.; Chomvarin, C.; Endtz, H.P.; Alam, M. Antibacterial Activity of Psidium guajava Leaf and Bark Against Multidrug-Resistant Vibrio cholerae: Implication for Cholera Control. Jpn. J. Infect. Dis. 2010, 63, 271–274. [Google Scholar] [PubMed]
- Huang, C.S.; Yin, M.C.; Chiu, L.C. Antihyperglycemic and Antioxidative Potential of Psidium guajava Fruit in Streptozotocin-induced Diabetic Rats. Food Chem. Toxicol. 2011, 49, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
- Thuaytong, W.; Anprung, P. Bioactive Compounds and Prebiotic Activity in Thailand-grown Red and White Guava Fruit (Psidium guajava L.). Food Sci. Technol. Int. 2011, 17, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Farinazzi-Machado, F.M.V.; de Alvares Goulart, R.; Saad Brunnati, A.C.; Machado Bueno Ottoboni, A.M.; Teixeira Nicolau, C.C. Psidium guajava (Guava): A Plant of Multipurpose Medicinal Applications. Med. Aromat. Plants 2012, 1, 1–6. [Google Scholar] [CrossRef]
- Braga, T.V.; Dores, R.G.R.; Ramos, C.S.; Evangelista, F.C.G.; Tinoco, L.M.S.; Varotti, F.P.; Carvalho, M.G.; Sabino, A.P. Antioxidant, Antibacterial and Antitumor Activity of Ethanolic Extract of the Psidium guajava Leaves. Am. J. Plant Sci. 2014, 5, 3492–3500. [Google Scholar] [CrossRef]
- Camarena-Tello, J.C.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Pedraza-Bucio, F.E.; López-Albarrán, P.; Herrera-Bucio, R.; Rutiaga-Quiñones, J.G. Chemical Composition of Biomass Generated in the Guava Tree Pruning. EXCLI J. 2015, 14, 204–212. [Google Scholar] [CrossRef] [PubMed]
- BS EN 14778:2011. Solid Biofuels—Sampling; BSI Standards Publication: Bonn, Germany, 2011; pp. 1–63. ISBN 978 0 580 69715 9. [Google Scholar]
- BS EN 14780:2011. Solid Biofuels—Sample Preparation; BSI Standards Publication: Bonn, Germany, 2011; pp. 1–24. ISBN 978 0 580 69716 6. [Google Scholar]
- BS EN ISO 17828:2015. Solid Biofuels—Determination of Bulk Density; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–20. ISBN 978 0 580 81421 1. [Google Scholar]
- BS EN ISO 18134-3:2015. Solid Biofuels—Determination in moisture content—Oven dry method: Part 3: Moisture in General Analysis Sample; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–14. ISBN 978 0 580 81432 7. [Google Scholar]
- BS EN ISO 18122:2015. Solid Biofuels—Determination of Ash Content; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–18. ISBN 978 0 580 97271 3. [Google Scholar]
- BS EN 14918:2009. Solid Biofuels—Determination of Calorific Value; BSI Standards Publication: Bonn, Germany, 2009; pp. 1–64. ISBN 978 0 580 66787 9. [Google Scholar]
- BS EN ISO 18123:2015. Solid Biofuels—Determination of the Content of Volatile Matter; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–20. ISBN 978 0 580 97272 0. [Google Scholar]
- BS EN ISO 16948:2015. Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen; BSI Standards Publication: Bonn, Germany 2015; pp. 1–18. ISBN 978 0 580 81463 1. [Google Scholar]
- BS EN ISO 16967:2015. Solid Biofuels—Determination of Major Elements. Al, Ca, Fe, Mg, P, K, Si, Na and Ti; BSI Standards Publication: Bonn, Germany 2015; pp. 1–24. ISBN 978 0 580 81464 8. [Google Scholar]
- BS EN ISO 16968:2015. Solid Biofuels—Determination of Minor Elements; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–22. ISBN 978 0 580 81465 5. [Google Scholar]
- BS EN ISO 17831–2:2015. Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes–Part 2: Briquettes; BSI Standards Publication: Bonn, Germany, 2015; pp. 1–18. ISBN 978 0 580 81425 9. [Google Scholar]
- BS EN ISO 17225-1:2014. Solid Biofuels—Fuel Specifications and Classes. General requirements; BSI Standards Publication: Bonn, Germany, 2014; pp. 1–66. ISBN 978 0 580 78139 1. [Google Scholar]
- Davis, S.C.; Hay, W.; Pierce, J. Biomass in the Energy Industry: An Introduction; BP: London, UK, 2014; p. 120. ISBN 978-0-9928387-1-3. [Google Scholar]
- Boundy, B.; Diegel, S.; Wright, L.; Davis, S. Biomass Energy Data Book, 4th ed.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011; p. 201. [Google Scholar]
- Ivanova, T.; Kolarikova, M.; Havrland, B.; Passian, L. Mechanical Durability of Briquettes Made of Energy Crops and Wood Residues. In Proceeding of 13th International Scientific Conference Engineering for Rural Development in Jelgava, Latvia, 29–30 May 2014; Latvia University of Agriculture Faculty of Engineering: Jelgava, Latvia, 2014. [Google Scholar]
- Huhtinen, M. Wood Biomass as a Fuel. In Material for 5EURES Training Sessions; Huhtinen, M., Ed.; European Commission under the Intelligent Energy—Europe Programme: Brussels, Belgium, 2005; pp. 1–7. [Google Scholar]
- Ivanova, T.; Havrland, B.; Hutla, P.; Muntean, A. Drying of cherry tree chips in the experimental biomass dryer with solar collector. Res. Agr. Eng. 2012, 58, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Malaťák, J.; Bradna, J.; Velebil, J. The Dependence of COx and NOx Emission Concentrations on the Excess Air Coefficient during Combustion of Selected Agricultural Briquetted by-Products. Agron. Res. 2017, 15, 1084–1093. [Google Scholar]
- Chaloupkova, V. Macroscopic Analysis of Biomass Briquettes. Master’s Thesis, Czech University of Life Sciences Prague, Praha, Czech Republic, June 2015. [Google Scholar]
- BS EN ISO 17225-3:2014. Solid Biofuels—Fuel Specifications and Classes—Part 3: Graded Wood Briquettes; BSI Standards Publication: Bonn, Germany, 2014; pp. 1–16. ISBN 978 0 580 78141 4. [Google Scholar]
- Shao, Y.; Wang, J.; Preto, F.; Zhu, J.; Chunbao, X. Ash Deposition in Biomass Combustion or Co-Firing for Power/Heat Generation. Energies 2012, 5, 5171–5189. [Google Scholar] [CrossRef] [Green Version]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany, 1989; 613 p., ISBN 3935638396. [Google Scholar]
- Karampinis, E.; Grammelis, P.; Zethraeus, B.; Andrijevskaja, J.; Kask, Ü.; Kask, L.; Sandak, J. BISYPLAN: The Bioenergy System Planners Handbook. In Proceeding of the 20th European Biomass Conference and Exhibition in Milan, Italy, 18–22 June 2012; ETA-Florence Renewable Energies: Florence, Italy, 2012. [Google Scholar]
- Clarke, S.; Preto, F. Biomass Burn Characteristics; Ministry of Agriculture, Food and Rural Affairs: Ontario, Canada, 2011; pp. 1–6. [Google Scholar]
- BS EN ISO 17225-7:2014. Solid Biofuels—Fuel Specifications and Classes—Part 6: Graded Non-Woody Briquettes; BSI Standards Publication: Bonn, Germany, 2014; pp. 1–16. ISBN 978 0 580 78145 2. [Google Scholar]
- Tang, J.P.; Lama, H.L.; Azizb, M.K.A.; Morad, N.A. Enhanced Biomass Characteristics Index in Palm Biomass Calorific Value Estimation. Appl. Therm. Eng. 2016, 105, 941–949. [Google Scholar] [CrossRef]
- Adapa, P.; Tabil, L.; Schoenau, G. Compression Characteristics of Selected Ground Agricultural Biomass. Agr. Eng. Int.: CIGR J. 2009, XI, 1–19. [Google Scholar]
- Nussbaumer, T. Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Boardman, R.D.; Yancey, N.A. A Review on Biomass Classification and Composition, Co-Firing Issues and Pretreatment Methods; ASABE Meeting Presentation: Louisville, KY, USA, 2011; 31 p. [Google Scholar]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing, 1st ed.; Earthsacn: London, UK, 2007; 465 p., ISBN 978-1-84407-249-1. [Google Scholar]
- Sirignano, W.A. Combustion Fundamentals. Combust. Flame 1986, 63, 309. [Google Scholar] [CrossRef]
- Millar, H.J. Biomasa y Sus Propiedades Como Combustible (Biomass and its Properties as Fuel). ATCP: Revista Celulosa y Papel, 2009; 24–28. Available online: http://docplayer.es/17096995-Biomasa-y-sus-propiedades-como-combustible.html(accessed on 15 October 2017).
- FAO. Climate Change and Food Security: A Framework Document; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; 93 p. [Google Scholar]
- Gübitz, G.M.; Mittelbach, M.; Trabi, M. Exploitation of the Tropical Oil Seed Plant Jatropha curcas L. Bioresour. Technol. 1999, 67, 73–82. [Google Scholar] [CrossRef]
- Stolarski, M. Content of Carbon, Hydrogen and Sulphur in Biomass of Some Shrub Willow Species. J. Elementol. 2008, 13, 655–663. [Google Scholar]
- Biomasa Y El Carbono de Bosques Y Las Tecnologías Potenciales de Producción de Energía a Partir de Biomasa En Durango (Biomass and Carbon from Forests and Potential Technologies for Energy Production from Biomass in Durango). Available online: http://www.conafor.gob.mx:8080/documentos/docs/9/1107Evaluaci%C3%B3n%20de%20la%20Madera,%20la%20biomasa%20y%20el%20carbono%20de%20bosques%20y%20las%20tecnolog%C3%ADas%20potenciales....pdf (accessed on 17 October 2017).
- Calkins, W.H. The Chemistry of Sulfur in Coal—a Historical Perspective; American Chemical Society, Division of Fuel Chemistry: Washington, DC, USA, 1993; p. 655. [Google Scholar]
- Hiltunen, M.; Barišić, V.; Zabetta, E.C. Combustion of Different Types of Biomass in CFB Boilers. In Proceedings of the 16th European Biomass Conference in Valencia, Spain, 2–6 June 2008; ETA-Florence Renewable Energies: Florence, Italy. [Google Scholar]
- Obernberger, I.; Thek, G. Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Muntean, A.; Ivanova, T.; Hutla, P.; Havrland, B. Influence of raw material properties on the quality of solid biofuel and energy consumption in briquetting process. Agron. Res. 2017, 15, 1708–1715. [Google Scholar] [CrossRef]
- Brožek, M.; Nováková, A.; Kolářová, M. Quality evaluation of briquettes made from wood waste. Res. Agr. Eng. 2012, 58, 30–35. [Google Scholar] [CrossRef] [Green Version]
Element | (mg kg−1) | Element | (mg kg−1) |
---|---|---|---|
Co | 0.020 | Ca | 1.155 |
Ni | 0.212 | P | 0.036 |
Cu | 2.652 | K | 2.137 |
Zn | 4.570 | Mo | 0.002 |
As | 0.012 | Cr | 0 |
Cd | 0.001 | Zr | 1.002 |
Hg | 0.005 | Rh | 0 |
Pb | 0.035 | Si | 0.213 |
Fe | 0 | Sb | 0.003 |
Parameters | Units | Graded Wood Briquettes | Non-Woody Briquettes | Guava Briquettes | ||
---|---|---|---|---|---|---|
A1 Class | A2 Class | B Class | A Class | |||
Diameter (D),Lenght (L) | mm mm | to be stated | to be stated | D 52.025 L 50.806 | ||
Moisture, M | w-% ar | ≤12 | ≤15 | ≤15 | ≤12 | 9.8 |
Ash, A | w-% d | ≤1.0 † | ≤1.5 † | ≤3.0 † | ≤6.0 | 3.74 |
Net calorific value, Q | MJ kg−1 ar | ≥15.5 | ≥15.3 | ≥14.9 | ≥14.5 | 17.11 |
Nitrogen, N | w-% d | ≤0.3 † | ≤0.5 † | ≤1.0 | ≤1.5 | 0.680 |
Sulphur, S | w-% d | ≤0.04 † | ≤0.04 † | ≤0.05 † | ≤0.20 | 0.063 |
Chlorine, Cl | w-% d | ≤0.02 | ≤0.02 | ≤0.03 | ≤0.10 | 0.020 |
Arsenic, As | mg kg−1 d | ≤1 | ≤1 | ≤1 | ≤1 | 0.012 |
Cadmium, Cd | mg kg−1 d | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | 0.001 |
Chlorimum, Cr | mg kg−1 d | ≤10 | ≤10 | ≤10 | ≤50 | 0 |
Copper, Cu | mg kg−1 d | ≤10 | ≤10 | ≤10 | ≤20 | 2.652 |
Lead, Pb | mg kg−1 d | ≤10 | ≤10 | ≤10 | ≤10 | 0.035 |
Mercury, Hg | mg kg−1 d | ≤0.1 | ≤0.1 | ≤0.1 | ≤0.1 | 0.005 |
Nickel, Ni | mg kg−1 d | ≤10 | ≤10 | ≤10 | ≤10 | 0.212 |
Zinc, Zn | mg kg−1 d | ≤100 | ≤100 | ≤100 | ≤100 | 4.570 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.; Mendoza Hernández, A.H.; Bradna, J.; Fernández Cusimamani, E.; García Montoya, J.C.; Armas Espinel, D.A. Assessment of Guava (Psidium Guajava L.) Wood Biomass for Briquettes’ Production. Forests 2018, 9, 613. https://doi.org/10.3390/f9100613
Ivanova T, Mendoza Hernández AH, Bradna J, Fernández Cusimamani E, García Montoya JC, Armas Espinel DA. Assessment of Guava (Psidium Guajava L.) Wood Biomass for Briquettes’ Production. Forests. 2018; 9(10):613. https://doi.org/10.3390/f9100613
Chicago/Turabian StyleIvanova, Tatiana, Amilkar Hernando Mendoza Hernández, Jiří Bradna, Eloy Fernández Cusimamani, Juan Carlos García Montoya, and Daniel Alexander Armas Espinel. 2018. "Assessment of Guava (Psidium Guajava L.) Wood Biomass for Briquettes’ Production" Forests 9, no. 10: 613. https://doi.org/10.3390/f9100613
APA StyleIvanova, T., Mendoza Hernández, A. H., Bradna, J., Fernández Cusimamani, E., García Montoya, J. C., & Armas Espinel, D. A. (2018). Assessment of Guava (Psidium Guajava L.) Wood Biomass for Briquettes’ Production. Forests, 9(10), 613. https://doi.org/10.3390/f9100613